feat(poly): added first pass implimentation of 3D constrained lane-emden solver
This has not currently been tested and this commit should not be viewed as scientifically complete
This commit is contained in:
@@ -1,22 +1,22 @@
|
||||
polyCoeff_sources = files(
|
||||
'private/coeff.cpp'
|
||||
'private/polyCoeff.cpp'
|
||||
)
|
||||
|
||||
polyCoeff_headers = files(
|
||||
'public/coeff.h'
|
||||
'public/polyCoeff.h'
|
||||
)
|
||||
|
||||
libPolyCoeff = static_library('polyCoeff',
|
||||
polyCoeff_sources,
|
||||
include_directories : include_directories('.'),
|
||||
include_directories : include_directories('./public'),
|
||||
cpp_args: ['-fvisibility=default'],
|
||||
dependencies: [mfem_dep],
|
||||
install: true
|
||||
)
|
||||
|
||||
|
||||
polyCoeff_dep = declare_dependency(
|
||||
include_directories : include_directories('.'),
|
||||
polycoeff_dep = declare_dependency(
|
||||
include_directories : include_directories('./public'),
|
||||
link_with : libPolyCoeff,
|
||||
sources : polyCoeff_sources,
|
||||
dependencies : [mfem_dep]
|
||||
|
||||
@@ -1,40 +1,23 @@
|
||||
#include "mfem.hpp"
|
||||
#include <cmath>
|
||||
|
||||
#include "coeff.h"
|
||||
#include "polyCoeff.h"
|
||||
|
||||
/**
|
||||
* @brief Computes the xi coefficient function.
|
||||
*
|
||||
* @param x Input vector.
|
||||
* @return double The computed xi coefficient.
|
||||
*/
|
||||
double xi_coeff_func(const mfem::Vector &x)
|
||||
{
|
||||
return std::pow(x(0), 2);
|
||||
}
|
||||
namespace polycoeff{
|
||||
double xi_coeff_func(const mfem::Vector &x)
|
||||
{
|
||||
return std::pow(x(0), 2);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Computes the vector xi coefficient function.
|
||||
*
|
||||
* @param x Input vector.
|
||||
* @param v Output vector to store the computed xi coefficient.
|
||||
*/
|
||||
void vec_xi_coeff_func(const mfem::Vector &x, mfem::Vector &v)
|
||||
{
|
||||
v.SetSize(1);
|
||||
v[0] = -std::pow(x(0), 2);
|
||||
}
|
||||
void vec_xi_coeff_func(const mfem::Vector &x, mfem::Vector &v)
|
||||
{
|
||||
v.SetSize(1);
|
||||
v[0] = -std::pow(x(0), 2);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Computes the initial guess for theta.
|
||||
*
|
||||
* @param x Input vector.
|
||||
* @param root Root value used in the computation.
|
||||
* @return double The initial guess for theta.
|
||||
*/
|
||||
double theta_initial_guess(const mfem::Vector &x, double root)
|
||||
{
|
||||
double xi = x[0];
|
||||
return 1 - std::pow(xi / root, 2);
|
||||
double theta_initial_guess(const mfem::Vector &x, double root)
|
||||
{
|
||||
double xi = x[0];
|
||||
return 1 - std::pow(xi / root, 2);
|
||||
}
|
||||
}
|
||||
@@ -1,8 +1,35 @@
|
||||
#ifndef POLYCOEFF_H
|
||||
#define POLYCOEFF_H
|
||||
|
||||
#include "mfem.hpp"
|
||||
#include <cmath>
|
||||
|
||||
double xi_coeff_func(const mfem::Vector &x);
|
||||
namespace polycoeff
|
||||
{
|
||||
/**
|
||||
* @brief Computes the xi coefficient function.
|
||||
*
|
||||
* @param x Input vector.
|
||||
* @return double The computed xi coefficient.
|
||||
*/
|
||||
double xi_coeff_func(const mfem::Vector &x);
|
||||
|
||||
void vec_xi_coeff_func(const mfem::Vector &x, mfem::Vector &v);
|
||||
/**
|
||||
* @brief Computes the vector xi coefficient function.
|
||||
*
|
||||
* @param x Input vector.
|
||||
* @param v Output vector to store the computed xi coefficient.
|
||||
*/
|
||||
void vec_xi_coeff_func(const mfem::Vector &x, mfem::Vector &v);
|
||||
|
||||
double theta_initial_guess(const mfem::Vector &x, double root);
|
||||
/**
|
||||
* @brief Computes the initial guess for theta.
|
||||
*
|
||||
* @param x Input vector.
|
||||
* @param root Root value used in the computation.
|
||||
* @return double The initial guess for theta.
