fix(poly): fixed -M bug in form

MFEM MixedVectorWeakDivergenceIntegrator is actually already -M in our derivation, I have negated this so that Mform -> M directly
This commit is contained in:
2025-04-23 09:13:30 -04:00
parent e4b56d7ce2
commit e56ab5644b
5 changed files with 262 additions and 109 deletions

View File

@@ -106,74 +106,65 @@ PolySolver::PolySolver(const double n, const double order) {
PolySolver::~PolySolver() = default;
void PolySolver::assembleBlockSystem() {
mfem::Array<int> blockOffsets = computeBlockOffsets();
// Start by defining the block structure of the system
// Block 0: Theta (scalar space, uses m_feTheta)
// Block 1: Phi (vector space, uses m_fePhi)
mfem::Array<mfem::FiniteElementSpace*> feSpaces;
feSpaces.Append(m_feTheta.get());
feSpaces.Append(m_fePhi.get());
const std::unique_ptr<formBundle> forms = buildIndividualForms(blockOffsets);
// Create the block offsets. These define the start of each block in the combined vector.
// Block offsets will be [0, thetaDofs, thetaDofs + phiDofs]
// --- Build the BlockOperator ---
m_polytropOperator = std::make_unique<PolytropeOperator>(
std::move(forms->M),
std::move(forms->Q),
std::move(forms->D),
std::move(forms->f),
blockOffsets);
}
mfem::Array<int> PolySolver::computeBlockOffsets() const {
mfem::Array<int> blockOffsets;
blockOffsets.SetSize(3);
blockOffsets[0] = 0;
blockOffsets[1] = feSpaces[0]->GetVSize();
blockOffsets[2] = feSpaces[1]->GetVSize();
blockOffsets[1] = m_feTheta->GetVSize(); // Get actual number of dofs *before* applying BCs
blockOffsets[2] = m_fePhi->GetVSize();
blockOffsets.PartialSum(); // Cumulative sum to get the offsets
return blockOffsets;
}
// Add integrators to block form one by one
// We add integrators corresponding to each term in the weak form
// The block form of the residual matrix
// ⎡ 0 -M ⎤ ⎡ θ ⎤ + ⎡f(θ)⎤ = ⎡ 0 ⎤ = R(X)
// ⎣ -Q D ⎦ ⎣ Φ ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦
// This then simplifies to
// ⎡f(θ) - MΘ ⎤ = ⎡ 0 ⎤ = R
// ⎣ -Qɸ Dθ ⎦ ⎣ 0 ⎦
// Here M, Q, and D are
// M = ∫∇ψᶿ·Nᵠ dV (MixedVectorWeakDivergenceIntegrator)
// D = ∫ψᵠ·Nᵠ dV (VectorFEMassIntegrator)
// Q = ∫ψᵠ·∇Nᶿ dV (MixedVectorGradientIntegrator)
// f(θ) = ∫ψᶿ·θⁿ dV (NonlinearPowerIntegrator)
// Here ψᶿ and ψᵠ are the test functions for the theta and phi spaces, respectively
// Nᵠ and Nᶿ are the basis functions for the theta and phi spaces, respectively
// A full derivation of the weak form can be found in the 4DSSE documentation
std::unique_ptr<formBundle> PolySolver::buildIndividualForms(const mfem::Array<int> &blockOffsets) {
// --- Assemble the MixedBilinear and Bilinear forms (M, D, and Q) ---
auto Mform = std::make_unique<mfem::MixedBilinearForm>(m_fePhi.get(), m_feTheta.get());
auto Qform = std::make_unique<mfem::MixedBilinearForm>(m_feTheta.get(), m_fePhi.get());
