Fortran interface uses the new C api ability to call the naieve multi-zone solver. This allows fortran calling code to make use of in build parellaism for solving multiple zones
125 lines
3.9 KiB
C
125 lines
3.9 KiB
C
#include "gridfire/extern/gridfire_extern.h"
|
|
#include <stdio.h>
|
|
|
|
#define NUM_SPECIES 8
|
|
#define ZONES 100
|
|
#define ZONE_POLICY MULTI_ZONE
|
|
|
|
// Define a macro to check return codes
|
|
#define CHECK_RET_CODE(ret, ctx, msg) \
|
|
if ((ret) != 0 && (ret) != 1) { \
|
|
printf("Error %s: %s (No. %d) [%s]\n", msg, gf_error_code_to_string(ret), ret, gf_get_last_error_message(ctx)); \
|
|
gf_free(ZONE_POLICY, ctx); \
|
|
return 1; \
|
|
}
|
|
|
|
int main() {
|
|
printf("Testing GridFireEvolve Multi\n");
|
|
printf(" Number of zones: %d\n", ZONES);
|
|
printf(" Number of species: %d\n", NUM_SPECIES);
|
|
printf(" Initializing..");
|
|
void* ctx = gf_init(ZONE_POLICY);
|
|
printf(" Done.\n");
|
|
printf(" Setting number of zones to %d..", ZONES);
|
|
gf_set_num_zones(ZONE_POLICY, ctx, ZONES);
|
|
printf(" Done.\n");
|
|
|
|
const char* species_names[NUM_SPECIES];
|
|
species_names[0] = "H-1";
|
|
species_names[1] = "He-3";
|
|
species_names[2] = "He-4";
|
|
species_names[3] = "C-12";
|
|
species_names[4] = "N-14";
|
|
species_names[5] = "O-16";
|
|
species_names[6] = "Ne-20";
|
|
species_names[7] = "Mg-24";
|
|
const double abundance_root[NUM_SPECIES] = {
|
|
0.702616602672027,
|
|
9.74791583949078e-06,
|
|
0.06895512307276903,
|
|
0.00025,
|
|
7.855418029399437e-05,
|
|
0.0006014411598306529,
|
|
8.103062886768109e-05,
|
|
2.151340851063217e-05
|
|
};
|
|
|
|
double abundances[ZONES][NUM_SPECIES];
|
|
for (size_t zone = 0; zone < ZONES; zone++) {
|
|
for (size_t i = 0; i < NUM_SPECIES; i++) {
|
|
abundances[zone][i] = abundance_root[i];
|
|
}
|
|
}
|
|
|
|
double Temps[ZONES];
|
|
double Rhos[ZONES];
|
|
|
|
for (size_t zone = 0; zone < ZONES; zone++) {
|
|
Temps[zone] = 1.0e7 + (double)zone * 1.0e5; // From 10 million K to 20 million K
|
|
Rhos[zone] = 1.5e2;
|
|
printf("Zone %zu - Temp: %e K, Rho: %e g/cm^3\n", zone, Temps[zone], Rhos[zone]);
|
|
}
|
|
return 0;
|
|
|
|
printf(" Registering species...");
|
|
int ret = gf_register_species(ctx, NUM_SPECIES, species_names);
|
|
CHECK_RET_CODE(ret, ctx, "SPECIES");
|
|
printf(" Done.\n");
|
|
|
|
printf(" Constructing engine from policy...");
|
|
ret = gf_construct_engine_from_policy(ctx, "MAIN_SEQUENCE_POLICY", abundance_root, NUM_SPECIES);
|
|
CHECK_RET_CODE(ret, ctx, "MAIN_SEQUENCE_POLICY");
|
|
printf(" Done.\n");
|
|
|
|
printf(" Constructing solver from engine...");
|
|
ret = gf_construct_solver_from_engine(ctx);
|
|
CHECK_RET_CODE(ret, ctx, "CVODE");
|
|
printf(" Done.\n");
|
|
|
|
double Y_out[ZONES][NUM_SPECIES];
|
|
double energy_out[ZONES];
|
|
double dEps_dT[ZONES];
|
|
double dEps_dRho[ZONES];
|
|
double specific_neutrino_energy_loss[ZONES];
|
|
double specific_neutrino_flux[ZONES];
|
|
double mass_lost[ZONES];
|
|
|
|
printf(" Evolving...\n");
|
|
ret = gf_evolve(
|
|
ZONE_POLICY,
|
|
ctx,
|
|
abundances,
|
|
NUM_SPECIES,
|
|
Temps, // Temperature in K
|
|
Rhos, // Density in g/cm^3
|
|
3e17, // Time step in seconds
|
|
1e-12,
|
|
Y_out,
|
|
energy_out,
|
|
dEps_dT,
|
|
dEps_dRho,
|
|
specific_neutrino_energy_loss,
|
|
specific_neutrino_flux, &mass_lost
|
|
);
|
|
CHECK_RET_CODE(ret, ctx, "EVOLUTION");
|
|
printf(" Done.\n");
|
|
|
|
|
|
printf("Evolved abundances:\n");
|
|
for (size_t zone = 0; zone < ZONES; zone++) {
|
|
printf("=== Zone %zu ===\n", zone);
|
|
for (size_t i = 0; i < NUM_SPECIES; i++) {
|
|
printf(" Species %s: %e\n", species_names[i], Y_out[zone][i]);
|
|
}
|
|
printf(" Energy output: %e\n", energy_out[zone]);
|
|
printf(" dEps/dT: %e\n", dEps_dT[zone]);
|
|
printf(" dEps/dRho: %e\n", dEps_dRho[zone]);
|
|
printf(" Specific neutrino energy loss: %e\n", specific_neutrino_energy_loss[zone]);
|
|
printf(" Specific neutrino flux: %e\n", specific_neutrino_flux[zone]);
|
|
printf(" Mass lost: %e\n", mass_lost[zone]);
|
|
}
|
|
|
|
gf_free(ZONE_POLICY, ctx);
|
|
|
|
return 0;
|
|
} |