fix(poly): coefficients properly handle chain rule

This commit is contained in:
2025-03-18 11:18:46 -04:00
parent 8dcdf92414
commit afc488abd1
4 changed files with 28 additions and 513 deletions

View File

@@ -2,7 +2,7 @@
//
// Copyright (C) 2025 -- The 4D-STAR Collaboration
// File Author: Emily Boudreaux
// Last Modified: February 14, 2025
// Last Modified: March 18, 2025
//
// 4DSSE is free software; you can use it and/or modify
// it under the terms and restrictions the GNU General Library Public
@@ -19,21 +19,23 @@
//
// *********************************************************************** */
#include "mfem.hpp"
#include <iostream>
#include "polyCoeff.h"
namespace polycoeff{
double nonlinearSourceCoeff(const mfem::Vector &x)
{
// double r = x.Norml2();
return 1.0;
double r = x.Norml2();
return std::pow(r, 2);
}
void diffusionCoeff(const mfem::Vector &x, mfem::Vector &v)
{
v.SetSize(3);
for (int i = 0; i < 3; i++) { v(i) = -1; }
double r = x.Norml2();
for (int i = 0; i < 3; i++) {
v(i) = -std::pow(r, 2);
}
}
double x1(const double n)

View File

@@ -2,7 +2,7 @@
//
// Copyright (C) 2025 -- The 4D-STAR Collaboration
// File Author: Emily Boudreaux
// Last Modified: February 12, 2025
// Last Modified: March 18, 2025
//
// 4DSSE is free software; you can use it and/or modify
// it under the terms and restrictions the GNU General Library Public

View File

@@ -1,3 +1,23 @@
/* ***********************************************************************
//
// Copyright (C) 2025 -- The 4D-STAR Collaboration
// File Author: Emily Boudreaux
// Last Modified: March 18, 2025
//
// 4DSSE is free software; you can use it and/or modify
// it under the terms and restrictions the GNU General Library Public
// License version 3 (GPLv3) as published by the Free Software Foundation.
//
// 4DSSE is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with this software; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// *********************************************************************** */
#include "mfem.hpp"
#include <string>

