feat(fortran): Fortran interface can now use multi-zone

Fortran interface uses the new C api ability to call the naieve
multi-zone solver. This allows fortran calling code to make use of in
build parellaism for solving multiple zones
This commit is contained in:
2025-12-19 09:58:47 -05:00
parent 2a9649a72e
commit d65c237b26
17 changed files with 738 additions and 69 deletions

View File

@@ -1,5 +1,10 @@
if get_option('build_fortran')
add_languages('fortran', native: true)
found_fortran = add_languages('fortran')
if not found_fortran
error('Fortran compiler not found, but build_fortran option is enabled.')
else
message('Fortran compiler found.')
endif
message('Found FORTRAN compiler: ' + meson.get_compiler('fortran').get_id())
message('Fortran standard set to: ' + get_option('fortran_std'))
message('Building fortran module (gridfire_mod.mod)')

View File

@@ -2,6 +2,14 @@ module gridfire_mod
use iso_c_binding
implicit none
type, public :: GF_TYPE
integer(c_int) :: value
end type GF_TYPE
type(GF_TYPE), parameter, public :: &
SINGLE_ZONE = GF_TYPE(1001), &
MULTI_ZONE = GF_TYPE(1002)
enum, bind (C)
enumerator :: FDSSE_NON_4DSTAR_ERROR = -102
enumerator :: FDSSE_UNKNOWN_ERROR = -101
@@ -50,24 +58,46 @@ module gridfire_mod
enumerator :: GF_DEBUG_ERRROR = 30
enumerator :: GF_GRIDFIRE_ERROR = 31
enumerator :: GF_UNINITIALIZED_INPUT_MEMORY_ERROR = 32
enumerator :: GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR = 33
enumerator :: GF_INVALD_NUM_SPECIES = 34
enumerator :: GF_INVALID_TIMESTEPS = 35
enumerator :: GF_UNKNONWN_FREE_TYPE = 36
enumerator :: GF_INVALID_TYPE = 37
enumerator :: GF_SINGLE_ZONE = 1001
enumerator :: GF_MULTI_ZONE = 1002
end enum
interface
! void* gf_init()
function gf_init() bind(C, name="gf_init")
import :: c_ptr
function gf_init(ctx_type) bind(C, name="gf_init")
import :: c_ptr, c_int
type(c_ptr) :: gf_init
integer(c_int), value :: ctx_type
end function gf_init
! void gf_free(void* gf)
subroutine gf_free(gf) bind(C, name="gf_free")
import :: c_ptr
type(c_ptr), value :: gf
end subroutine gf_free
! int gf_free(void* gf)
function gf_free(ctx_type, ptr) result(c_res) bind(C, name="gf_free")
import :: c_ptr, c_int
type(c_ptr), value :: ptr
integer(c_int), value :: ctx_type
integer(c_int) :: c_res
end function gf_free
function gf_set_num_zones(ctx_type, ptr, num_zones) result(c_res) bind(C, name="gf_set_num_zones")
import :: c_ptr, c_int, c_size_t
type(c_ptr), value :: ptr
integer(c_int), value :: ctx_type
integer(c_size_t), value :: num_zones
integer(c_int) :: c_res
end function gf_set_num_zones
! char* gf_get_last_error_message(void* ptr);
function gf_get_last_error_message(ptr) result(c_msg) bind(C, name="gf_get_last_error_message")
import
import :: c_ptr, c_int
type(c_ptr), value :: ptr
type(c_ptr) :: c_msg
end function
@@ -102,49 +132,116 @@ module gridfire_mod
end function
! int gf_evolve(...)
function gf_evolve(ptr, Y_in, num_species, T, rho, dt, Y_out, energy_out, dEps_dT, dEps_dRho, specific_neutrino_loss, specific_neutrino_flux, mass_lost) result(ierr) &
function gf_evolve_c_scalar(ctx_type, ptr, Y_in, num_species, T, rho, tMax, dt0, &
Y_out, energy, dedt, dedrho, &
nue_loss, nu_flux, mass_lost) result(ierr) &
bind(C, name="gf_evolve")
import
import :: c_ptr, c_int, c_double, c_size_t
type(c_ptr), value :: ptr
real(c_double), dimension(*), intent(in) :: Y_in
integer(c_int), value :: ctx_type
integer(c_size_t), value :: num_species
real(c_double), value :: T, rho, dt
! Arrays
real(c_double), dimension(*), intent(in) :: Y_in
real(c_double), dimension(*), intent(out) :: Y_out
real(c_double), intent(out) :: energy_out, dEps_dT, dEps_dRho, specific_neutrino_loss, specific_neutrino_flux, mass_lost
! Scalars (Passed by Reference -> matches void*)
real(c_double), intent(in) :: T, rho
real(c_double), intent(out) :: energy, dedt, dedrho, nue_loss, nu_flux, mass_lost
! Scalars (Passed by Value)
real(c_double), value :: tMax, dt0
integer(c_int) :: ierr
end function
! 2. Interface for Multi Zone (Arrays)
function gf_evolve_c_array(ctx_type, ptr, Y_in, num_species, T, rho, tMax, dt0, &
Y_out, energy, dedt, dedrho, &
nue_loss, nu_flux, mass_lost) result(ierr) &
bind(C, name="gf_evolve")
import :: c_ptr, c_int, c_double, c_size_t
type(c_ptr), value :: ptr
integer(c_int), value :: ctx_type
integer(c_size_t), value :: num_species
! All Arrays (dimension(*))
real(c_double), dimension(*), intent(in) :: Y_in
real(c_double), dimension(*), intent(in) :: T, rho
real(c_double), dimension(*), intent(out) :: Y_out
real(c_double), dimension(*), intent(out) :: energy, dedt, dedrho, nue_loss, nu_flux, mass_lost
! Scalars (Passed by Value)
real(c_double), value :: tMax, dt0
integer(c_int) :: ierr
end function
end interface
type :: GridFire
type(c_ptr) :: ctx = c_null_ptr
integer(c_int) :: ctx_type = SINGLE_ZONE%value
integer(c_size_t) :: num_species = 0
integer(c_size_t) :: num_zones = 1
contains
procedure :: gff_init
procedure :: gff_free
procedure :: register_species
procedure :: setup_policy
procedure :: setup_solver
procedure :: evolve
procedure :: get_last_error
procedure :: gff_register_species
procedure :: gff_setup_policy
procedure :: gff_setup_solver
procedure :: gff_get_last_error
procedure :: gff_evolve_single
procedure :: gff_evolve_multi
generic :: gff_evolve => gff_evolve_single, gff_evolve_multi