|
||||
*/
|
||||
double theta_initial_guess(const mfem::Vector &x, double root);
|
||||
} // namespace polyCoeff
|
||||
|
||||
#endif // POLYCOEFF_H
|
||||
@@ -0,0 +1,22 @@
|
||||
polySolver_sources = files(
|
||||
'private/polySolver.cpp'
|
||||
)
|
||||
|
||||
polySolver_headers = files(
|
||||
'public/polySolver.h'
|
||||
)
|
||||
|
||||
libPolySolver = static_library('polySolver',
|
||||
polySolver_sources,
|
||||
include_directories : include_directories('./public'),
|
||||
cpp_args: ['-fvisibility=default'],
|
||||
dependencies: [mfem_dep, meshio_dep, polycoeff_dep, polyutils_dep],
|
||||
install: true
|
||||
)
|
||||
|
||||
polysolver_dep = declare_dependency(
|
||||
include_directories : include_directories('./public'),
|
||||
link_with : libPolySolver,
|
||||
sources : polySolver_sources,
|
||||
dependencies : [mfem_dep, meshio_dep, polycoeff_dep, polyutils_dep]
|
||||
)
|
||||
144
src/poly/solver/private/polySolver.cpp
Normal file
144
src/poly/solver/private/polySolver.cpp
Normal file
@@ -0,0 +1,144 @@
|
||||
#include "mfem.hpp"
|
||||
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
|
||||
#include "meshIO.h"
|
||||
#include "polySolver.h"
|
||||
#include "polyMFEMUtils.h"
|
||||
#include "polyCoeff.h"
|
||||
|
||||
|
||||
// TODO: Come back to this and think of a better way to get the mesh file
|
||||
const std::string SPHERICAL_MESH = std::string(getenv("MESON_SOURCE_ROOT")) + "/src/resources/mesh/sphere.msh";
|
||||
|
||||
PolySolver::PolySolver(double n, double order)
|
||||
: n(n),
|
||||
order(order),
|
||||
meshIO(SPHERICAL_MESH),
|
||||
mesh(meshIO.GetMesh()),
|
||||
gaussianCoeff(std::make_unique<polyMFEMUtils::GaussianCoefficient>(0.1)),
|
||||
diffusionCoeff(std::make_unique<mfem::VectorConstantCoefficient>(mfem::Vector(mesh.SpaceDimension()))),
|
||||
nonLinearSourceCoeff(std::make_unique<mfem::ConstantCoefficient>(1.0))
|
||||
{
|
||||
(*diffusionCoeff).GetVec() = 1.0;
|
||||
feCollection = std::make_unique<mfem::H1_FECollection>(order, mesh.SpaceDimension());
|
||||
|
||||
feSpace = std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get());
|
||||
lambdaFeSpace = std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get(), 1); // Scalar space for lambda
|
||||
|
||||
compositeIntegrator = std::make_unique<polyMFEMUtils::CompositeNonlinearIntegrator>();
|
||||
nonlinearForm = std::make_unique<mfem::NonlinearForm>(feSpace.get());
|
||||
|
||||
C = std::make_unique<mfem::LinearForm>(feSpace.get());
|
||||
|
||||
u = std::make_unique<mfem::GridFunction>(feSpace.get());
|
||||
|
||||
assembleNonlinearForm();
|
||||
assembleConstraintForm();
|
||||
}
|
||||
|
||||
PolySolver::assembleNonlinearForm() {
|
||||
// Add the \int_{\Omega}\nabla v\cdot\nabla\theta d\Omegaterm
|
||||
compositeIntegrator->add_integrator(
|
||||
new polyMFEMUtils::BilinearIntegratorWrapper(
|
||||
new mfem::DiffusionIntegrator(diffusionCoeff.get()),
|
||||
)
|
||||
);
|
||||
|
||||
// Add the \int_{\Omega}v\theta^{n} d\Omega term
|
||||
compositeIntegrator->add_integrator(
|
||||
new polyMFEMUtils::NonlinearPowerIntegrator(
|
||||
nonLinearSourceCoeff.get(),
|
||||
n
|
||||
)
|
||||
);
|
||||
|
||||
compositeIntegrator->add_integrator(
|
||||
new polyMFEMUtils::ConstraintIntegrator(
|
||||
*gaussianCoeff
|
||||
)
|
||||
);
|
||||
|
||||
nonlinearForm->AddDomainIntegrator(compositeIntegrator.get());
|
||||
}
|
||||
|
||||
PolySolver::assembleConstraintForm() {
|
||||
C->AddDomainIntegrator(
|
||||
new mfem::DomainLFIntegrator(
|
||||
*gaussianCoeff
|
||||
)
|
||||
);
|
||||
C->Assemble();
|
||||
}
|
||||
|
||||
PolySolver::solve(){
|
||||
// --- Set the initial guess for the solution ---
|
||||
mfem::FunctionCoefficient initCoeff (
|
||||
[this](const mfem::Vector &x) {
|
||||
return 1.0; // Update this to be a better init guess
|
||||
}
|
||||
);
|
||||
u->ProjectCoefficient(initCoeff);
|
||||
|
||||
// --- Combine DOFs (u and λ) into a single vector ---
|
||||
int lambdaDofOffset = feSpace->GetTrueVSize(); // Get the size of θ space
|
||||
int totalTrueDofs = lambdaDofOffset + lambdaFeSpace->GetTrueVSize();
|
||||
|
||||
if (totalTrueDofs != lambdaDofOffset + 1) {
|
||||