View File

@@ -19,20 +19,11 @@
//
// *********************************************************************** */
#include "mfem.hpp"
#include <string>
#include <iostream>
#include <cmath>
#include <numbers>
#include <csignal>
#include <fstream>
#include <array>
#include <vector>
#include "polyMFEMUtils.h"
#include "probe.h"
#include "config.h"
#include "warning_control.h"
namespace polyMFEMUtils {
NonlinearPowerIntegrator::NonlinearPowerIntegrator(
@@ -200,502 +191,4 @@ namespace polyMFEMUtils {
}
}
ConstraintIntegrator::ConstraintIntegrator(mfem::Coefficient &eta_) : eta(eta_) {}
void ConstraintIntegrator::AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) {
int dof = el.GetDof();
elvect.SetSize(dof);
elvect = 0.0;
mfem::Vector shape(dof);
const int intOrder = 2 * el.GetOrder() + 3;
const mfem::IntegrationRule &ir = mfem::IntRules.Get(el.GetGeomType(), intOrder);
for (int i = 0; i < ir.GetNPoints(); i++) {
const mfem::IntegrationPoint &ip = ir.IntPoint(i);
Trans.SetIntPoint(&ip);
el.CalcShape(ip, shape);
double eta_val = eta.Eval(Trans, ip);
double weight = ip.weight * Trans.Weight();
elvect.Add(eta_val * weight, shape);
}
}
void ConstraintIntegrator::AssembleElementGrad(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) {
int dof = el.GetDof();
elmat.SetSize(dof);
elmat = 0.0;
}
GaussianCoefficient::GaussianCoefficient(double stdDev_)
: stdDev(stdDev_),
norm_coeff(1.0/std::pow(std::sqrt(2*std::numbers::pi*std::pow(stdDev_, 2)), 3.0/2.0)) {}
double GaussianCoefficient::Eval(mfem::ElementTransformation &T, const mfem::IntegrationPoint &ip) {
mfem::Vector r;
T.Transform(ip, r);
double rnorm = std::sqrt(r * r);
// TODO: return to this to resolve why the Guassian does not always have peek at g(0) = 1 without the factor of 3.0145 (manually calibrated).
// Open a file (append if already exists) to write the Gaussian values
return norm_coeff * std::exp(-std::pow(rnorm, 2)/(2*std::pow(stdDev, 2)));
}
AugmentedOperator::AugmentedOperator(mfem::NonlinearForm &nfl_, mfem::LinearForm &C_, int lambdaDofOffset_, double C_val_)
:
mfem::Operator( // Call the base class constructor
nfl_.FESpace()->GetTrueVSize()+1, // Sets the height attribute (+1 for the lambda component)
nfl_.FESpace()->GetTrueVSize()+1 // Sets the width attribute (+1 for the lambda component)
),
nfl(nfl_),
C(C_),
C_val(C_val_),
lambdaDofOffset(lambdaDofOffset_),
lastJacobian(nullptr) {}
void AugmentedOperator::Mult(const mfem::Vector &x, mfem::Vector &y) const {
// Select the lambda component of the input vector and seperate it from the θ component
mfem::Vector u(x.GetData(), lambdaDofOffset);
double lambda = x[lambdaDofOffset];
// Compute the residual of the nonlinear form (F(u) - λC)
mfem::Vector F(lambdaDofOffset);
nfl.Mult(u, F); // This now includes the -λ∫vη(r) dΩ term
// Compute the transpose of C for the off diagonal terms of the augmented operator
y.SetSize(height);
y = 0.0;
mfem::GridFunction u_gf(C.FESpace());
mfem::Vector C_u(1);
DEPRECATION_WARNING_OFF
u_gf.SetData(u);
DEPRECATION_WARNING_ON
C_u[0] = C.operator()(u_gf);
// add -lambda * C to the residual
mfem::Vector lambda_C(lambdaDofOffset);
mfem::GridFunction constraint_gf(C.FESpace());
constraint_gf = 0.0;
mfem::Vector CTmp(lambdaDofOffset);
CTmp = C.GetData();
lambda_C = CTmp;
lambda_C *= -lambda; // Multiply by -λ (this is now the term −λ ∫ vη(r)dΩ)
for (int i = 0; i < lambdaDofOffset; i++) {
y[i] = F[i] + lambda_C[i];
}
// Get Global Debug Options for Poly
std::string defaultKeyset = config.get<std::string>("Poly:Debug:Global:GLVis:Keyset", "");
bool defaultView = config.get<bool>("Poly:Debug:Global:GLVis:View", false);
bool defaultExit = config.get<bool>("Poly:Debug:Global:GLVis:Exit", false);
if (config.get<bool>("Poly:Debug:GLVis:C_gf_View:View", defaultView)) {
Probe::glVisView(CTmp, *C.FESpace(), "CTmp", config.get<std::string>("Poly:Debug:C_gf_View:Keyset", defaultKeyset));
if (config.get<bool>("Poly:Debug:GLVis:C_gf_View:Exit", defaultExit)) {