auto Dform = std::make_unique<mfem::BilinearForm>(m_fePhi.get());
// TODO: Check the sign on all of the integrators
Mform->AddDomainIntegrator(new mfem::MixedVectorWeakDivergenceIntegrator());
Qform->AddDomainIntegrator(new mfem::MixedVectorGradientIntegrator());
Dform->AddDomainIntegrator(new mfem::VectorFEMassIntegrator());
auto forms = std::make_unique<formBundle>(
std::make_unique<mfem::MixedBilinearForm>(m_fePhi.get(), m_feTheta.get()),
std::make_unique<mfem::MixedBilinearForm>(m_feTheta.get(), m_fePhi.get()),
std::make_unique<mfem::BilinearForm>(m_fePhi.get()),
std::make_unique<mfem::NonlinearForm>(m_feTheta.get())
);
Mform->Assemble();
Mform->Finalize();
// --- -M negation -> M ---
mfem::Vector negOneVec(m_fePhi->GetVDim());
negOneVec = -1.0;
Qform->Assemble();
Qform->Finalize();
m_negationCoeff = std::make_unique<mfem::VectorConstantCoefficient>(negOneVec);
Dform->Assemble();
Dform->Finalize();
// --- Add the integrators to the forms ---
forms->M->AddDomainIntegrator(new mfem::MixedVectorWeakDivergenceIntegrator(*m_negationCoeff));
forms->Q->AddDomainIntegrator(new mfem::MixedVectorGradientIntegrator());
forms->D->AddDomainIntegrator(new mfem::VectorFEMassIntegrator());
// --- Assemble the NonlinearForm (f) ---
// Note that the nonlinear form is built here but its essential true dofs (boundary conditions) are
// not set until later (when solve is called). They are applied through the operator rather than directly.
auto fform = std::make_unique<mfem::NonlinearForm>(m_feTheta.get());
fform->AddDomainIntegrator(new polyMFEMUtils::NonlinearPowerIntegrator(m_polytropicIndex));
// --- Assemble and Finalize the forms ---
assembleAndFinalizeForm(forms->M);
assembleAndFinalizeForm(forms->Q);
assembleAndFinalizeForm(forms->D);
// -- Build the BlockOperator --
m_polytropOperator = std::make_unique<PolytropeOperator>(
std::move(Mform),
std::move(Qform),
std::move(Dform),
std::move(fform),
blockOffsets
);
forms->f->AddDomainIntegrator(new polyMFEMUtils::NonlinearPowerIntegrator(m_polytropicIndex));
return std::move(forms);
}
void PolySolver::assembleAndFinalizeForm(auto &f) {
// This constructs / ensures the matrix representation for each form
// Assemble => Computes the local element matrices across the domain. Adds these to the global matrix . Adds these to the global matrix.
// Finalize => Builds the sparsity pattern and allows the SparseMatrix representation to be extracted.
f->Assemble();
f->Finalize();
}
void PolySolver::solve() const {
@@ -193,6 +184,9 @@ void PolySolver::solve() const {
throw std::runtime_error("PolytropeOperator is not finalized. Cannot solve.");
}
GetDofCoordinates(*m_feTheta, "dof2posTheta.csv");
GetDofCoordinates(*m_fePhi, "dof2posPhi.csv");