throw std::runtime_error("The total number of true dofs is not equal to the sum of the lambda offset and the lambda space size");
|
||||
}
|
||||
|
||||
mfem::Vector U(totalTrueDofs);
|
||||
U = 0.0;
|
||||
|
||||
u->GetTrueDofs(U.GetBlock(0));
|
||||
|
||||
// --- Setup the Newton Solver ---
|
||||
mfem::NewtonSolver newtonSolver;
|
||||
newtonSolver.SetRelTol(1e-8);
|
||||
newtonSolver.SetAbsTol(1e-10);
|
||||
newtonSolver.SetMaxIter(200);
|
||||
newtonSolver.SetPrintLevel(1);
|
||||
|
||||
// --- Setup the GMRES Solver ---
|
||||
// --- GMRES is good for indefinite systems ---
|
||||
mfem::GMRESSolver gmresSolver;
|
||||
gmresSolver.SetRelTol(1e-10);
|
||||
gmresSolver.SetAbsTol(1e-12);
|
||||
gmresSolver.SetMaxIter(2000);
|
||||
gmresSolver.SetPrintLevel(0);
|
||||
newtonSolver.SetSolver(gmresSolver);
|
||||
// TODO: Change numeric tolerance to grab from the tol module
|
||||
|
||||
// --- Setup the Augmented Operator ---
|
||||
polyMFEMUtils::AugmentedOperator aug_op(nonlinearForm.get(), C.get(), lambdaDofOffset);
|
||||
newtonSolver.SetOperator(aug_op);
|
||||
|
||||
// --- Create the RHS of the augmented system ---
|
||||
mfem::Vector B(totalTrueDofs);
|
||||
B = 0.0;
|
||||
|
||||
// Set the constraint value (∫η(r) dΩ) in the last entry of B
|
||||
// This sets the last entry to 1.0, this mighht be a problem later on...
|
||||
mfem::ConstantCoefficient one(1.0);
|
||||
mfem::LinearForm constraint_rhs(lambdaFeSpace.get());
|
||||
constraint_rhs.AddDomainIntegrator(
|
||||
new mfem::DomainLFIntegrator(*gaussianCoeff)
|
||||
);
|
||||
|
||||
constraint_rhs.Assemble();
|
||||
B[lambdaDofOffset] = constraint_rhs(0); // Get that single value for the rhs. Only one value because it's a scalar space
|
||||
|
||||
|
||||
// --- Solve the augmented system ---
|
||||
newtonSolver.Mult(B, U);
|
||||
|
||||
// --- Extract the Solution ---
|
||||
u->Distribute(U.GetBlock(0));
|
||||
double lambda = U[lambdaDofOffset];
|
||||
|
||||
std::cout << "λ = " << lambda << std::endl;
|
||||
// TODO : Add a way to get the solution out of the solver
|
||||
}
|
||||
46
src/poly/solver/public/polySolver.h
Normal file
46
src/poly/solver/public/polySolver.h
Normal file
@@ -0,0 +1,46 @@
|
||||
#ifndef POLYSOLVER_H
|
||||
#define POLYSOLVER_H
|
||||
|
||||
#include "mfem.hpp"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "meshIO.h"
|
||||
#include "polyCoeff.h"
|
||||
|
||||
|
||||
class PolySolver {
|
||||
private:
|
||||
double n, order;
|
||||
MeshIO meshIO;
|
||||
mfem::Mesh& mesh;
|
||||
|
||||
std::unique_ptr<mfem::H1_FECollection> feCollection;
|
||||
|
||||
std::unique_ptr<mfem::FiniteElementSpace> feSpace;
|
||||
std::unique_ptr<mfem::FiniteElementSpace> lambdaFeSpace;
|
||||
|
||||
std::unique_ptr<polyMFEMUtils::CompositeNonlinearIntegrator> compositeIntegrator;
|
||||
|
||||
std::unique_ptr<mfem::NonlinearForm> nonlinearForm;
|
||||
std::unique_ptr<mfem::LinearForm> C; // For the constraint equation
|
||||
|
||||
std::unique_ptr<mfem::GridFunction> u;
|
||||
|
||||
std::unique_ptr<mfem::Vector> oneVec;
|
||||
|
||||
std::unique_ptr<mfem::VectorConstantCoefficient> diffusionCoeff;
|
||||
std::unique_ptr<mfem::ConstantCoefficient> nonLinearSourceCoeff;
|
||||
std::unique_ptr<polyMFEMUtils::GaussianCoefficient> gaussianCoeff;
|
||||
|
||||
void assembleNonlinearForm();
|
||||
void assembleConstraintForm();
|
||||
|
||||
|
||||
public:
|
||||
PolySolver(double n, double order);
|
||||
void solve();
|
||||
};
|
||||
|
||||
#endif // POLYSOLVER_H
|
||||
@@ -10,14 +10,14 @@ polyutils_headers = files(
|
||||
|
||||
libpolyutils = static_library('polyutils',
|
||||
polyutils_sources,
|
||||
include_directories : include_directories('.'),
|
||||
include_directories : include_directories('./public'),
|
||||
cpp_args: ['-fvisibility=default'],
|
||||
dependencies: [mfem_dep],
|
||||
install: true
|
||||
)
|
||||
|
||||
libpolyutils_dep = declare_dependency(
|
||||
include_directories : include_directories('.'),
|
||||
polyutils_dep = declare_dependency(
|
||||
include_directories : include_directories('./public'),
|
||||
link_with : libpolyutils,
|
||||
sources : polyutils_sources,
|
||||
dependencies : [mfem_dep]
|
||||
|
||||
@@ -2,174 +2,302 @@
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <numbers>