std::raise(SIGINT);
}
}
if (config.get<bool>("Poly:Debug:GLVis:F_gf_View:View", defaultView)) {
Probe::glVisView(lambda_C, *nfl.FESpace(), "lambda_C", config.get<std::string>("Poly:Debug:F_gf_View:Keyset", defaultKeyset));
if (config.get<bool>("Poly:Debug:GLVis:F_gf_View:Exit", defaultExit)) {
std::raise(SIGINT);
}
}
if (config.get<bool>("Poly:Debug:GLVis:M_gf_View:View", defaultView)) {
Probe::glVisView(y, *nfl.FESpace(), "y", config.get<std::string>("Poly:Debug:M_gf_View:Keyset", defaultKeyset));
if (config.get<bool>("Poly:Debug:GLVis:M_gf_View:Exit", defaultExit)) {
std::raise(SIGINT);
}
}
// Compute the constraint residual (C(u))
y[lambdaDofOffset] = C_u[0] - C_val; // Enforce the constraint C(u) = C_val
}
mfem::Operator &AugmentedOperator::GetGradient(const mfem::Vector &x) const {
// Select the lambda component of the input vector and seperate it from the θ component
mfem::Vector u(x.GetData(), lambdaDofOffset);
// Fill in the blocks of the augmented Jacobian matrix
// Top-Left: Jacobian of the nonlinear form
mfem::SparseMatrix *Jnfl_sparse = dynamic_cast<mfem::SparseMatrix*>(&nfl.GetGradient(u));
if (!Jnfl_sparse) {
MFEM_ABORT("GetGradient did not return a SparseMatrix");
}
mfem::SparseMatrix *J_aug = new mfem::SparseMatrix(height, width);
// Copy the original Jacobian into the augmented Jacobian
for (int i = 0; i < Jnfl_sparse->Height(); i++) {
const int *J_cols = Jnfl_sparse->GetRowColumns(i);
const double *J_vals = Jnfl_sparse->GetRowEntries(i);
for (int jj = 0; jj < Jnfl_sparse->RowSize(i); jj++) {
int j = J_cols[jj];
double val = J_vals[jj];
J_aug->Set(i, j, val);
}
}
// Bottom-left C (the constraint matrix)
mfem::Vector CVec(lambdaDofOffset);
mfem::GridFunction tempCGrid(C.FESpace());
C.Assemble();
CVec = C.GetData();
for (int i = 0; i < CVec.Size(); i++) {
J_aug->Set(lambdaDofOffset, i, CVec[i]);
}
// Top-right -Cᵀ (the negative transpose of the constraint matrix)
for (int i = 0; i < CVec.Size(); i++) {
J_aug->Set(i, lambdaDofOffset, -CVec[i]);
}
J_aug->Set(lambdaDofOffset, lambdaDofOffset, 0.0); // The bottom right corner is zero
J_aug->Finalize();
delete lastJacobian;
lastJacobian = J_aug;
return *lastJacobian;
}
AugmentedOperator::~AugmentedOperator() {
delete lastJacobian;
}
double calculateGaussianIntegral(mfem::Mesh &mesh, polyMFEMUtils::GaussianCoefficient &gaussianCoeff) {
// Use a discontinuous L2 finite element space (order 0) for integrating the Gaussian.
// We use L2 because the Gaussian is not necessarily continuous across element boundaries
// if the Gaussian is narrow relative to the element size.
mfem::L2_FECollection feCollection(0, mesh.SpaceDimension());
mfem::FiniteElementSpace feSpace(&mesh, &feCollection);
mfem::LinearForm gaussianIntegral(&feSpace);
gaussianIntegral.AddDomainIntegrator(new mfem::DomainLFIntegrator(gaussianCoeff));
gaussianIntegral.Assemble();
// Create a GridFunction with a constant value of 1.0 on the L2 space.
mfem::GridFunction one_gf(&feSpace);
one_gf = 1.0;
// Evaluate the linear form on the constant GridFunction. This gives the integral.
return gaussianIntegral(one_gf);
}
ZeroSlopeNewtonSolver::ZeroSlopeNewtonSolver(double alpha_, std::vector<double> zeroSlopeCoordinate_)
: alpha(alpha_), zeroSlopeCoordinate(zeroSlopeCoordinate_) {
zeroIP.Set3w(zeroIPReferenceCoord);
}
ZeroSlopeNewtonSolver::~ZeroSlopeNewtonSolver() {}
void ZeroSlopeNewtonSolver::SetOperator(const mfem::Operator &op) {
LOG_INFO(logger, "Setting operator for zero slope constraint...");
mfem::NewtonSolver::SetOperator(op); // Call the base class method
LOG_INFO(logger, "Setting operator for zero slope constraint...done");
LOG_INFO(logger, "Building location of zero slope constraint...");
mfem::NonlinearForm *nlf = dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(&op));
if (!nlf) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator is not a NonlinearForm");
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator is not a NonlinearForm");
}