end type GridFire
contains
subroutine gff_init(self)
subroutine gff_init(self, type, zones)
class(GridFire), intent(out) :: self
type(GF_TYPE), intent(in) :: type
integer(c_size_t), intent(in), optional :: zones
integer(c_int) :: ierr
self%ctx = gf_init()
if (type%value==1002) then
if (.not. present(zones)) then
print *, "GridFire Error: Multi-zone type requires number of zones to be specficied in the GridFire init method (i.e. GridFire(MULTI_ZONE, 10) for 10 zones)."
error stop
end if
self%num_zones = zones
end if
self%ctx_type = type%value
self%ctx = gf_init(self%ctx_type)
if (type%value==1002) then
ierr = gf_set_num_zones(self%ctx_type, self%ctx, self%num_zones)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Multi-Zone Error: ", self%gff_get_last_error()
error stop
end if
end if
end subroutine gff_init
subroutine gff_free(self)
class(GridFire), intent(inout) :: self
integer(c_int) :: ierr
if (c_associated(self%ctx)) then
call gf_free(self%ctx)
ierr = gf_free(self%ctx_type, self%ctx)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Free Error: ", self%gff_get_last_error()
error stop
end if
self%ctx = c_null_ptr
end if
end subroutine gff_free
function get_last_error(self) result(msg)
function gff_get_last_error(self) result(msg)
class(GridFire), intent(in) :: self
character(len=:), allocatable :: msg
type(c_ptr) :: c_msg_ptr
@@ -169,9 +266,9 @@ module gridfire_mod
do i = 1, len_str
msg(i+10:i+10) = char_ptr(i)
end do
end function get_last_error
end function gff_get_last_error
subroutine register_species(self, species_list)
subroutine gff_register_species(self, species_list)
class(GridFire), intent(inout) :: self
character(len=*), dimension(:), intent(in) :: species_list
@@ -179,7 +276,6 @@ module gridfire_mod
character(kind=c_char, len=:), allocatable, target :: temp_strs(:)
integer :: i, n, ierr
print *, "Registering ", size(species_list), " species."
n = size(species_list)
self%num_species = int(n, c_size_t)
@@ -191,17 +287,14 @@ module gridfire_mod
c_ptrs(i) = c_loc(temp_strs(i))
end do
print *, "Calling gf_register_species..."
ierr = gf_register_species(self%ctx, int(n, c_int), c_ptrs)
print *, "gf_register_species returned with code: ", ierr
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire: ", self%get_last_error()
print *, "GridFire: ", self%gff_get_last_error()
error stop
end if
end subroutine register_species
end subroutine gff_register_species
subroutine setup_policy(self, policy_name, abundances)
subroutine gff_setup_policy(self, policy_name, abundances)
class(GridFire), intent(in) :: self
character(len=*), intent(in) :: policy_name
real(c_double), dimension(:), intent(in) :: abundances
@@ -218,41 +311,59 @@ module gridfire_mod
self%num_species)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Policy Error: ", self%get_last_error()
print *, "GridFire Policy Error: ", self%gff_get_last_error()
error stop
end if
end subroutine setup_policy
end subroutine gff_setup_policy
subroutine setup_solver(self, solver_name)
subroutine gff_setup_solver(self, solver_name)
class(GridFire), intent(in) :: self
character(len=*), intent(in) :: solver_name
integer(c_int) :: ierr
ierr = gf_construct_solver_from_engine(self%ctx, trim(solver_name) // c_null_char)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Solver Error: ", self%get_last_error()
print *, "GridFire Solver Error: ", self%gff_get_last_error()
error stop
end if
end subroutine setup_solver
end subroutine gff_setup_solver
subroutine evolve(self, Y_in, T, rho, dt, Y_out, energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost, ierr)
subroutine gff_evolve_single(self, Y_in, T, rho, tMax, dt0, Y_out, energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost, ierr)
class(GridFire), intent(in) :: self
real(c_double), dimension(:), intent(in) :: Y_in
real(c_double), value :: T, rho, dt
real(c_double), intent(in) :: T, rho
real(c_double), value :: tMax, dt0
real(c_double), dimension(:), intent(out) :: Y_out
real(c_double), intent(out) :: energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost
integer, intent(out) :: ierr
integer(c_int) :: c_ierr
c_ierr = gf_evolve(self%ctx, &
c_ierr = gf_evolve_c_scalar(self%ctx_type, self%ctx, &
Y_in, self%num_species, &
T, rho, dt, &
T, rho, tMax, dt0, &
Y_out, &
energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost)
ierr = int(c_ierr)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Evolve Error: ", self%get_last_error()
end if
end subroutine evolve
end subroutine gff_evolve_single
subroutine gff_evolve_multi(self, Y_in, T, rho, tMax, dt0, Y_out, energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost, ierr)
class(GridFire), intent(in) :: self
real(c_double), dimension(:,:), intent(in) :: Y_in
real(c_double), dimension(:), intent(in) :: T, rho
real(c_double), value :: tMax, dt0
real(c_double), dimension(:,:), intent(out) :: Y_out
real(c_double), dimension(:), intent(out) :: energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost
integer, intent(out) :: ierr
integer(c_int) :: c_ierr
c_ierr = gf_evolve_c_array(self%ctx_type, self%ctx, &
Y_in, self%num_species, &
T, rho, tMax, dt0, &
Y_out, &
energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost)
ierr = int(c_ierr)
end subroutine gff_evolve_multi
end module gridfire_mod

