Merge pull request #27 from tboudreaux/feature/resourceManager

Added resource manager
This commit is contained in:
2025-03-20 15:04:41 -04:00
committed by GitHub
41 changed files with 1661 additions and 563 deletions

674
LICENSE.txt Normal file
View File

@@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@@ -1,469 +0,0 @@
CODATA 2022 + astrophysical constants
Most quantities have been converted to CGS
Generated on Feb 10, 2025
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Reference:
Mohr, P. , Tiesinga, E. , Newell, D. and Taylor, B. (2024), Codata Internationally Recommended 2022 Values of the Fundamental Physical Constants,
Codata Internationally Recommended 2022 Values of the Fundamental Physical Constants,
[online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=958002, https://physics.nist.gov/constants (Accessed February 10, 2025)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Symbol Name Value Unit Uncertainty Source
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
weinK Wien displacement law constant 2.89776850e-01 K cm 5.10000000e-07 CODATA2022
au1Hyper atomic unit of 1st hyperpolarizablity 3.20636151e-53 C^3 m^3 J^-2 2.80000000e-60 CODATA2022
au2Hyper atomic unit of 2nd hyperpolarizablity 6.23538080e-65 C^4 m^4 J^-3 1.10000000e-71 CODATA2022
auEDip atomic unit of electric dipole moment 8.47835309e-30 C m 7.30000000e-37 CODATA2022
auEPol atomic unit of electric polarizablity 1.64877727e-41 C^2 m^2 J^-1 1.60000000e-49 CODATA2022
auEQuad atomic unit of electric quadrupole moment 4.48655124e-40 C m^2 3.90000000e-47 CODATA2022
auMDip atomic unit of magn. dipole moment 1.85480190e-23 J T^-1 1.60000000e-30 CODATA2022
auMFlux atomic unit of magn. flux density 2.35051757e+09 G 7.10000000e-01 CODATA2022
muD deuteron magn. moment 4.33073482e-27 J T^-1 3.80000000e-34 CODATA2022
muD_Bhor deuteron magn. moment to Bohr magneton ratio 4.66975457e-04 5.00000000e-12 CODATA2022
muD_Nuc deuteron magn. moment to nuclear magneton ratio 8.57438233e-01 9.20000000e-09 CODATA2022
muD_e deuteron-electron magn. moment ratio -4.66434555e-04 5.00000000e-12 CODATA2022
muD_p deuteron-proton magn. moment ratio 3.07012208e-01 4.50000000e-09 CODATA2022
muD_n deuteron-neutron magn. moment ratio -4.48206520e-01 1.10000000e-07 CODATA2022
rgE electron gyromagn. ratio 1.76085963e+11 s^-1 T^-1 5.30000000e+01 CODATA2022
rgE_2pi electron gyromagn. ratio over 2 pi 2.80249532e+04 MHz T^-1 2.40000000e-03 CODATA2022
muE electron magn. moment -9.28476412e-24 J T^-1 8.00000000e-31 CODATA2022
muE_Bhor electron magn. moment to Bohr magneton ratio -1.00115965e+00 3.80000000e-12 CODATA2022
muE_Nuc electron magn. moment to nuclear magneton ratio -1.83828197e+03 8.50000000e-07 CODATA2022
muE_anom electron magn. moment anomaly 1.15965219e-03 3.80000000e-12 CODATA2022
muE_muP_shield electron to shielded proton magn. moment ratio -6.58227596e+02 7.10000000e-06 CODATA2022
muE_muH_shield electron to shielded helion magn. moment ratio 8.64058255e+02 1.00000000e-05 CODATA2022
muE_D electron-deuteron magn. moment ratio -2.14392349e+03 2.30000000e-05 CODATA2022
muE_mu electron-muon magn. moment ratio 2.06766989e+02 5.40000000e-06 CODATA2022
muE_n electron-neutron magn. moment ratio 9.60920500e+02 2.30000000e-04 CODATA2022