mfem::FiniteElementSpace *fes = nlf->FESpace();
if (!fes) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator does not have a finite element space");
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator does not have a finite element space");
}
u_gf = std::make_unique<mfem::GridFunction>(fes);
mfem::Mesh *mesh = fes->GetMesh();
if (!mesh) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator does not have a mesh");
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator does not have a mesh");
}
if (mesh->SpaceDimension() != static_cast<int>(zeroSlopeCoordinate.size())) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator mesh dimension does not match the zero slope coordinate dimension");
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator mesh dimension does not match the zero slope coordinate dimension");
}
mfem::DenseMatrix zeroSlopeCoordinateMatrix(mesh->SpaceDimension(), 1);
for (int dimID = 0; dimID < mesh->SpaceDimension(); dimID++) {
zeroSlopeCoordinateMatrix(dimID, 0) = zeroSlopeCoordinate[dimID];
}
mfem::Array<int> elementsIDs;
mfem::Array<mfem::IntegrationPoint> ips;
mesh->FindPoints(zeroSlopeCoordinateMatrix, elementsIDs, ips);
zeroSlopeElemID = elementsIDs[0];
mfem::Array<int> elementVertexIDs;
mesh->GetElementVertices(zeroSlopeElemID, elementVertexIDs);
int centralVertexID = -1;
double smallestDistance = std::numeric_limits<double>::max();
for (int i = 0; i < elementVertexIDs.Size(); i++) {
const double *vertex = mesh->GetVertex(elementVertexIDs[i]);
double distance = 0.0;
for (int dimID = 0; dimID < mesh->SpaceDimension(); dimID++) {
distance += std::pow(vertex[dimID] - zeroSlopeCoordinate[dimID], 2);
}
distance = std::sqrt(distance);
if (distance < smallestDistance) {
smallestDistance = distance;
centralVertexID = elementVertexIDs[i];
}
}
mfem::Table* vertexToElementTable = mesh->GetVertexToElementTable();
vertexToElementTable->GetRow(centralVertexID, zeroSlopeConnectedElements);
mfem::Array<int> tempZeroSlopeDofs;
for (auto elemID: zeroSlopeConnectedElements) {
fes->GetElementDofs(elemID, tempZeroSlopeDofs);
zeroSlopeDofs.push_back(tempZeroSlopeDofs);
}
}
void ZeroSlopeNewtonSolver::Mult(const mfem::Vector &b, mfem::Vector &x) const {
using namespace mfem;
using namespace std;
MFEM_VERIFY(oper != NULL, "the Operator is not set (use SetOperator).");
MFEM_VERIFY(prec != NULL, "the Solver is not set (use SetSolver).");
int it;
real_t norm0, norm, norm_goal;
const bool have_b = (b.Size() == Height());
if (!iterative_mode)
{
x = 0.0;
}
// if ( config.get<bool>("Debug", false) ) {
// Probe::glVisView(x, *dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper))->FESpace(), "initial guess");
// Probe::getRaySolution(x, *dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper))->FESpace(), {0.0, 0.0}, 100, "output/initial_guess.csv");
// }
ProcessNewState(x);
DEPRECATION_WARNING_OFF
u_gf->SetData(x.GetData());
DEPRECATION_WARNING_ON
oper->Mult(x, r);
if (have_b)
{
r -= b;
}
ComputeConstrainedResidual(x, r);
norm0 = norm = initial_norm = Norm(r);
if (print_options.first_and_last && !print_options.iterations)
{
mfem::out << "Zero slope newton iteration " << setw(2) << 0
<< " : ||r|| = " << norm << "...\n";
}
norm_goal = std::max(rel_tol*norm, abs_tol);
prec->iterative_mode = false;
// x_{i+1} = x_i - [DF(x_i)]^{-1} [F(x_i)-b]
for (it = 0; true; it++)
{
MFEM_VERIFY(IsFinite(norm), "norm = " << norm);
if (print_options.iterations)
{
mfem::out << "Zero slope newton iteration " << setw(2) << it
<< " : ||r|| = " << norm;
if (it > 0)
{
mfem::out << ", ||r||/||r_0|| = " << norm/norm0;
}
mfem::out << '\n';
}
Monitor(it, norm, r, x);
if (norm <= norm_goal)
{
converged = true;
break;
}
if (it >= max_iter)
{
converged = false;
break;
}
grad = dynamic_cast<mfem::SparseMatrix*>(&oper->GetGradient(x));
if (!grad)
{
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::Mult: Operator does not return a SparseMatrix");
MFEM_ABORT("ZeroSlopeNewtonSolver::Mult: Operator does not return a SparseMatrix");