View File

@@ -7,8 +7,8 @@
extern "C" {
#endif
enum GF_TYPE {
SINGLE_ZONE = 0,
MULTI_ZONE = 1
SINGLE_ZONE = 1001,
MULTI_ZONE = 1002
};

View File

@@ -222,6 +222,21 @@ extern "C" {
void* mass_lost
) {
printf("In C Starting gf_evolve with type %d\n", type);
printf("In C num_species: %zu, tMax: %e, dt0: %e\n", num_species, tMax, dt0);
printf("In C Y_in ptr: %p, T ptr: %p, rho ptr: %p\n", Y_in, T, rho);
// values
printf("In C Y_in first 5 values: ");
const auto* Y_in_ptr = static_cast<const double*>(Y_in);
for (size_t i = 0; i < std::min(num_species, size_t(5)); ++i) {
printf("%e ", Y_in_ptr[i]);
}
printf("\n");
printf("In C T value: %e\n", *(static_cast<const double*>(T)));
printf("In C rho value: %e\n", *(static_cast<const double*>(rho)));
printf("In C tMax value: %e\n", tMax);
printf("In C dt0 value: %e\n", dt0);
if (!ptr || !Y_in || !T || !rho) {
return GF_UNINITIALIZED_INPUT_MEMORY_ERROR;
}
@@ -252,6 +267,8 @@ extern "C" {
auto* specific_neutrino_flux_local = static_cast<double*>(specific_neutrino_flux);
auto* mass_lost_local = static_cast<double*>(mass_lost);
printf("Evolving single zone with T = %e, rho = %e for tMax = %e and dt0 = %e\n", *T_ptr, *rho_ptr, tMax, dt0);
return execute_guarded(ctx, [&]() {
return ctx->evolve(
static_cast<const double*>(Y_in),
@@ -283,12 +300,7 @@ extern "C" {
auto* specific_neutrino_flux_local = static_cast<double*>(specific_neutrino_flux);
auto* mass_lost_local = static_cast<double*>(mass_lost);
// for (size_t i = 0; i < ctx->get_zones(); ++i) {
// if (!Y_out_local[i]) {
// std::cerr << "Uninitialized memory for Y_out at zone " << i << std::endl;
// return GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR;
// }
// }
printf("Evolving multi zone for tMax = %e and dt0 = %e\n", tMax, dt0);
return execute_guarded(ctx, [&]() {
return ctx->evolve(

View File

@@ -55,9 +55,11 @@ int main() {
double Rhos[ZONES];
for (size_t zone = 0; zone < ZONES; zone++) {
Temps[zone] = 1.0e7;
Temps[zone] = 1.0e7 + (double)zone * 1.0e5; // From 10 million K to 20 million K
Rhos[zone] = 1.5e2;
printf("Zone %zu - Temp: %e K, Rho: %e g/cm^3\n", zone, Temps[zone], Rhos[zone]);
}
return 0;
printf(" Registering species...");
int ret = gf_register_species(ctx, NUM_SPECIES, species_names);

View File

@@ -50,7 +50,7 @@ int main() {
double specific_neutrino_flux;
double mass_lost;
const double T_in = 1.5e7; // Temperature in K
const double T_in = 1e7; // Temperature in K
const double rho_in = 1.5e2; // Density in g/cm^3
ret = gf_evolve(

View File

@@ -0,0 +1,134 @@
program main_multi
use iso_c_binding
use gridfire_mod
implicit none
! --- Constants ---
integer, parameter :: NUM_SPECIES = 8
integer, parameter :: ZONES = 100
type(GridFire) :: net
integer(c_int) :: ierr
integer :: i, z
! --- 1. Define Species ---
character(len=5), dimension(NUM_SPECIES) :: species_names = [ &
"H-1 ", &
"He-3 ", &
"He-4 ", &
"C-12 ", &
"N-14 ", &
"O-16 ", &
"Ne-20", &
"Mg-24" &
]
! Initial Mass Fractions (converted to Molar Abundances Y = X/A)
! Standard solar-ish composition template
real(c_double), dimension(NUM_SPECIES) :: abundance_root = [ &