muE_p electron-proton magn. moment ratio -6.58210686e+02 6.60000000e-06 CODATA2022
mu0 magn. constant 1.25663706e-06 N A^-2 0.00000000e+00 CODATA2022
phi0 magn. flux quantum 2.06783385e-15 Wb 0.00000000e+00 CODATA2022
muMu muon magn. moment -4.49044799e-26 J T^-1 4.00000000e-33 CODATA2022
muMu_Bhor muon magn. moment to Bohr magneton ratio -4.84197045e-03 1.30000000e-10 CODATA2022
muMu_Nuc muon magn. moment to nuclear magneton ratio -8.89059698e+00 2.30000000e-07 CODATA2022
muMu_p muon-proton magn. moment ratio -3.18334512e+00 8.90000000e-08 CODATA2022
rgN neutron gyromagn. ratio 1.83247171e+08 s^-1 T^-1 4.30000000e+01 CODATA2022
rgN_2pi neutron gyromagn. ratio over 2 pi 2.91646950e+01 MHz T^-1 7.30000000e-06 CODATA2022
muN neutron magn. moment -9.66236450e-27 J T^-1 2.40000000e-33 CODATA2022
muN_Bhor neutron magn. moment to Bohr magneton ratio -1.04187563e-03 2.50000000e-10 CODATA2022
muN_Nuc neutron magn. moment to nuclear magneton ratio -1.91304273e+00 4.50000000e-07 CODATA2022
muN_p_shield neutron to shielded proton magn. moment ratio -6.84996940e-01 1.60000000e-07 CODATA2022
muN_e neutron-electron magn. moment ratio 1.04066882e-03 2.50000000e-10 CODATA2022
muN_p neutron-proton magn. moment ratio -6.84979340e-01 1.60000000e-07 CODATA2022
rgP proton gyromagn. ratio 2.67522187e+08 s^-1 T^-1 1.10000000e-01 CODATA2022
rgP_2pi proton gyromagn. ratio over 2 pi 4.25774813e+01 MHz T^-1 3.70000000e-06 CODATA2022
muP proton magn. moment 1.41060671e-26 J T^-1 1.20000000e-33 CODATA2022
muP_Bhor proton magn. moment to Bohr magneton ratio 1.52103221e-03 1.50000000e-11 CODATA2022
muP_Nuc proton magn. moment to nuclear magneton ratio 2.79284735e+00 2.80000000e-08 CODATA2022
muP_shield proton magn. shielding correction 2.56890000e-05 1.10000000e-08 CODATA2022
muP_n proton-neutron magn. moment ratio -1.45989805e+00 3.40000000e-07 CODATA2022
rgH shielded helion gyromagn. ratio 2.03789457e+08 s^-1 T^-1 2.40000000e+00 CODATA2022
rgH_2pi shielded helion gyromagn. ratio over 2 pi 3.24341015e+01 MHz T^-1 2.80000000e-06 CODATA2022
muH_shield shielded helion magn. moment -1.07455302e-26 J T^-1 9.30000000e-34 CODATA2022
muH_shield_Bhor shielded helion magn. moment to Bohr magneton rati -1.15867147e-03 1.40000000e-11 CODATA2022
muH_shield_Nuc shielded helion magn. moment to nuclear magneton r -2.12749772e+00 2.50000000e-08 CODATA2022
muH_shield_p shielded helion to proton magn. moment ratio -7.61766562e-01 1.20000000e-08 CODATA2022
muH_shield_p_shield shielded helion to shielded proton magn. moment ra -7.61786131e-01 3.30000000e-09 CODATA2022
muP_shield shielded proton magn. moment 1.41057047e-26 J T^-1 1.20000000e-33 CODATA2022
muP_shield_Bhor shielded proton magn. moment to Bohr magneton rati 1.52099313e-03 1.60000000e-11 CODATA2022
muP_shield_Nuc shielded proton magn. moment to nuclear magneton r 2.79277560e+00 3.00000000e-08 CODATA2022
aSi_220 {220} lattice spacing of silicon 1.92015571e-08 cm 3.20000000e-16 CODATA2022
aSi lattice spacing of silicon 1.92015576e-08 cm 5.00000000e-16 CODATA2022
mAlpha_e alpha particle-electron mass ratio 7.29429954e+03 2.40000000e-07 CODATA2022
mAlpha alpha particle mass 6.64465734e-24 g 2.00000000e-33 CODATA2022
EAlpha alpha particle mass energy equivalent 5.97192019e-03 erg 1.80000000e-12 CODATA2022
EAlpha_MeV alpha particle mass energy equivalent in MeV 5.97192019e-03 erg 1.76239430e-12 CODATA2022