// It's safer to get the offsets directly from the operator after finalization
const mfem::Array<int>& block_offsets = m_polytropOperator->GetBlockOffsets(); // Assuming a getter exists or accessing member if public/friend
mfem::BlockVector state_vector(block_offsets);
@@ -213,6 +207,8 @@ void PolySolver::solve() const {
// with updating the preconditioner at every newton step as the
// changes to the jacobian are automatically propagated through the
// solving chain. This is at least true with MFEM 4.8-rc0
std::string windowTitle = "testWindow";
std::string keyset = "";
sb.newton.Mult(zero_rhs, state_vector);
// --- Save and view the solution ---
@@ -279,7 +275,8 @@ void PolySolver::setInitialGuess() const {
const double radius = Probe::getMeshRadius(*m_mesh);
const double u = 1/radius;
return -std::pow((u*r), 2)+1.0; // The series expansion is a better guess; however, this is cheaper and ensures that the value at the surface is very close to zero in a way that the series expansion does not
return (-1.0/radius) * r + 1;
// return -std::pow((u*r), 2)+1.0; // The series expansion is a better guess; however, this is cheaper and ensures that the value at the surface is very close to zero in a way that the series expansion does not
}
);
m_theta->ProjectCoefficient(thetaInitGuess);
@@ -338,6 +335,43 @@ void PolySolver::LoadSolverUserParams(double &newtonRelTol, double &newtonAbsTol
LOG_DEBUG(m_logger, "GMRES Solver (relTol: {:0.2E}, absTol: {:0.2E}, maxIter: {}, printLevel: {})", gmresRelTol, gmresAbsTol, gmresMaxIter, gmresPrintLevel);
}
void PolySolver::GetDofCoordinates(mfem::FiniteElementSpace &fes, const std::string& filename) const {
mfem::Mesh *mesh = fes.GetMesh();
double r = Probe::getMeshRadius(*mesh);
std::ofstream outputFile(filename, std::ios::out | std::ios::trunc);
outputFile << "dof,R,r,x,y,z" << '\n';
const int nElements = mesh->GetNE();
mfem::Vector coords;
mfem::IntegrationPoint ipZero;
double p[3] = {0.0, 0.0, 0.0};
int actual_idx;
ipZero.Set3(p);
for (int i = 0; i < nElements; i++) {
mfem::Array<int> elemDofs;
fes.GetElementDofs(i, elemDofs);
mfem::ElementTransformation* T = mesh->GetElementTransformation(i);
mfem::Vector physCoord(3);
T->Transform(ipZero, physCoord);
for (int dofID = 0; dofID < elemDofs.Size(); dofID++) {
if (elemDofs[dofID] < 0) {
actual_idx = -elemDofs[dofID] - 1;
} else {
actual_idx = elemDofs[dofID];
}
outputFile << actual_idx;
if (dofID != elemDofs.Size() - 1) {
outputFile << "|";
} else {
outputFile << ",";
}
}
outputFile << r << "," << physCoord.Norml2() << "," << physCoord[0] << "," << physCoord[1] << "," << physCoord[2] << '\n';
}
outputFile.close();
}
solverBundle PolySolver::setupNewtonSolver() const {
// --- Load configuration parameters ---
double newtonRelTol, newtonAbsTol, gmresRelTol, gmresAbsTol;