0.702616602672027d0, &
9.74791583949078d-06, &
0.06895512307276903d0, &
0.00025d0, &
7.855418029399437d-05, &
0.0006014411598306529d0, &
8.103062886768109d-05, &
2.151340851063217d-05 &
]
! --- Multi-Zone Arrays ---
! Fortran is Column-Major. To match C's Row-Major [ZONES][SPECIES],
! we dimension as (SPECIES, ZONES) so that Species are contiguous for each Zone.
real(c_double), dimension(NUM_SPECIES, ZONES) :: Y_in, Y_out
! Thermodynamic Conditions Arrays
real(c_double), dimension(ZONES) :: T_arr
real(c_double), dimension(ZONES) :: rho_arr
! Output Arrays
real(c_double), dimension(ZONES) :: energy_out
real(c_double), dimension(ZONES) :: dedt
real(c_double), dimension(ZONES) :: dedrho
real(c_double), dimension(ZONES) :: snu_e_loss
real(c_double), dimension(ZONES) :: snu_flux
real(c_double), dimension(ZONES) :: dmass
! Time settings
real(c_double) :: tMax = 3.0e17 ! 10 Gyr total time
real(c_double) :: dt0 = 1e-12 ! Starting Timestep
! --- 2. Setup Data ---
print *, "Testing GridFireEvolve Multi (Fortran)"
print *, " Number of zones: ", ZONES
print *, " Number of species: ", NUM_SPECIES
do z = 1, ZONES
! Initialize Abundances (Copy root to every zone)
Y_in(:, z) = abundance_root
! Initialize T and Rho gradient
! T: 1.0e7 -> 2.0e7 in steps of 1.0e5
T_arr(z) = 1.0d7 + dble(z-1) * 1.0d5
rho_arr(z) = 1.5d2
! Debug print for first few zones
if (z <= 3) then
print '(A, I0, A, ES12.5, A, ES12.5, A)', &
" Zone ", z-1, " - Temp: ", T_arr(z), " K, Rho: ", rho_arr(z), " g/cm^3"
end if
end do
! --- 3. Initialize GridFire Multi-Zone ---
print *, "Initializing GridFire..."
! Note: Pass integer(c_size_t) for zone count
call net%gff_init(MULTI_ZONE, int(ZONES, c_size_t))
! --- 4. Register Species ---
print *, "Registering species..."
call net%gff_register_species(species_names)
! --- 5. Configure Engine & Solver ---
print *, "Setting up Main Sequence Policy..."
call net%gff_setup_policy("MAIN_SEQUENCE_POLICY", abundance_root)
print *, "Setting up CVODE Solver..."
call net%gff_setup_solver("CVODE")
! --- 6. Evolve ---
print *, "Evolving system..."
! Note: We pass the arrays T_arr and rho_arr.
! Ensure your interface change (removing 'value' attribute) is applied
! so these are passed by reference (address).
call net%gff_evolve(Y_in, T_arr, rho_arr, tMax, dt0, &
Y_out, energy_out, dedt, dedrho, &
snu_e_loss, snu_flux, dmass, ierr)
if (ierr /= 0) then
print *, "Evolution Failed with error code: ", ierr
print *, "Error Message: ", net%gff_get_last_error()
call net%gff_free()
stop
end if
! --- 7. Report Results ---
print *, ""
print *, "--- Results (First 3 Zones) ---"
do z = 1, 3
print *, "=== Zone ", z-1, " ==="
print '(A, ES12.5, A)', " Energy Gen: ", energy_out(z), " erg/g/s"
print '(A, ES12.5)', " Mass Lost: ", dmass(z)
print '(A, ES12.5)', " T: ", T_arr(z)
print *, " Key Abundances (H-1, He-4, C-12):"
print '(3(ES12.5, 1X))', Y_out(1, z), Y_out(3, z), Y_out(4, z)
print *, ""
end do
print *, "... (Zones 4-", ZONES, " omitted) ..."
! --- 8. Cleanup ---
call net%gff_free()
end program main_multi