mAlpha_u alpha particle mass in u 6.64465734e-24 g 1.04613961e-34 CODATA2022
MAlpha alpha particle molar mass 4.00150618e+00 g / mol 1.20000000e-09 CODATA2022
mAlpha_p alpha particle-proton mass ratio 3.97259969e+00 2.20000000e-10 CODATA2022
angstromStar Angstrom star 1.00001495e-08 cm 9.00000000e-15 CODATA2022
mU atomic mass constant 1.66053907e-24 g 5.00000000e-34 CODATA2022
mU_E atomic mass constant energy equivalent 1.49241809e-03 erg 4.50000000e-13 CODATA2022
mU_E_MeV atomic mass constant energy equivalent in MeV 1.49241809e-03 erg 4.48609458e-13 CODATA2022
mU_eV atomic mass unit-electron volt relationship 1.49241809e-03 erg 4.48609458e-13 CODATA2022
mU_hartree atomic mass unit-hartree relationship 3.42317769e+07 E_h 1.00000000e-02 CODATA2022
mU_Hz atomic mass unit-hertz relationship 2.25234272e+23 1 / s 6.80000000e+13 CODATA2022
mU_invm atomic mass unit-inverse meter relationship 7.51300661e+12 1 / cm 2.30000000e+03 CODATA2022
mU_J atomic mass unit-joule relationship 1.49241809e-03 erg 4.50000000e-13 CODATA2022
mU_K atomic mass unit-kelvin relationship 1.08095402e+13 K 3.30000000e+03 CODATA2022
mU_kg atomic mass unit-kilogram relationship 1.66053907e-24 g 5.00000000e-34 CODATA2022
au1Hyper atomic unit of 1st hyperpolarizability 3.20636131e-53 C^3 m^3 J^-2 1.50000000e-62 CODATA2022
au2Hyper atomic unit of 2nd hyperpolarizability 6.23537999e-65 C^4 m^4 J^-3 3.80000000e-74 CODATA2022
auAct atomic unit of action 1.05457182e-27 erg s 0.00000000e+00 CODATA2022
auC atomic unit of charge 1.60217663e-19 C 0.00000000e+00 CODATA2022
auCrho atomic unit of charge density 1.08120238e+12 C m^-3 4.90000000e+02 CODATA2022
auI atomic unit of current 6.62361824e-03 A 1.30000000e-14 CODATA2022
auMu atomic unit of electric dipole mom. 8.47835363e-30 C m 1.30000000e-39 CODATA2022
auE atomic unit of electric field 5.14220675e+11 V m^-1 7.80000000e+01 CODATA2022
auEFG atomic unit of electric field gradient 9.71736243e+21 V m^-2 2.90000000e+12 CODATA2022
auPol atomic unit of electric polarizability 1.64877727e-41 C^2 m^2 J^-1 5.00000000e-51 CODATA2022
auV atomic unit of electric potential 2.72113862e+01 V 5.30000000e-11 CODATA2022
auQuad atomic unit of electric quadrupole mom. 4.48655152e-40 C m^2 1.40000000e-49 CODATA2022
Eh atomic unit of energy 4.35974472e-11 erg 8.50000000e-23 CODATA2022
auF atomic unit of force 8.23872350e-03 dyn 1.20000000e-12 CODATA2022
auL atomic unit of length 5.29177211e-09 cm 8.00000000e-19 CODATA2022
auM atomic unit of mag. dipole mom. 1.85480202e-23 J T^-1 5.60000000e-33 CODATA2022
auB atomic unit of mag. flux density 2.35051757e+09 G 7.10000000e-01 CODATA2022
auChi atomic unit of magnetizability 7.89103660e-29 J T^-2 4.80000000e-38 CODATA2022
amu atomic unit of mass 9.10938370e-28 g 2.80000000e-37 CODATA2022
aup atomic unit of momentum 1.99285191e-19 dyn s 3.00000000e-29 CODATA2022
auEps atomic unit of permittivity 1.11265006e-10 F m^-1 1.70000000e-20 CODATA2022
aut atomic unit of time 2.41888433e-17 s 4.70000000e-29 CODATA2022
auv atomic unit of velocity 2.18769126e+08 cm / s 3.30000000e-02 CODATA2022
N_a Avogadro constant 6.02214076e+23 1 / mol 0.00000000e+00 CODATA2022
mu_B Bohr magneton 9.27401008e-24 J T^-1 2.80000000e-33 CODATA2022