|
||||
|
||||
#include "polyMFEMUtils.h"
|
||||
|
||||
NonlinearPowerIntegrator::NonlinearPowerIntegrator(
|
||||
mfem::FunctionCoefficient &coeff,
|
||||
double n) : coeff_(coeff), polytropicIndex(n) {
|
||||
namespace polyMFEMUtils {
|
||||
NonlinearPowerIntegrator::NonlinearPowerIntegrator(
|
||||
mfem::Coefficient &coeff,
|
||||
double n) : coeff_(coeff), polytropicIndex(n) {
|
||||
|
||||
}
|
||||
|
||||
void NonlinearPowerIntegrator::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
|
||||
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
||||
int dof = el.GetDof();
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
|
||||
mfem::Vector shape(dof);
|
||||
|
||||
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
||||
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
|
||||
Trans.SetIntPoint(&ip);
|
||||
double weight = ip.weight * Trans.Weight();
|
||||
|
||||
el.CalcShape(ip, shape);
|
||||
|
||||
double u_val = 0.0;
|
||||
for (int j = 0; j < dof; j++) {
|
||||
u_val += elfun(j) * shape(j);
|
||||
}
|
||||
double u_safe = std::max(u_val, 0.0);
|
||||
double u_nl = std::pow(u_safe, polytropicIndex);
|
||||
|
||||
double coeff_val = coeff_.Eval(Trans, ip);
|
||||
double x2_u_nl = coeff_val * u_nl;
|
||||
|
||||
for (int i = 0; i < dof; i++){
|
||||
elvect(i) += shape(i) * x2_u_nl * weight;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NonlinearPowerIntegrator::AssembleElementGrad (
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
|
||||
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof);
|
||||
elmat = 0.0;
|
||||
mfem::Vector shape(dof);
|
||||
|
||||
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
||||
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
|
||||
Trans.SetIntPoint(&ip);
|
||||
double weight = ip.weight * Trans.Weight();
|
||||
|
||||
el.CalcShape(ip, shape);
|
||||
|
||||
double u_val = 0.0;
|
||||
|
||||
for (int j = 0; j < dof; j++) {
|
||||
u_val += elfun(j) * shape(j);
|
||||
}
|
||||
double coeff_val = coeff_.Eval(Trans, ip);
|
||||
void NonlinearPowerIntegrator::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
|
||||
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
||||
int dof = el.GetDof();
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
|
||||
// Calculate the Jacobian
|
||||
double u_safe = std::max(u_val, 0.0);
|
||||
double d_u_nl = coeff_val * polytropicIndex * std::pow(u_safe, polytropicIndex - 1);
|
||||
double x2_d_u_nl = d_u_nl;
|
||||
mfem::Vector shape(dof);
|
||||
|
||||
for (int i = 0; i < dof; i++) {
|
||||
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
||||
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
|
||||
Trans.SetIntPoint(&ip);
|
||||
double weight = ip.weight * Trans.Weight();
|
||||
|
||||
el.CalcShape(ip, shape);
|
||||
|
||||
double u_val = 0.0;
|
||||
for (int j = 0; j < dof; j++) {
|
||||
elmat(i, j) += shape(i) * x2_d_u_nl * shape(j) * weight;
|
||||
u_val += elfun(j) * shape(j);
|
||||
}
|
||||
double u_safe = std::max(u_val, 0.0);
|
||||
double u_nl = std::pow(u_safe, polytropicIndex);
|
||||
|
||||
double coeff_val = coeff_.Eval(Trans, ip);
|
||||
double x2_u_nl = coeff_val * u_nl;
|
||||
|
||||
for (int i = 0; i < dof; i++){
|
||||
elvect(i) += shape(i) * x2_u_nl * weight;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
BilinearIntegratorWrapper::BilinearIntegratorWrapper(
|
||||
mfem::BilinearFormIntegrator *integratorInput
|
||||
) : integrator(integratorInput) { }
|
||||
void NonlinearPowerIntegrator::AssembleElementGrad (
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
|
||||
BilinearIntegratorWrapper::~BilinearIntegratorWrapper() {
|
||||
delete integrator;
|
||||
}
|
||||
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof);
|
||||
elmat = 0.0;
|
||||
mfem::Vector shape(dof);
|
||||
|
||||
void BilinearIntegratorWrapper::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
int dof = el.GetDof();
|
||||
mfem::DenseMatrix elMat(dof);
|
||||
integrator->AssembleElementMatrix(el, Trans, elMat);
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
for (int i = 0; i < dof; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (int j = 0; j < dof; j++)
|
||||