View File

@@ -41,30 +41,31 @@ program main
! Thermodynamic Conditions (Solar Core-ish)
real(c_double) :: T = 1.5e7 ! 15 Million K
real(c_double) :: rho = 150.0e0 ! 150 g/cm^3
real(c_double) :: dt = 3.0e17 ! 1 second timestep
real(c_double) :: tMax = 3.0e17 ! 10 Gyr total time
real(c_double) :: dt0 = 1e-12 ! Starting Timestep
! --- 2. Initialize GridFire ---
print *, "Initializing GridFire..."
call net%gff_init()
call net%gff_init(SINGLE_ZONE)
! --- 3. Register Species ---
print *, "Registering species..."
call net%register_species(species_names)
call net%gff_register_species(species_names)
! --- 4. Configure Engine & Solver ---
print *, "Setting up Main Sequence Policy..."
call net%setup_policy("MAIN_SEQUENCE_POLICY", Y_in)
call net%gff_setup_policy("MAIN_SEQUENCE_POLICY", Y_in)
print *, "Setting up CVODE Solver..."
call net%setup_solver("CVODE")
call net%gff_setup_solver("CVODE")
! --- 5. Evolve ---
print *, "Evolving system (dt =", dt, "s)..."
call net%evolve(Y_in, T, rho, dt, Y_out, energy_out, dedt, dedrho, snu_e_loss, snu_flux, dmass, ierr)
print *, "Evolving system (t = ", tMax, "s dt =", dt0, "s)..."
call net%gff_evolve(Y_in, T, rho, tMax, dt0, Y_out, energy_out, dedt, dedrho, snu_e_loss, snu_flux, dmass, ierr)
if (ierr /= 0) then
print *, "Evolution Failed with error code: ", ierr
print *, "Error Message: ", net%get_last_error()
print *, "Error Message: ", net%gff_get_last_error()
call net%gff_free() ! Always cleanup
stop
end if

View File

@@ -1,5 +1,11 @@
executable('test_fortran_extern', 'gridfire_evolve.f90',
executable('gf_fortran_single_zone_test', 'gridfire_evolve_single.f90',
install: false,
fortran_args: ['-Wall', '-Wextra'],
dependencies: [gridfire_fortran_dep]
)
)
executable('gf_fortran_multi_zone_test', 'gridfire_evolve_multi.f90',
install: false,
fortran_args: ['-Wall', '-Wextra'],
dependencies: [gridfire_fortran_dep]
)