mu_B_eV_T Bohr magneton in eV/T 5.78838181e-05 eV T^-1 1.70000000e-14 CODATA2022
mu_B_Hz_T Bohr magneton in Hz/T 1.39962449e+10 Hz T^-1 4.20000000e+00 CODATA2022
mu_B__mT Bohr magneton in inverse meters per tesla 4.66864481e+01 m^-1 T^-1 2.90000000e-07 CODATA2022
muB_K_T Bohr magneton in K/T 6.71713816e-01 K T^-1 2.00000000e-10 CODATA2022
rBhor Bohr radius 5.29177211e-09 cm 8.00000000e-19 CODATA2022
kB Boltzmann constant 1.38064900e-16 erg / K 0.00000000e+00 CODATA2022
kB_eV_K Boltzmann constant in eV/K 1.38064900e-16 erg / K 0.00000000e+00 CODATA2022
kB_Hz_K Boltzmann constant in Hz/K 2.08366191e+10 1 / (K s) 0.00000000e+00 CODATA2022
kB__MK Boltzmann constant in inverse meters per kelvin 6.95034570e-01 1 / (K cm) 4.00000000e-07 CODATA2022
Z0 characteristic impedance of vacuum 3.76730314e+02 ohm 5.61366546e-08 CODATA2022
re classical electron radius 2.81794033e-13 cm 1.30000000e-22 CODATA2022
lambda_compt Compton wavelength 2.42631024e-10 cm 7.30000000e-20 CODATA2022
lambda_compt_2pi Compton wavelength over 2 pi 3.86159268e-11 cm 1.80000000e-20 CODATA2022
G0 conductance quantum 7.74809173e-05 S 0.00000000e+00 CODATA2022
K_J-90 conventional value of Josephson constant 4.83597900e+14 Hz V^-1 0.00000000e+00 CODATA2022
R_K-90 conventional value of von Klitzing constant 2.58128070e+04 ohm 0.00000000e+00 CODATA2022
xu(CuKa1) Cu x unit 1.00207697e-11 cm 2.80000000e-18 CODATA2022
muD_e deuteron-electron mag. mom. ratio -4.66434555e-04 1.20000000e-12 CODATA2022
mD_e deuteron-electron mass ratio 3.67048297e+03 1.30000000e-07 CODATA2022
g_D deuteron g factor 8.57438234e-01 2.20000000e-09 CODATA2022
muD deuteron mag. mom. 4.33073509e-27 J T^-1 1.10000000e-35 CODATA2022
muD_Bhor deuteron mag. mom. to Bohr magneton ratio 4.66975457e-04 1.20000000e-12 CODATA2022
muD_Nuc deuteron mag. mom. to nuclear magneton ratio 8.57438234e-01 2.20000000e-09 CODATA2022
mD deuteron mass 3.34358377e-24 g 1.00000000e-33 CODATA2022
mD_E deuteron mass energy equivalent 3.00506323e-03 erg 9.10000000e-13 CODATA2022
mD_E_MeV deuteron mass energy equivalent in MeV 3.00506323e-03 erg 9.13240681e-13 CODATA2022
mD_u deuteron mass in u 3.34358377e-24 g 6.64215627e-35 CODATA2022
MD deuteron molar mass 2.01355321e+00 g / mol 6.10000000e-10 CODATA2022
muD_n deuteron-neutron mag. mom. ratio -4.48206530e-01 1.10000000e-07 CODATA2022
muD_p deuteron-proton mag. mom. ratio 3.07012209e-01 7.90000000e-10 CODATA2022
mD_p deuteron-proton mass ratio 1.99900750e+00 1.10000000e-10 CODATA2022
RrmsD deuteron rms charge radius 2.12799000e-13 cm 7.40000000e-17 CODATA2022
eps_0 electric constant 8.85418781e-12 F m^-1 1.30000000e-21 CODATA2022
qE_m electron charge to mass quotient -1.75882001e+11 C kg^-1 5.30000000e+01 CODATA2022
muE_D electron-deuteron mag. mom. ratio -2.14392349e+03 5.60000000e-06 CODATA2022
mE_D electron-deuteron mass ratio 2.72443711e-04 9.60000000e-15 CODATA2022
g_e electron g factor -2.00231930e+00 3.50000000e-13 CODATA2022
rg_e electron gyromag. ratio 1.76085963e+11 s^-1 T^-1 5.30000000e+01 CODATA2022
rg_e_2pi electron gyromag. ratio over 2 pi 2.80249516e+04 MHz T^-1 1.70000000e-04 CODATA2022
muE electron mag. mom. -9.28476470e-24 J T^-1 2.80000000e-33 CODATA2022
muE_anom electron mag. mom. anomaly 1.15965218e-03 1.80000000e-13 CODATA2022
muE_Bhor electron mag. mom. to Bohr magneton ratio -1.00115965e+00 1.80000000e-13 CODATA2022