{
|
||||
sum += elMat(i, j) * elfun(j);
|
||||
}
|
||||
elvect(i) = sum;
|
||||
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
||||
const mfem::IntegrationPoint &ip = ir->IntPoint(iqp);
|
||||
Trans.SetIntPoint(&ip);
|
||||
double weight = ip.weight * Trans.Weight();
|
||||
|
||||
el.CalcShape(ip, shape);
|
||||
|
||||
double u_val = 0.0;
|
||||
|
||||
for (int j = 0; j < dof; j++) {
|
||||
u_val += elfun(j) * shape(j);
|
||||
}
|
||||
double coeff_val = coeff_.Eval(Trans, ip);
|
||||
|
||||
|
||||
// Calculate the Jacobian
|
||||
double u_safe = std::max(u_val, 0.0);
|
||||
double d_u_nl = coeff_val * polytropicIndex * std::pow(u_safe, polytropicIndex - 1);
|
||||
double x2_d_u_nl = d_u_nl;
|
||||
|
||||
for (int i = 0; i < dof; i++) {
|
||||
for (int j = 0; j < dof; j++) {
|
||||
elmat(i, j) += shape(i) * x2_d_u_nl * shape(j) * weight;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BilinearIntegratorWrapper::AssembleElementGrad(const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof, dof);
|
||||
elmat = 0.0;
|
||||
integrator->AssembleElementMatrix(el, Trans, elmat);
|
||||
}
|
||||
BilinearIntegratorWrapper::BilinearIntegratorWrapper(
|
||||
mfem::BilinearFormIntegrator *integratorInput
|
||||
) : integrator(integratorInput) { }
|
||||
|
||||
CompositeNonlinearIntegrator::CompositeNonlinearIntegrator() { }
|
||||
|
||||
|
||||
CompositeNonlinearIntegrator::~CompositeNonlinearIntegrator() {
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
delete integrators[i];
|
||||
BilinearIntegratorWrapper::~BilinearIntegratorWrapper() {
|
||||
delete integrator;
|
||||
}
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::add_integrator(mfem::NonlinearFormIntegrator *integrator) {
|
||||
integrators.push_back(integrator);
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
int dof = el.GetDof();
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
mfem::Vector temp(dof);
|
||||
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
temp= 0.0;
|
||||
integrators[i]->AssembleElementVector(el, Trans, elfun, temp);
|
||||
elvect.Add(1.0, temp);
|
||||
void BilinearIntegratorWrapper::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
int dof = el.GetDof();
|
||||
mfem::DenseMatrix elMat(dof);
|
||||
integrator->AssembleElementMatrix(el, Trans, elMat);
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
for (int i = 0; i < dof; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (int j = 0; j < dof; j++)
|
||||
{
|
||||
sum += elMat(i, j) * elfun(j);
|
||||
}
|
||||
elvect(i) = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::AssembleElementGrad(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof, dof);
|
||||
elmat = 0.0;
|
||||
mfem::DenseMatrix temp(dof);
|
||||
temp.SetSize(dof, dof);
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
temp = 0.0;
|
||||
integrators[i] -> AssembleElementGrad(el, Trans, elfun, temp);
|
||||
elmat.Add(1.0, temp);
|
||||
void BilinearIntegratorWrapper::AssembleElementGrad(const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof, dof);
|
||||
elmat = 0.0;
|
||||
integrator->AssembleElementMatrix(el, Trans, elmat);
|
||||
}
|
||||
}
|
||||
|
||||
CompositeNonlinearIntegrator::CompositeNonlinearIntegrator() { }
|
||||
|
||||
|
||||
CompositeNonlinearIntegrator::~CompositeNonlinearIntegrator() {
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
delete integrators[i];
|
||||
}
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::add_integrator(mfem::NonlinearFormIntegrator *integrator) {
|
||||
integrators.push_back(integrator);
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
int dof = el.GetDof();
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
mfem::Vector temp(dof);
|
||||
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
temp= 0.0;
|
||||
integrators[i]->AssembleElementVector(el, Trans, elfun, temp);
|
||||
elvect.Add(1.0, temp);
|
||||
}
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::AssembleElementGrad(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof, dof);
|
||||
elmat = 0.0;
|
||||
mfem::DenseMatrix temp(dof);
|
||||
temp.SetSize(dof, dof);
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
temp = 0.0;
|
||||
