195 lines
5.6 KiB
C++
195 lines
5.6 KiB
C++
/* ***********************************************************************
|
|
//
|
|
// Copyright (C) 2025 -- The 4D-STAR Collaboration
|
|
// File Author: Emily Boudreaux
|
|
// Last Modified: February 12, 2025
|
|
//
|
|
// 4DSSE is free software; you can use it and/or modify
|
|
// it under the terms and restrictions the GNU General Library Public
|
|
// License version 3 (GPLv3) as published by the Free Software Foundation.
|
|
//
|
|
// 4DSSE is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU Library General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Library General Public License
|
|
// along with this software; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// *********************************************************************** */
|
|
#include "mfem.hpp"
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "polyMFEMUtils.h"
|
|
#include "probe.h"
|
|
|
|
namespace polyMFEMUtils {
|
|
NonlinearPowerIntegrator::NonlinearPowerIntegrator(
|
|
mfem::Coefficient &coeff,
|
|
double n) : coeff_(coeff), polytropicIndex(n) {
|
|
|
|
}
|
|
|
|
void NonlinearPowerIntegrator::AssembleElementVector(
|
|
const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::Vector &elvect) {
|
|
|
|
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
|
int dof = el.GetDof();
|
|
elvect.SetSize(dof);
|
|
elvect = 0.0;
|
|
|
|
mfem::Vector shape(dof);
|
|
|
|
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
|
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
|
|
Trans.SetIntPoint(&ip);
|
|
double weight = ip.weight * Trans.Weight();
|
|
|
|
el.CalcShape(ip, shape);
|
|
|
|
double u_val = 0.0;
|
|
for (int j = 0; j < dof; j++) {
|
|
u_val += elfun(j) * shape(j);
|
|
}
|
|
double u_safe = std::max(u_val, 0.0);
|
|
double u_nl = std::pow(u_safe, polytropicIndex);
|
|
|
|
double coeff_val = coeff_.Eval(Trans, ip);
|
|
double x2_u_nl = coeff_val * u_nl;
|
|
|
|
for (int i = 0; i < dof; i++){
|
|
elvect(i) += shape(i) * x2_u_nl * weight;
|
|
}
|
|
}
|
|
}
|
|
|
|
void NonlinearPowerIntegrator::AssembleElementGrad (
|
|
const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::DenseMatrix &elmat) {
|
|
|
|
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
|
int dof = el.GetDof();
|
|
elmat.SetSize(dof);
|
|
elmat = 0.0;
|
|
mfem::Vector shape(dof);
|
|
|
|
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
|
const mfem::IntegrationPoint &ip = ir->IntPoint(iqp);
|
|
Trans.SetIntPoint(&ip);
|
|
double weight = ip.weight * Trans.Weight();
|
|
|
|
el.CalcShape(ip, shape);
|
|
|
|
double u_val = 0.0;
|
|
|
|
for (int j = 0; j < dof; j++) {
|
|
u_val += elfun(j) * shape(j);
|
|
}
|
|
double coeff_val = coeff_.Eval(Trans, ip);
|
|
|
|
|
|
// Calculate the Jacobian
|
|
double u_safe = std::max(u_val, 0.0);
|
|
double d_u_nl = coeff_val * polytropicIndex * std::pow(u_safe, polytropicIndex - 1);
|
|
double x2_d_u_nl = d_u_nl;
|
|
|
|
for (int i = 0; i < dof; i++) {
|
|
for (int j = 0; j < dof; j++) {
|
|
elmat(i, j) += shape(i) * x2_d_u_nl * shape(j) * weight;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
BilinearIntegratorWrapper::BilinearIntegratorWrapper(
|
|
mfem::BilinearFormIntegrator *integratorInput
|
|
) : integrator(integratorInput) { }
|
|
|
|
BilinearIntegratorWrapper::~BilinearIntegratorWrapper() {
|
|
delete integrator;
|
|
}
|
|
|
|
void BilinearIntegratorWrapper::AssembleElementVector(
|
|
const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::Vector &elvect) {
|
|
int dof = el.GetDof();
|
|
mfem::DenseMatrix elMat(dof);
|
|
integrator->AssembleElementMatrix(el, Trans, elMat);
|
|
elvect.SetSize(dof);
|
|
elvect = 0.0;
|
|
for (int i = 0; i < dof; i++)
|
|
{
|
|
double sum = 0.0;
|
|
for (int j = 0; j < dof; j++)
|
|
{
|
|
sum += elMat(i, j) * elfun(j);
|
|
}
|
|
elvect(i) = sum;
|
|
}
|
|
}
|
|
|
|
void BilinearIntegratorWrapper::AssembleElementGrad(const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::DenseMatrix &elmat) {
|
|
int dof = el.GetDof();
|
|
elmat.SetSize(dof, dof);
|
|
elmat = 0.0;
|
|
integrator->AssembleElementMatrix(el, Trans, elmat);
|
|
}
|
|
|
|
CompositeNonlinearIntegrator::CompositeNonlinearIntegrator() { }
|
|
|
|
|
|
CompositeNonlinearIntegrator::~CompositeNonlinearIntegrator() { }
|
|
|
|
void CompositeNonlinearIntegrator::add_integrator(mfem::NonlinearFormIntegrator *integrator) {
|
|
integrators.push_back(integrator);
|
|
}
|
|
|
|
void CompositeNonlinearIntegrator::AssembleElementVector(
|
|
const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::Vector &elvect) {
|
|
int dof = el.GetDof();
|
|
elvect.SetSize(dof);
|
|
elvect = 0.0;
|
|
mfem::Vector temp(dof);
|
|
|
|
for (size_t i = 0; i < integrators.size(); i++) {
|
|
temp= 0.0;
|
|
integrators[i]->AssembleElementVector(el, Trans, elfun, temp);
|
|
elvect.Add(1.0, temp);
|
|
}
|
|
}
|
|
|
|
void CompositeNonlinearIntegrator::AssembleElementGrad(
|
|
const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::DenseMatrix &elmat) {
|
|
int dof = el.GetDof();
|
|
elmat.SetSize(dof, dof);
|
|
elmat = 0.0;
|
|
mfem::DenseMatrix temp(dof);
|
|
temp.SetSize(dof, dof);
|
|
for (size_t i = 0; i < integrators.size(); i++) {
|
|
temp = 0.0;
|
|
integrators[i] -> AssembleElementGrad(el, Trans, elfun, temp);
|
|
elmat.Add(1.0, temp);
|
|
}
|
|
}
|
|
|
|
} // namespace polyMFEMUtils
|