muE_Nuc electron mag. mom. to nuclear magneton ratio -1.83828197e+03 1.10000000e-07 CODATA2022
mE electron mass 9.10938370e-28 g 2.80000000e-37 CODATA2022
mE_E electron mass energy equivalent 8.18710578e-07 erg 2.50000000e-16 CODATA2022
mE_MeV electron mass energy equivalent in MeV 8.18710578e-07 erg 2.40326495e-16 CODATA2022
mE_u electron mass in u 9.10938370e-28 g 2.65686251e-38 CODATA2022
ME electron molar mass 5.48579909e-04 g / mol 1.70000000e-13 CODATA2022
muE_mu electron-muon mag. mom. ratio 2.06766988e+02 4.60000000e-06 CODATA2022
mE_mu electron-muon mass ratio 4.83633169e-03 1.10000000e-10 CODATA2022
muE_n electron-neutron mag. mom. ratio 9.60920500e+02 2.30000000e-04 CODATA2022
mE_n electron-neutron mass ratio 5.43867344e-04 2.60000000e-13 CODATA2022
muE_p electron-proton mag. mom. ratio -6.58210688e+02 2.00000000e-07 CODATA2022
mE_p electron-proton mass ratio 5.44617021e-04 3.30000000e-14 CODATA2022
mE_tau electron-tau mass ratio 2.87585000e-04 1.90000000e-08 CODATA2022
mE_alpha electron to alpha particle mass ratio 1.37093355e-04 4.50000000e-15 CODATA2022
muE_H_shield electron to shielded helion mag. mom. ratio 8.64058257e+02 1.00000000e-05 CODATA2022
muE_p_shield electron to shielded proton mag. mom. ratio -6.58227597e+02 7.20000000e-06 CODATA2022
eV electron volt 1.60217663e-12 erg 0.00000000e+00 CODATA2022
eV_amu electron volt-atomic mass unit relationship 1.78266192e-33 g 5.31372501e-43 CODATA2022
eV_hartree electron volt-hartree relationship 3.67493222e-02 E_h 7.10000000e-14 CODATA2022
eV_Hz electron volt-hertz relationship 2.41798924e+14 1 / s 0.00000000e+00 CODATA2022
eV_invm electron volt-inverse meter relationship 8.06554394e+03 1 / cm 0.00000000e+00 CODATA2022
eV_J electron volt-joule relationship 1.60217663e-12 erg 0.00000000e+00 CODATA2022
eV_K electron volt-kelvin relationship 1.16045181e+04 K 0.00000000e+00 CODATA2022
eV_kg electron volt-kilogram relationship 1.78266192e-33 g 0.00000000e+00 CODATA2022
e elementary charge 1.60217663e-19 C 0.00000000e+00 CODATA2022
e_h elementary charge over h 2.41798926e+14 A J^-1 1.50000000e+06 CODATA2022
F Faraday constant 9.64853321e+04 C mol^-1 0.00000000e+00 CODATA2022
F_conv Faraday constant for conventional electric current 9.64853251e+04 C_90 mol^-1 1.20000000e-03 CODATA2022
G_F Fermi coupling constant 4.54379566e+00 s4 / (g2 cm4) 2.33738613e-06 CODATA2022
alpha fine-structure constant 7.29735257e-03 1.10000000e-12 CODATA2022
c1 first radiation constant 3.74177185e-05 St erg 0.00000000e+00 CODATA2022
c1L first radiation constant for spectral radiance 1.19104297e-05 St erg / rad2 0.00000000e+00 CODATA2022
Eh_amu hartree-atomic mass unit relationship 4.85087021e-32 g 1.46127438e-41 CODATA2022
Eh_eV hartree-electron volt relationship 4.35974472e-11 erg 8.49153616e-23 CODATA2022
Eh Hartree energy 4.35974472e-11 erg 8.50000000e-23 CODATA2022
Eh_E_eV Hartree energy in eV 4.35974472e-11 erg 8.49153616e-23 CODATA2022
Eh_Hz hartree-hertz relationship 6.57968392e+15 1 / s 1.30000000e+04 CODATA2022
Eh_invm hartree-inverse meter relationship 2.19474631e+05 1 / cm 4.30000000e-07 CODATA2022
Eh_J hartree-joule relationship 4.35974472e-11 erg 8.50000000e-23 CODATA2022
Eh_K hartree-kelvin relationship 3.15775025e+05 K 6.10000000e-07 CODATA2022