integrators[i] -> AssembleElementGrad(el, Trans, elfun, temp);
|
||||
elmat.Add(1.0, temp);
|
||||
}
|
||||
}
|
||||
|
||||
ConstraintIntegrator::ConstraintIntegrator(mfem::Coefficient &eta_) : eta(eta_) {}
|
||||
|
||||
void ConstraintIntegrator::AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) {
|
||||
int dof = el.GetDof();
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
|
||||
mfem::Vector shape(dof);
|
||||
const int intOrder = 2 * el.GetOrder() + 3;
|
||||
|
||||
mfem::IntegrationRule ir(el.GetGeomType(), intOrder);
|
||||
|
||||
for (int i = 0; i < ir.GetNPoints(); i++) {
|
||||
const mfem::IntegrationPoint &ip = ir.IntPoint(i);
|
||||
Trans.SetIntPoint(&ip);
|
||||
el.CalcShape(ip, shape);
|
||||
|
||||
double eta_val = eta.Eval(Trans, ip);
|
||||
|
||||
double weight = ip.weight * Trans.Weight();
|
||||
elvect.Add(eta_val * weight, shape);
|
||||
}
|
||||
}
|
||||
|
||||
void ConstraintIntegrator::AssembleElementGrad(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) {
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof);
|
||||
elmat = 0.0;
|
||||
}
|
||||
|
||||
GaussianCoefficient::GaussianCoefficient(double stdDev_)
|
||||
: stdDev(stdDev_),
|
||||
norm_coeff(1.0/(std::pow(std::sqrt(2*std::numbers::pi)*stdDev_,3))) {}
|
||||
|
||||
GaussianCoefficient::Eval(mfem::ElementTransformation &T, const mfem::IntegrationPoint &ip) {
|
||||
mfem::Vector r;
|
||||
T.Transform(ip, r);
|
||||
double r2 = r * r;
|
||||
return norm_coeff * std::exp(-r2/(2*std::pow(stdDev, 2)));
|
||||
}
|
||||
|
||||
|
||||
AugmentedOperator::AugmentedOperator(mfem::NonlinearForm &nfl_, mfem::LinearForm &C_, int lambdaDofOffset_)
|
||||
:
|
||||
mfem::Operator( // Call the base class constructor
|
||||
nfl_->FESpace()->GetTrueVSize()+1, // Sets the height attribute (+1 for the lambda component)
|
||||
nfl_->FESpace()->GetTrueVSize()+1 // Sets the width attribute (+1 for the lambda component)
|
||||
),
|
||||
nfl(&nfl_),
|
||||
C(&C_),
|
||||
lambdaDofOffset(lambdaDofOffset_),
|
||||
lastJacobian(nullptr) {}
|
||||
|
||||
void AugmentedOperator::Mult(const mfem::Vector &x, mfem::Vector &y) const {
|
||||
// Select the lambda component of the input vector and seperate it from the θ component
|
||||
mfem::Vector u(x.GetData(), lambdaDofOffset);
|
||||
double lambda = x[lambdaDofOffset];
|
||||
|
||||
// Compute the residual of the nonlinear form (F(u) - λC)
|
||||
mfem::Vector F(lambdaDofOffset);
|
||||
nfl->Mult(u, F); // This now includes the -λ∫vη(r) dΩ term
|
||||
|
||||
// Compute the transpose of C for the off diagonal terms of the augmented operator
|
||||
y.SetSize(height);
|
||||
y = 0.0;
|
||||
|
||||
y.SetBlock(0, F);
|
||||
y[lambdaDofOffset] = (*C)(u); // Cᵀ×u. This is equivalent to ∫ η(r)θ dΩ
|
||||
|
||||
// add -lambda * C to the residual
|
||||
mfem::Vector lambda_C(lambdaDofOffset);
|
||||
C->GetVector(lambda_C) // Get the coefficient vector for C. I.e. ∫ vη(r) dΩ
|
||||
lambda_C *= -lambda; // Multiply by -λ (this is now the term −λ ∫ vη(r)dΩ)
|
||||
|
||||
y.AddBlockVector(0, lambda_C); // Add the term to the residual
|
||||
}
|
||||
|
||||
mfem::Operator &AugmentedOperator::GetGradient(const mfem::Vector &x) const {
|
||||
// Select the lambda component of the input vector and seperate it from the θ component
|
||||
mfem::Vector u(x.GetData(), lambdaDofOffset);
|
||||
double lambda = x[lambdaDofOffset];
|
||||
|
||||
// --- Create the augmented Jacobian matrix ---
|
||||
mfem::Operator *Jnfl = nfl->GetGradient(u); // Get the gradient of the nonlinear form
|
||||
|
||||
mfem::SparseMatrix *J_aug = new mfem::SparseMatrix(height, width);
|
||||
|
||||
// Fill in the blocks of the augmented Jacobian matrix
|
||||
// Top-Left: Jacobian of the nonlinear form
|
||||
mfem::SparseMatrix *Jnfl_sparse = dynamic_cast<mfem::SparseMatrix*>(Jnfl);
|
||||
|
||||
// Copy the original Jacobian into the augmented Jacobian
|
||||
if (Jnfl_sparse) { // Checks if the dynamic cast was successful
|
||||
for (int i = 0; i < Jnfl_sparse->Height(); i++) {
|
||||
for (int j = 0; j < Jnfl_sparse->Width(); j++) {
|
||||
J_aug->Set(i, j, Jnfl_sparse->Get(i, j));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