View File

@@ -44,7 +44,14 @@ struct solverBundle {
mfem::NewtonSolver newton; // Must be second so that when it is destroyed the solver is still alive preventing a double delete
};
class PolySolver {
struct formBundle {
std::unique_ptr<mfem::MixedBilinearForm> M;
std::unique_ptr<mfem::MixedBilinearForm> Q;
std::unique_ptr<mfem::BilinearForm> D;
std::unique_ptr<mfem::NonlinearForm> f;
};
class PolySolver final{
public: // Public methods
PolySolver(const double n, const double order);
~PolySolver();
@@ -76,9 +83,96 @@ private: // Private Attributes
std::unique_ptr<mfem::OperatorJacobiSmoother> m_prec;
std::unique_ptr<mfem::VectorConstantCoefficient> m_negationCoeff;
private: // Private methods
void assembleBlockSystem();
/**
* @breif Compute the block offsets for the operator. These are the offsets that define which dofs belong to which variable.
*
* @details
*
* Create the block offsets. These define the start of each block in the combined vector.
* Block offsets will be [0, thetaDofs, thetaDofs + phiDofs].
* The interpretation of this is that each block tells the operator where in the flattned (1D) vector
* the degrees of freedom or coefficients for that free parameter start and end. I.e.
* we know that in any flattened vector will have a size thetaDofs + phiDofs. The theta dofs will span
* from blockOffsets[0] -> blockOffsets[1] and the phiDofs will span from blockOffsets[1] -> blockOffsets[2].
*
* This is the same for matrices only in 2D (rows and columns)
*
* The key point here is that this is fundamentally an accounting structure, it is here to keep track of what
* parts of vectors and matrices belong to which variable.
*
* Also note that we use VSize rather than Size. Size referees to the number of true dofs. That is the dofs which
* still are present in the system after eliminating boundary conditions. This is the wrong size to use if we are
* trying to account for the true size of the system. VSize on the other hand refers to the total number of dofs.
*
* @return blockOffsets The offsets for the blocks in the operator
*/
mfem::Array<int> computeBlockOffsets() const;
/**
* @breif Build the individual forms for the block operator (M, Q, D, and f)
*
* @param blockOffsets The offsets for the blocks in the operator
* @param Mform The mixed bilinear form for the mass matrix
* @param Qform The mixed bilinear form for the gradient matrix
* @param Dform The bilinear form for the divergence matrix
* @param fform The nonlinear form for the source term
*
* @note These forms are build exactly how they are defined in the derivation. This means that Mform -> M not -M and Qform -> Q not -Q.
*
* @details
* Computes the block offsets
* \f$\{0,\;|\theta|,\;|\theta|+|\phi|\}\f$, then builds and finalizes
* the MixedBilinearForms \c Mform, \c Qform and the BilinearForm \c Dform,
* plus the NonlinearForm \c fform. Finally, these are handed off to
* \c PolytropeOperator along with the offsets.
*
* The discretized weak form is
* \f[
* R(X)
* = \begin{pmatrix}
* f(\theta) - M\,\theta \\[6pt]
* D\,\theta - Q\,\phi
* \end{pmatrix}
* = \mathbf{0},
* \f]
* with
* \f[
* M = \int \nabla\psi^\theta \;\cdot\; N^\phi \,dV,\quad
* D = \int \psi^\phi \;\cdot\; N^\phi \,dV,
* \quad
* Q = \int \psi^\phi \;\cdot\; \nabla N^\theta \,dV,
* \quad
* f(\theta) = \int \psi^\theta \;\cdot\; \theta^n \,dV.
* \f]
*
* @note MFEMs MixedVectorWeakDivergenceIntegrator implements
* \f$ -\nabla\!\cdot \f$, so we supply a 1 coefficient to make
* `Mform` represent the +M from the derivation. The single negation
* in `PolytropeOperator` then restores the final block sign.
*
*
* @pre \c m_feTheta and \c m_fePhi must be valid, populated FiniteElementSpaces.
* @post \c m_polytropOperator is constructed with assembled forms and offsets.
*
*/
std::unique_ptr<formBundle> buildIndividualForms(const mfem::Array<int>& blockOffsets);
/**
* @brief Assemble and finalize the form (Must be a form that can be assembled and finalized)
*
* @param f form which is to be assembled and finalized
*
* @pre f is a valid form that can be assembled and finalized (Such as Bilinear or MixedBilinearForm)
* @post f is assembled and finalized
*/
static void assembleAndFinalizeForm(auto &f);
SSE::MFEMArrayPairSet getEssentialTrueDof() const;
std::pair<mfem::Array<int>, mfem::Array<int>> findCenterElement() const;
void setInitialGuess() const;
@@ -89,4 +183,6 @@ private: // Private methods
void LoadSolverUserParams(double &newtonRelTol, double &newtonAbsTol, int &newtonMaxIter, int &newtonPrintLevel,
double &gmresRelTol, double &gmresAbsTol, int &gmresMaxIter, int &gmresPrintLevel) const;
void GetDofCoordinates(mfem::FiniteElementSpace &fes, const std::string& filename) const;
};