View File

@@ -1 +0,0 @@
subdir('gf_quick')

393
tools/gf_multi/main.cpp Normal file
View File

@@ -0,0 +1,393 @@
// ReSharper disable CppUnusedIncludeDirective
#include <iostream>
#include <fstream>
#include <chrono>
#include <thread>
#include <format>
#include "gridfire/gridfire.h"
#include <cppad/utility/thread_alloc.hpp> // Required for parallel_setup
#include "fourdst/composition/composition.h"
#include "fourdst/logging/logging.h"
#include "fourdst/atomic/species.h"
#include "fourdst/composition/utils.h"
#include "quill/Logger.h"
#include "quill/Backend.h"
#include "CLI/CLI.hpp"
#include <clocale>
#include "gridfire/utils/gf_omp.h"
static std::terminate_handler g_previousHandler = nullptr;
static std::vector<std::pair<double, std::unordered_map<std::string, std::pair<double, double>>>> g_callbackHistory;
static bool s_wrote_abundance_history = false;
void quill_terminate_handler();
enum class ScalingTypes {
LINEAR,
LOG,
GEOM
};
std::map<std::string, ScalingTypes> scaling_type_map = {
{"linear", ScalingTypes::LINEAR},
{"log", ScalingTypes::LOG},
{"geom", ScalingTypes::GEOM}
};
template<typename T>
concept IsOrderableLinear = std::floating_point<T>;
template<typename T>
concept IsOrderableLog = std::floating_point<T>;
template<IsOrderableLinear T>
constexpr std::vector<T> linspace(T start, T end, size_t N) {
if (N == 0) {
return {};
}
if (N == 1) {
return {start};
}
std::vector<T> result{};
result.resize(N);
for (std::size_t i = 0; i < N; ++i) {
const T t = static_cast<T>(i) / static_cast<T>(N - 1);
result[i] = std::lerp(start, end, t);
}
return result;
}
template<IsOrderableLog T>
std::vector<T> logspace(T start, T end, size_t N) {
if (N == 0) {
return {};
}
if (N == 1) {
return {start};
}
std::vector<T> result{};
result.resize(N);
const T log_start = start;
const T log_end = end;
for (std::size_t i = 0; i < N; ++i) {
const T t = static_cast<T>(i) / static_cast<T>(N - 1);
const T exponent = std::lerp(log_start, log_end, t);
result[i] = std::pow(static_cast<T>(10), exponent);
}
return result;
}
template<IsOrderableLog T>
std::vector<T> geomspace(T start, T end, size_t N) {
if (start <= 0 || end <= 0) {
throw std::domain_error("geomspace requires positive start/end values");
}
const T log_start = std::log10(start);
const T log_end = std::log10(end);
std::vector<T> result = logspace<T>(log_start, log_end, N);
result[0] = start;
result[N - 1] = end;
return result;
}
gridfire::NetIn init(const double temp, const double rho, const double tMax) {
std::setlocale(LC_ALL, "");
g_previousHandler = std::set_terminate(quill_terminate_handler);
quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log");
logger->set_log_level(quill::LogLevel::Info);
using namespace gridfire;
const std::vector<double> X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4};
const std::vector<std::string> symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"};
const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X);
NetIn netIn;
netIn.composition = composition;
netIn.temperature = temp;
netIn.density = rho;
netIn.energy = 0;
netIn.tMax = tMax;
netIn.dt0 = 1e-12;
return netIn;
}
void log_results(const gridfire::NetOut& netOut, const gridfire::NetIn& netIn) {
std::vector<fourdst::atomic::Species> logSpecies = {
fourdst::atomic::H_1,
fourdst::atomic::He_3,
fourdst::atomic::He_4,
fourdst::atomic::C_12,
fourdst::atomic::N_14,
fourdst::atomic::O_16,
fourdst::atomic::Ne_20,
fourdst::atomic::Mg_24
};
std::vector<double> initial;
std::vector<double> final;
std::vector<double> delta;
std::vector<double> fractional;
for (const auto& species : logSpecies) {
double initial_X = netIn.composition.getMassFraction(species);
double final_X = netOut.composition.getMassFraction(species);
double delta_X = final_X - initial_X;
double fractionalChange = (delta_X) / initial_X * 100.0;
initial.push_back(initial_X);
final.push_back(final_X);
delta.push_back(delta_X);
fractional.push_back(fractionalChange);
