feat(poly): added first pass implimentation of 3D constrained lane-emden solver

This has not currently been tested and this commit should not be viewed as scientifically complete
This commit is contained in:
2025-02-19 14:35:15 -05:00
parent 98162d002e
commit b939fd68fa
9 changed files with 707 additions and 286 deletions

View File

@@ -0,0 +1,144 @@
#include "mfem.hpp"
#include <string>
#include <iostream>
#include <memory>
#include "meshIO.h"
#include "polySolver.h"
#include "polyMFEMUtils.h"
#include "polyCoeff.h"
// TODO: Come back to this and think of a better way to get the mesh file
const std::string SPHERICAL_MESH = std::string(getenv("MESON_SOURCE_ROOT")) + "/src/resources/mesh/sphere.msh";
PolySolver::PolySolver(double n, double order)
: n(n),
order(order),
meshIO(SPHERICAL_MESH),
mesh(meshIO.GetMesh()),
gaussianCoeff(std::make_unique<polyMFEMUtils::GaussianCoefficient>(0.1)),
diffusionCoeff(std::make_unique<mfem::VectorConstantCoefficient>(mfem::Vector(mesh.SpaceDimension()))),
nonLinearSourceCoeff(std::make_unique<mfem::ConstantCoefficient>(1.0))
{
(*diffusionCoeff).GetVec() = 1.0;
feCollection = std::make_unique<mfem::H1_FECollection>(order, mesh.SpaceDimension());
feSpace = std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get());
lambdaFeSpace = std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get(), 1); // Scalar space for lambda
compositeIntegrator = std::make_unique<polyMFEMUtils::CompositeNonlinearIntegrator>();
nonlinearForm = std::make_unique<mfem::NonlinearForm>(feSpace.get());
C = std::make_unique<mfem::LinearForm>(feSpace.get());
u = std::make_unique<mfem::GridFunction>(feSpace.get());
assembleNonlinearForm();
assembleConstraintForm();
}
PolySolver::assembleNonlinearForm() {
// Add the \int_{\Omega}\nabla v\cdot\nabla\theta d\Omegaterm
compositeIntegrator->add_integrator(
new polyMFEMUtils::BilinearIntegratorWrapper(
new mfem::DiffusionIntegrator(diffusionCoeff.get()),
)
);
// Add the \int_{\Omega}v\theta^{n} d\Omega term
compositeIntegrator->add_integrator(
new polyMFEMUtils::NonlinearPowerIntegrator(
nonLinearSourceCoeff.get(),
n
)
);
compositeIntegrator->add_integrator(
new polyMFEMUtils::ConstraintIntegrator(
*gaussianCoeff
)
);
nonlinearForm->AddDomainIntegrator(compositeIntegrator.get());
}
PolySolver::assembleConstraintForm() {
C->AddDomainIntegrator(
new mfem::DomainLFIntegrator(
*gaussianCoeff
)
);
C->Assemble();
}
PolySolver::solve(){
// --- Set the initial guess for the solution ---
mfem::FunctionCoefficient initCoeff (
[this](const mfem::Vector &x) {
return 1.0; // Update this to be a better init guess
}
);
u->ProjectCoefficient(initCoeff);
// --- Combine DOFs (u and λ) into a single vector ---
int lambdaDofOffset = feSpace->GetTrueVSize(); // Get the size of θ space
int totalTrueDofs = lambdaDofOffset + lambdaFeSpace->GetTrueVSize();
if (totalTrueDofs != lambdaDofOffset + 1) {
throw std::runtime_error("The total number of true dofs is not equal to the sum of the lambda offset and the lambda space size");
}
mfem::Vector U(totalTrueDofs);
U = 0.0;
u->GetTrueDofs(U.GetBlock(0));
// --- Setup the Newton Solver ---
mfem::NewtonSolver newtonSolver;
newtonSolver.SetRelTol(1e-8);
newtonSolver.SetAbsTol(1e-10);
newtonSolver.SetMaxIter(200);
newtonSolver.SetPrintLevel(1);
// --- Setup the GMRES Solver ---
// --- GMRES is good for indefinite systems ---
mfem::GMRESSolver gmresSolver;
gmresSolver.SetRelTol(1e-10);
gmresSolver.SetAbsTol(1e-12);
gmresSolver.SetMaxIter(2000);
gmresSolver.SetPrintLevel(0);
newtonSolver.SetSolver(gmresSolver);
// TODO: Change numeric tolerance to grab from the tol module
// --- Setup the Augmented Operator ---
polyMFEMUtils::AugmentedOperator aug_op(nonlinearForm.get(), C.get(), lambdaDofOffset);
newtonSolver.SetOperator(aug_op);
// --- Create the RHS of the augmented system ---
mfem::Vector B(totalTrueDofs);
B = 0.0;
// Set the constraint value (∫η(r) dΩ) in the last entry of B
// This sets the last entry to 1.0, this mighht be a problem later on...
mfem::ConstantCoefficient one(1.0);
mfem::LinearForm constraint_rhs(lambdaFeSpace.get());
constraint_rhs.AddDomainIntegrator(
new mfem::DomainLFIntegrator(*gaussianCoeff)
);
constraint_rhs.Assemble();
B[lambdaDofOffset] = constraint_rhs(0); // Get that single value for the rhs. Only one value because it's a scalar space
// --- Solve the augmented system ---
newtonSolver.Mult(B, U);
// --- Extract the Solution ---
u->Distribute(U.GetBlock(0));
double lambda = U[lambdaDofOffset];
std::cout << "λ = " << lambda << std::endl;
// TODO : Add a way to get the solution out of the solver
}