View File

@@ -22,8 +22,11 @@
#include <cmath>
#include "integrators.h"
#include <string>
// static std::ofstream debugOut("gradient.csv", std::ios::trunc);
namespace polyMFEMUtils {
NonlinearPowerIntegrator::NonlinearPowerIntegrator(const double n) :
m_polytropicIndex(n) {}
@@ -40,11 +43,10 @@ namespace polyMFEMUtils {
elvect = 0.0;
mfem::Vector shape(dof);
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
Trans.SetIntPoint(&ip);
double weight = ip.weight * Trans.Weight();
const double weight = ip.weight * Trans.Weight();
el.CalcShape(ip, shape);
@@ -52,10 +54,10 @@ namespace polyMFEMUtils {
for (int j = 0; j < dof; j++) {
u_val += elfun(j) * shape(j);
}
double u_safe = std::max(u_val, 0.0);
double u_nl = std::pow(u_safe, m_polytropicIndex);
double x2_u_nl = u_nl;
const double u_safe = std::max(u_val, 0.0);
const double u_nl = std::pow(u_safe, m_polytropicIndex);
const double x2_u_nl = u_nl;
for (int i = 0; i < dof; i++){
elvect(i) += shape(i) * x2_u_nl * weight;
@@ -71,18 +73,23 @@ namespace polyMFEMUtils {
mfem::DenseMatrix &elmat) {
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
int dof = el.GetDof();
const int dof = el.GetDof();
elmat.SetSize(dof);
elmat = 0.0;
mfem::Vector shape(dof);
mfem::DenseMatrix dshape(dof, 3);
mfem::DenseMatrix invJ(3, 3);
mfem::Vector gradPhys(3);
mfem::Vector physCoord(3);
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
const mfem::IntegrationPoint &ip = ir->IntPoint(iqp);
Trans.SetIntPoint(&ip);
double weight = ip.weight * Trans.Weight();
const double weight = ip.weight * Trans.Weight();
el.CalcShape(ip, shape);
double u_val = 0.0;
for (int j = 0; j < dof; j++) {
@@ -90,16 +97,37 @@ namespace polyMFEMUtils {
}
// Calculate the Jacobian
double u_safe = std::max(u_val, 0.0);
double d_u_nl = m_polytropicIndex * std::pow(u_safe, m_polytropicIndex - 1);
double x2_d_u_nl = d_u_nl;
const double u_safe = std::max(u_val, 0.0);
const double d_u_nl = m_polytropicIndex * std::pow(u_safe, m_polytropicIndex - 1);
const double x2_d_u_nl = d_u_nl;
for (int i = 0; i < dof; i++) {
for (int j = 0; j < dof; j++) {
elmat(i, j) += shape(i) * x2_d_u_nl * shape(j) * weight;
}
}
}
// // --- Debug Code to write out gradient ---
// Trans.Transform(ip,physCoord);
// el.CalcDShape(ip, dshape);
//
// mfem::CalcInverse(Trans.Jacobian(), invJ);
//
// mfem::DenseMatrix dshapePhys;
// dshapePhys.SetSize(dof, physCoord.Size());
// mfem::Mult(dshape, invJ, dshapePhys);
//
// gradPhys = 0.0;
// for (int j = 0; j < dof; j++) {
// for (int d = 0; d < gradPhys.Size(); d++) {
// gradPhys(d) += elfun(j)*dshapePhys(j, d);
// }
// }
//
// debugOut
// << physCoord(0) << ", " << physCoord(1) << ", " << physCoord(2)
// << ", " << gradPhys(0) << ", " << gradPhys(1) << ", " << gradPhys(2) << '\n';
}
// debugOut.flush();
}
} // namespace polyMFEMUtils