MFEM_ABORT("GetGradient did not return a SparseMatrix");
|
||||
}
|
||||
|
||||
// Bottom-left C (the constraint matrix)
|
||||
mfem::Vector CVec(lambdaDofOffset);
|
||||
C->GetVector(CVec);
|
||||
for (int i = 0; i < CVec.Size(); i++) {
|
||||
J_aug->Set(lambdaDofOffset, i, CVec[i]);
|
||||
}
|
||||
|
||||
// Top-right -Cᵀ (the negative transpose of the constraint matrix)
|
||||
for (int i = 0; i < CVec.Size(); i++) {
|
||||
J_aug->Set(i, lambdaDofOffset, -CVec[i]);
|
||||
}
|
||||
|
||||
J_aug->Finalize();
|
||||
|
||||
delete lastJacobian;
|
||||
lastJacobian = J_aug;
|
||||
return *lastJacobian;
|
||||
}
|
||||
|
||||
AugmentedOperator::~AugAugmentedOperator() {
|
||||
delete lastJacobian;
|
||||
}
|
||||
} // namespace polyMFEMUtils
|
||||
@@ -2,109 +2,32 @@
|
||||
#include <string>
|
||||
|
||||
|
||||
void write_solution_to_csv(const mfem::GridFunction &u, const mfem::Mesh &mesh, const std::string &filename);
|
||||
/**
|
||||
* @file polyMFEMUtils.h
|
||||
* @brief A collection of utilities for working with MFEM and solving the lane-emden equation.
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief A class for nonlinear power integrator.
|
||||
* @namespace polyMFEMUtils
|
||||
* @brief A namespace for utilities for working with MFEM and solving the lane-emden equation.
|
||||
*/
|
||||
class NonlinearPowerIntegrator: public mfem::NonlinearFormIntegrator {
|
||||
private:
|
||||
mfem::FunctionCoefficient coeff_;
|
||||
double polytropicIndex;
|
||||
public:
|
||||
namespace polyMFEMUtils {
|
||||
/**
|
||||
* @brief Constructor for NonlinearPowerIntegrator.
|
||||
*
|
||||
* @param coeff The function coefficient.
|
||||
* @param n The polytropic index.
|
||||
* @brief A class for nonlinear power integrator.
|
||||
*/
|
||||
NonlinearPowerIntegrator(mfem::FunctionCoefficient &coeff, double n);
|
||||
|
||||
/**
|
||||
* @brief Assembles the element vector.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elvect The element vector to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) override;
|
||||
|
||||
/**
|
||||
* @brief Assembles the element gradient.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elmat The element matrix to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementGrad (const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) override;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A wrapper class for bilinear integrator.
|
||||
*/
|
||||
class BilinearIntegratorWrapper : public mfem::NonlinearFormIntegrator
|
||||
{
|
||||
private:
|
||||
mfem::BilinearFormIntegrator *integrator;
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for BilinearIntegratorWrapper.
|
||||
*
|
||||
* @param integratorInput The bilinear form integrator input.
|
||||
*/
|
||||
BilinearIntegratorWrapper(mfem::BilinearFormIntegrator *integratorInput);
|
||||
|
||||
/**
|
||||
* @brief Destructor for BilinearIntegratorWrapper.
|
||||
*/
|
||||
virtual ~BilinearIntegratorWrapper();
|
||||
|
||||
/**
|
||||
* @brief Assembles the element vector.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elvect The element vector to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) override;
|
||||
|
||||
/**
|
||||
* @brief Assembles the element gradient.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elmat The element matrix to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementGrad(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) override;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A class for composite nonlinear integrator.
|
||||
*/
|
||||
class CompositeNonlinearIntegrator: public mfem::NonlinearFormIntegrator {
|
||||
private:
|
||||
std::vector<mfem::NonlinearFormIntegrator*> integrators;
|
||||
class NonlinearPowerIntegrator: public mfem::NonlinearFormIntegrator {
|
||||
private:
|
||||
mfem::Coefficient &coeff_;
|
||||
double polytropicIndex;
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for CompositeNonlinearIntegrator.
|
||||
*/
|
||||
CompositeNonlinearIntegrator();
|
||||
|
||||
/**
|
||||
* @brief Destructor for CompositeNonlinearIntegrator.
|
||||
*/
|
||||
virtual ~CompositeNonlinearIntegrator();
|
||||
|
||||
/**
|
||||
* @brief Adds an integrator to the composite integrator.