}
initial.push_back(0.0); // Placeholder for energy
final.push_back(netOut.energy);
delta.push_back(netOut.energy);
fractional.push_back(0.0); // Placeholder for energy
initial.push_back(0.0);
final.push_back(netOut.dEps_dT);
delta.push_back(netOut.dEps_dT);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.dEps_dRho);
delta.push_back(netOut.dEps_dRho);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.specific_neutrino_energy_loss);
delta.push_back(netOut.specific_neutrino_energy_loss);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.specific_neutrino_flux);
delta.push_back(netOut.specific_neutrino_flux);
fractional.push_back(0.0);
initial.push_back(netIn.composition.getMeanParticleMass());
final.push_back(netOut.composition.getMeanParticleMass());
delta.push_back(final.back() - initial.back());
fractional.push_back((final.back() - initial.back()) / initial.back() * 100.0);
std::vector<std::string> rowLabels = [&]() -> std::vector<std::string> {
std::vector<std::string> labels;
for (const auto& species : logSpecies) {
labels.emplace_back(species.name());
}
labels.emplace_back("ε");
labels.emplace_back("dε/dT");
labels.emplace_back("dε/dρ");
labels.emplace_back("Eν");
labels.emplace_back("Fν");
labels.emplace_back("<μ>");
return labels;
}();
gridfire::utils::Column<std::string> paramCol("Parameter", rowLabels);
gridfire::utils::Column<double> initialCol("Initial", initial);
gridfire::utils::Column<double> finalCol ("Final", final);
gridfire::utils::Column<double> deltaCol ("δ", delta);
gridfire::utils::Column<double> percentCol("% Change", fractional);
std::vector<std::unique_ptr<gridfire::utils::ColumnBase>> columns;
columns.push_back(std::make_unique<gridfire::utils::Column<std::string>>(paramCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(initialCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(finalCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(deltaCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(percentCol));
gridfire::utils::print_table("Simulation Results", columns);
}
void record_abundance_history_callback(const gridfire::solver::PointSolverTimestepContext& ctx) {
s_wrote_abundance_history = true;
const auto& engine = ctx.engine;
// std::unordered_map<std::string, std::pair<double, double>> abundances;
std::vector<double> Y;
for (const auto& species : engine.getNetworkSpecies(ctx.state_ctx)) {
const size_t sid = engine.getSpeciesIndex(ctx.state_ctx, species);
double y = N_VGetArrayPointer(ctx.state)[sid];
Y.push_back(y > 0.0 ? y : 0.0); // Regularize tiny negative abundances to zero
}
fourdst::composition::Composition comp(engine.getNetworkSpecies(ctx.state_ctx), Y);
std::unordered_map<std::string, std::pair<double, double>> abundances;
for (const auto& sp : comp | std::views::keys) {
abundances.emplace(std::string(sp.name()), std::make_pair(sp.mass(), comp.getMolarAbundance(sp)));
}
g_callbackHistory.emplace_back(ctx.t, abundances);
}
void save_callback_data(const std::string_view filename) {
std::set<std::string> unique_species;
for (const auto &abundances: g_callbackHistory | std::views::values) {
for (const auto &species_name: abundances | std::views::keys) {
unique_species.insert(species_name);
}
}
std::ofstream csvFile(filename.data(), std::ios::out);
csvFile << "t,";
size_t i = 0;
for (const auto& species_name : unique_species) {
csvFile << species_name;
if (i < unique_species.size() - 1) {
csvFile << ",";
}
i++;
}
csvFile << "\n";
for (const auto& [time, data] : g_callbackHistory) {
csvFile << time << ",";
size_t j = 0;
for (const auto& species_name : unique_species) {
if (!data.contains(species_name)) {
csvFile << "0.0";
} else {
csvFile << data.at(species_name).second;
}
if (j < unique_species.size() - 1) {
csvFile << ",";
}
++j;
}
csvFile << "\n";
}
csvFile.close();
}
void log_callback_data(const double temp) {
if (s_wrote_abundance_history) {
std::cout << "Saving abundance history to abundance_history.csv" << std::endl;