View File

@@ -89,6 +89,35 @@ void writeDenseMatrixToCSV(const std::string &filename, int precision, const mfe
writeDenseMatrixToCSV(filename, precision, mat);
}
void approxJacobiInvert(const mfem::SparseMatrix& mat, std::unique_ptr<mfem::SparseMatrix>& invMat, const std::string& name="matrix") {
// PERF: This likely can be made much more efficient and will probably be called in tight loops, a good
// PERF: place for some easy optimization might be here.
// Confirm that mat is a square matrix
MFEM_ASSERT(mat.Height() == mat.Width(), "Matrix " + name + " is not square, cannot invert.");
mfem::Vector diag;
mat.GetDiag(diag);
// Invert the diagonal
for (int i = 0; i < diag.Size(); i++) {
MFEM_ASSERT(diag(i) != 0, "Diagonal element (" + std::to_string(i) +") in " + name + " is zero, cannot invert.");
diag(i) = 1.0 / diag(i);
}
// If the matrix is already inverted, just set the diagonal to avoid reallocation
if (invMat != nullptr) {
MFEM_ASSERT(invMat->Height() == invMat->Width(), "invMat (result matrix) is not square, cannot invert " + name + " into it.");
MFEM_ASSERT(invMat->Height() == mat.Height(), "Incompatible matrix sizes for inversion of " + name + ", expected " + std::to_string(mat.Height()) + " but got " + std::to_string(invMat->Height()));
for (int i = 0; i < diag.Size(); i++) {
MFEM_ASSERT(diag(i) != 0, "Diagonal element (" + std::to_string(i) +") in " + name + " is zero, resulting matrix would be singular.");
invMat->Elem(i, i) = diag(i);
}
} else { // The matrix has not been allocated yet so that needs to be done. Sparse Matrix has a constructor that can build from the diagonals
invMat = std::make_unique<mfem::SparseMatrix>(diag);
}
}
PolytropeOperator::PolytropeOperator(
std::unique_ptr<mfem::MixedBilinearForm> M,
@@ -219,40 +248,6 @@ void PolytropeOperator::Mult(const mfem::Vector &x, mfem::Vector &y) const {
}
// TODO: I was *very* stupid and I accidentally deleted a lot of the code
// which I had written to find and use the preconditioner. This needs
// to be reimplemented. Once that is working you can get back to
// Trying to understand the multimodal hump in the residuals vector.
// There is a jupyter notebook about this. I was thinking that this was
// perhaps related to the non consistent application of boundary conditions.
void approxJacobiInvert(const mfem::SparseMatrix& mat, std::unique_ptr<mfem::SparseMatrix>& invMat, const std::string& name="matrix") {
// PERF: This likely can be made much more efficient and will probably be called in tight loops, a good
// PERF: place for some easy optimization might be here.
// Confirm that mat is a square matrix
MFEM_ASSERT(mat.Height() == mat.Width(), "Matrix " + name + " is not square, cannot invert.");
mfem::Vector diag;
mat.GetDiag(diag);
// Invert the diagonal
for (int i = 0; i < diag.Size(); i++) {
MFEM_ASSERT(diag(i) != 0, "Diagonal element (" + std::to_string(i) +") in " + name + " is zero, cannot invert.");
diag(i) = 1.0 / diag(i);
}
// If the matrix is already inverted, just set the diagonal to avoid reallocation
if (invMat != nullptr) {
MFEM_ASSERT(invMat->Height() == invMat->Width(), "invMat (result matrix) is not square, cannot invert " + name + " into it.");
MFEM_ASSERT(invMat->Height() == mat.Height(), "Incompatible matrix sizes for inversion of " + name + ", expected " + std::to_string(mat.Height()) + " but got " + std::to_string(invMat->Height()));
for (int i = 0; i < diag.Size(); i++) {
MFEM_ASSERT(diag(i) != 0, "Diagonal element (" + std::to_string(i) +") in " + name + " is zero, resulting matrix would be singular.");
invMat->Elem(i, i) = diag(i);
}
} else {
invMat = std::make_unique<mfem::SparseMatrix>(diag);
}
}
void PolytropeOperator::updateInverseNonlinearJacobian(const mfem::Operator &grad) const {
if (const auto *sparse_mat = dynamic_cast<const mfem::SparseMatrix*>(&grad); sparse_mat != nullptr) {
@@ -325,4 +320,4 @@ void PolytropeOperator::SetEssentialTrueDofs(const SSE::MFEMArrayPairSet& ess_td
SSE::MFEMArrayPairSet PolytropeOperator::GetEssentialTrueDofs() const {
return std::make_pair(m_theta_ess_tdofs, m_phi_ess_tdofs);
}
}

View File

@@ -26,7 +26,7 @@
#include "probe.h"
class PolytropeOperator : public mfem::Operator {
class PolytropeOperator final : public mfem::Operator {
public:
PolytropeOperator(
std::unique_ptr<mfem::MixedBilinearForm> M,
@@ -84,8 +84,8 @@ private:
/*
* The schur preconditioner has the form
*
* ⎡ḟ(θ)^-1 0 ⎤
* ⎣ 0 S^-1 ⎦
* ⎡ḟ(θ)^-1 0 ⎤
* ⎣ 0 S^-1 ⎦
*
* Where S is the Schur compliment of the system
*