}
ComputeConstrainedGradient(x);
prec->SetOperator(*grad);
if (lin_rtol_type)
{
AdaptiveLinRtolPreSolve(x, it, norm);
}
prec->Mult(r, c); // c = [DF(x_i)]^{-1} [F(x_i)-b]
if (lin_rtol_type)
{
AdaptiveLinRtolPostSolve(c, r, it, norm);
}
const real_t c_scale = ComputeScalingFactor(x, b);
if (c_scale == 0.0)
{
converged = false;
break;
}
add(x, -c_scale, c, x);
ProcessNewState(x);
// Probe::glVisView(x, *dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper))->FESpace(), "solution " + it);
oper->Mult(x, r);
if (have_b)
{
r -= b;
}
ComputeConstrainedResidual(x, r);
norm = Norm(r);
}
LOG_INFO(logger, "Final Computation of residual...");
ComputeConstrainedResidual(x, r);
final_iter = it;
final_norm = norm;
if (print_options.summary || (!converged && print_options.warnings) ||
print_options.first_and_last)
{
mfem::out << "Newton: Number of iterations: " << final_iter << '\n'
<< " ||r|| = " << final_norm
<< ", ||r||/||r_0|| = " << final_norm/norm0 << '\n';
}
if (!converged && (print_options.summary || print_options.warnings))
{
mfem::out << "Newton: No convergence!\n";
}
}
void ZeroSlopeNewtonSolver::ComputeConstrainedResidual(const mfem::Vector &x, mfem::Vector &residual) const {
mfem::NonlinearForm *nlf = dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper));
if (!nlf) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
}
mfem::FiniteElementSpace *fes = nlf->FESpace();
if (!fes) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
}
mfem::Mesh *mesh = fes->GetMesh();
if (!mesh) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
}
int i = 0;
double grad_x_avg=0.0, grad_y_avg=0.0, grad_z_avg=0.0;
for (auto elemID : zeroSlopeConnectedElements) {
mfem::ElementTransformation *T = mesh->GetElementTransformation(elemID);
if (!T) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
}
T->SetIntPoint(&zeroIP);
mfem::Vector grad_u(3); // TODO make this a unique pointer so it can be dimensionally adaptive
u_gf->GetGradient(*T, grad_u);
grad_x_avg += grad_u[0];
grad_y_avg += grad_u[1];
grad_z_avg += grad_u[2];
for (int j = 0; j < zeroSlopeDofs[i].Size(); j++) {
int dof = zeroSlopeDofs[i][j];
residual[dof] -= alpha * grad_u[0];
residual[dof] -= alpha * grad_u[1];
residual[dof] -= alpha * grad_u[2];
}
i++;
}
}
void ZeroSlopeNewtonSolver::ComputeConstrainedGradient(const mfem::Vector &x) const {
mfem::NonlinearForm *nlf = dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper));
if (!nlf) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
}
mfem::FiniteElementSpace *fes = nlf->FESpace();
if (!fes) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
}
mfem::Mesh *mesh = fes->GetMesh();
if (!mesh) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
}
if (!grad) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ComputeConstrainedGradient: Grad is not set");
MFEM_ABORT("ZeroSlopeNewtonSolver::ComputeConstrainedGradient: Grad is not set");
}
LOG_INFO(logger, "Adjusting the Jacobian to enforce the zero slope constraint...");
int dofID = 0;
for (auto elemID : zeroSlopeConnectedElements) {
mfem::ElementTransformation *T = mesh->GetElementTransformation(elemID);
if (!T) {
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
}
const mfem::FiniteElement* fe = fes->GetFE(elemID); // Get FE *once*.
mfem::DenseMatrix dshape; // For shape function derivatives.
dshape.SetSize(fe->GetDof(), mesh->Dimension());
T->SetIntPoint(&zeroIP);
fe->CalcDShape(zeroIP, dshape);
// --- Modify Jacobian ---
for (int i = 0; i < zeroSlopeDofs[dofID].Size(); i++) {
for (int j = 0; j < zeroSlopeDofs[dofID].Size(); j++) {
grad->Add(zeroSlopeDofs[dofID][i], zeroSlopeDofs[dofID][j], alpha * dshape(j, 0));
grad->Add(zeroSlopeDofs[dofID][i], zeroSlopeDofs[dofID][j], alpha * dshape(j, 1));
grad->Add(zeroSlopeDofs[dofID][i], zeroSlopeDofs[dofID][j], alpha * dshape(j, 2));
}
}
}
LOG_INFO(logger, "Adjusting the Jacobian to enforce the zero slope constraint...done");
dofID++;
}
} // namespace polyMFEMUtils