save_callback_data("abundance_history_" + std::to_string(temp) + ".csv");
}
}
void quill_terminate_handler()
{
log_callback_data(1.5e7);
quill::Backend::stop();
if (g_previousHandler)
g_previousHandler();
else
std::abort();
}
void callback_main(const gridfire::solver::PointSolverTimestepContext& ctx) {
record_abundance_history_callback(ctx);
}
int main(int argc, char** argv) {
GF_PAR_INIT();
using namespace gridfire;
double tMin = 1e7;
double tMax = 3e7;
ScalingTypes tempScaling = ScalingTypes::LINEAR;
double rhoMin = 1e2;
double rhoMax = 1e3;
ScalingTypes rhoScaling = ScalingTypes::LOG;
double evolveTime = 1e13;
size_t shells = 10;
CLI::App app("GridFire Quick CLI Test");
// Add temp, rho, and tMax as options if desired
app.add_option("--tMin", tMin, "Initial Temperature")->default_val(std::format("{:5.2E}", tMin));
app.add_option("--tMax", tMax, "Maximum Temperature")->default_val(std::format("{:5.2E}", tMax));
app.add_option("--tempScaling", tempScaling, "Temperature Scaling Type (linear, log, geom)")->default_val(ScalingTypes::LINEAR)->transform(CLI::CheckedTransformer(scaling_type_map, CLI::ignore_case));
app.add_option("--rhoMin", rhoMin, "Initial Density")->default_val(std::format("{:5.2E}", rhoMin));
app.add_option("--rhoMax", rhoMax, "Maximum Density")->default_val(std::format("{:5.2E}", rhoMax));
app.add_option("--rhoScaling", rhoScaling, "Density Scaling Type (linear, log, geom)")->default_val(ScalingTypes::LOG)->transform(CLI::CheckedTransformer(scaling_type_map, CLI::ignore_case));
app.add_option("--shell", shells, "Number of Shells")->default_val(shells);
app.add_option("--evolveTime", evolveTime, "Evolution Time")->default_val(std::format("{:5.2E}", evolveTime));
CLI11_PARSE(app, argc, argv);
NetIn rootNetIn = init(tMin, tMax, evolveTime);
std::vector<double> temps;
std::vector<double> densities;
switch (tempScaling) {
case ScalingTypes::LINEAR:
temps = linspace<double>(tMin, tMax, static_cast<size_t>(shells));
break;
case ScalingTypes::LOG:
temps = logspace<double>(std::log10(tMin), std::log10(tMax), static_cast<size_t>(shells));
break;
case ScalingTypes::GEOM:
temps = geomspace<double>(tMin, tMax, static_cast<size_t>(shells));
break;
}
switch (rhoScaling) {
case ScalingTypes::LINEAR:
densities = linspace<double>(rhoMin, rhoMax, static_cast<size_t>(shells));
break;
case ScalingTypes::LOG:
densities = logspace<double>(std::log10(rhoMin), std::log10(rhoMax), static_cast<size_t>(shells));
break;
case ScalingTypes::GEOM:
densities = geomspace<double>(rhoMin, rhoMax, static_cast<size_t>(shells));
break;
}
std::vector<NetIn> netIns;
netIns.reserve(shells);
for (size_t i = 0; i < static_cast<size_t>(shells); ++i) {
NetIn netIn = rootNetIn;
netIn.temperature = temps[i];
netIn.density = densities[i];
netIns.emplace_back(netIn);
}
policy::MainSequencePolicy stellarPolicy(rootNetIn.composition);
auto [engine, ctx_template] = stellarPolicy.construct();
solver::PointSolver point_solver(engine);
solver::GridSolver grid_solver(engine, point_solver);
solver::GridSolverContext solver_ctx(*ctx_template);
std::vector<NetOut> results = grid_solver.evaluate(solver_ctx, netIns);
for (size_t i = 0; i < results.size(); ++i) {
std::cout << "=== Shell " << i << " ===" << std::endl;
log_results(results[i], netIns[i]);
}
}

View File

@@ -0,0 +1 @@
executable('gf_multi', 'main.cpp', dependencies: [gridfire_dep, cli11_dep])

View File

@@ -360,6 +360,10 @@ int main(int argc, char** argv) {
CLI11_PARSE(app, argc, argv);
NetIn netIn = init(temp, rho, tMax);
for (const auto& [sp, y] : netIn.composition) {
std::println("Species: {}, Abundance: {}", sp.name(), y);
}
return 0;
// netIn.composition = rescale(netIn.composition, X, Z);
policy::MainSequencePolicy stellarPolicy(netIn.composition);

View File

@@ -1,4 +1,5 @@
if get_option('build_tools')
subdir('config')
subdir('cli')
subdir('gf_config')
subdir('gf_quick')
subdir('gf_multi')
endif