|
||||
* @brief Constructor for NonlinearPowerIntegrator.
|
||||
*
|
||||
* @param integrator The nonlinear form integrator to add.
|
||||
* @param coeff The function coefficient.
|
||||
* @param n The polytropic index.
|
||||
*/
|
||||
void add_integrator(mfem::NonlinearFormIntegrator *integrator);
|
||||
NonlinearPowerIntegrator(mfem::Coefficient &coeff, double n);
|
||||
|
||||
/**
|
||||
* @brief Assembles the element vector.
|
||||
@@ -124,5 +47,153 @@ class CompositeNonlinearIntegrator: public mfem::NonlinearFormIntegrator {
|
||||
* @param elfun The element function.
|
||||
* @param elmat The element matrix to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementGrad (const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) override;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A wrapper class for bilinear integrator.
|
||||
*/
|
||||
class BilinearIntegratorWrapper : public mfem::NonlinearFormIntegrator
|
||||
{
|
||||
private:
|
||||
mfem::BilinearFormIntegrator *integrator;
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for BilinearIntegratorWrapper.
|
||||
*
|
||||
* @param integratorInput The bilinear form integrator input.
|
||||
*/
|
||||
BilinearIntegratorWrapper(mfem::BilinearFormIntegrator *integratorInput);
|
||||
|
||||
/**
|
||||
* @brief Destructor for BilinearIntegratorWrapper.
|
||||
*/
|
||||
virtual ~BilinearIntegratorWrapper();
|
||||
|
||||
/**
|
||||
* @brief Assembles the element vector.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elvect The element vector to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) override;
|
||||
|
||||
/**
|
||||
* @brief Assembles the element gradient.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elmat The element matrix to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementGrad(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) override;
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A class for composite nonlinear integrator.
|
||||
*/
|
||||
class CompositeNonlinearIntegrator: public mfem::NonlinearFormIntegrator {
|
||||
private:
|
||||
std::vector<mfem::NonlinearFormIntegrator*> integrators;
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for CompositeNonlinearIntegrator.
|
||||
*/
|
||||
CompositeNonlinearIntegrator();
|
||||
|
||||
/**
|
||||
* @brief Destructor for CompositeNonlinearIntegrator.
|
||||
*/
|
||||
virtual ~CompositeNonlinearIntegrator();
|
||||
|
||||
/**
|
||||
* @brief Adds an integrator to the composite integrator.
|
||||
*
|
||||
* @param integrator The nonlinear form integrator to add.
|
||||
*/
|
||||
void add_integrator(mfem::NonlinearFormIntegrator *integrator);
|
||||
|
||||
/**
|
||||
* @brief Assembles the element vector.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elvect The element vector to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) override;
|
||||
|
||||
/**
|
||||
* @brief Assembles the element gradient.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elmat The element matrix to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementGrad(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) override;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A class for constraint integrator.
|
||||
*/
|
||||
class ConstraintIntegrator: public mfem::NonlinearFormIntegrator {
|
||||
private:
|
||||
mfem::Coefficient η
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for ConstraintIntegrator.
|
||||
*
|
||||
* @param eta The coefficient.
|
||||
*/
|
||||
ConstraintIntegrator(mfem::Coefficient &eta_);
|
||||
|
||||
/**
|
||||
* @brief Assembles the element vector.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elvect The element vector to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) override;
|
||||
|
||||
/**
|
||||
* @brief Assembles the element gradient.
|
||||
*
|
||||
* @param el The finite element.
|
||||
* @param Trans The element transformation.
|
||||
* @param elfun The element function.
|
||||
* @param elmat The element matrix to be assembled.
|
||||
*/
|
||||
virtual void AssembleElementGrad(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) override;
|
||||
};
|
||||
|
||||
class GaussianCoefficient : public mfem::Coefficient {
|
||||
private:
|
||||
double stdDev;
|
||||
double norm_coeff;
|
||||
public:
|
||||
GaussianCoefficient(double stdDev);
|
||||
virtual double Eval(mfem::ElementTransformation &T, const mfem::IntegrationPoint &ip) override;
|
||||
};
|
||||
|
||||
class AugmentedOperator : public mfem::Operator {
|
||||
private:
|
||||
std::unique_ptr<mfem::NonlinearForm> nfl;
|
||||
std::unique_ptr<mfem::LinearForm> C;
|
||||
int lambdaDofOffset;
|
||||
mfem::SparseMatrix *lastJacobian = nullptr;
|
||||
|
||||
public:
|
||||
AugmentedOperator(mfem::NonlinearForm &nfl_, mfem::LinearForm &C_, int lambdaDofOffset_);
|
||||
~AugmentedOperator();
|
||||
|
||||
virtual void Mult(const mfem::Vector &x, mfem::Vector &y) const override;
|
||||
|
||||
virtual mfem::Operator &GetGradient(const mfem::Vector &x) const override;
|
||||
};
|
||||
} // namespace polyMFEMUtils
|
||||
Reference in New Issue
Block a user