Eh_kg hartree-kilogram relationship 4.85087021e-32 g 9.40000000e-44 CODATA2022
mH_e helion-electron mass ratio 5.49588528e+03 2.40000000e-07 CODATA2022
mH helion mass 5.00641278e-24 g 1.50000000e-33 CODATA2022
mH_E helion mass energy equivalent 4.49953941e-03 erg 1.40000000e-12 CODATA2022
mH_E_eV helion mass energy equivalent in MeV 4.49953941e-03 erg 1.36185014e-12 CODATA2022
mH_u helion mass in u 5.00641278e-24 g 1.61072289e-34 CODATA2022
MH helion molar mass 3.01493225e+00 g / mol 9.10000000e-10 CODATA2022
mH_p helion-proton mass ratio 2.99315267e+00 1.30000000e-10 CODATA2022
Hz_amu hertz-atomic mass unit relationship 7.37249732e-48 g 2.15870079e-57 CODATA2022
Hz_eV hertz-electron volt relationship 6.62607015e-27 erg 0.00000000e+00 CODATA2022
Hz_Eh hertz-hartree relationship 1.51982985e-16 E_h 2.90000000e-28 CODATA2022
Hz_invm hertz-inverse meter relationship 3.33564095e-11 1 / cm 0.00000000e+00 CODATA2022
Hz_J hertz-joule relationship 6.62607015e-27 erg 0.00000000e+00 CODATA2022
Hz_K hertz-kelvin relationship 4.79924307e-11 K 0.00000000e+00 CODATA2022
Hz_kg hertz-kilogram relationship 7.37249732e-48 g 0.00000000e+00 CODATA2022
invalpha inverse fine-structure constant 1.37035999e+02 2.10000000e-08 CODATA2022
invm_amu inverse meter-atomic mass unit relationship 2.21021909e-39 g 6.64215627e-49 CODATA2022
invm_eV inverse meter-electron volt relationship 1.98644586e-18 erg 0.00000000e+00 CODATA2022
invm_Eh inverse meter-hartree relationship 4.55633525e-08 E_h 8.80000000e-20 CODATA2022
invm_Hz inverse meter-hertz relationship 2.99792458e+08 1 / s 0.00000000e+00 CODATA2022
invm_J inverse meter-joule relationship 1.98644586e-18 erg 0.00000000e+00 CODATA2022
invm_K inverse meter-kelvin relationship 1.43877688e-02 K 0.00000000e+00 CODATA2022
invm_kg inverse meter-kilogram relationship 2.21021909e-39 g 0.00000000e+00 CODATA2022
invG0 inverse of conductance quantum 1.29064037e+04 ohm 0.00000000e+00 CODATA2022
K_J Josephson constant 4.83597848e+14 Hz V^-1 0.00000000e+00 CODATA2022
J_amu joule-atomic mass unit relationship 1.11265006e-14 g 3.32107813e-24 CODATA2022
J_eV joule-electron volt relationship 1.00000000e+07 erg 0.00000000e+00 CODATA2022
J_Eh joule-hartree relationship 2.29371228e+17 E_h 4.50000000e+05 CODATA2022
J_Hz joule-hertz relationship 1.50919018e+33 1 / s 0.00000000e+00 CODATA2022
J_invm joule-inverse meter relationship 5.03411657e+22 1 / cm 0.00000000e+00 CODATA2022
J_K joule-kelvin relationship 7.24297052e+22 K 0.00000000e+00 CODATA2022
J_kg joule-kilogram relationship 1.11265006e-14 g 0.00000000e+00 CODATA2022
K_amu kelvin-atomic mass unit relationship 1.53617919e-37 g 4.64950939e-47 CODATA2022
K_eV kelvin-electron volt relationship 1.38064900e-16 erg 0.00000000e+00 CODATA2022
K_Eh kelvin-hartree relationship 3.16681156e-06 E_h 6.10000000e-18 CODATA2022
K_Hz kelvin-hertz relationship 2.08366191e+10 1 / s 0.00000000e+00 CODATA2022
K_invm kelvin-inverse meter relationship 6.95034800e-01 1 / cm 0.00000000e+00 CODATA2022
K_J kelvin-joule relationship 1.38064900e-16 erg 0.00000000e+00 CODATA2022
K_kg kelvin-kilogram relationship 1.53617919e-37 g 0.00000000e+00 CODATA2022
kg_amu kilogram-atomic mass unit relationship 1.00000000e+03 g 2.98897032e-07 CODATA2022
kg_eV kilogram-electron volt relationship 8.98755179e+23 erg 0.00000000e+00 CODATA2022
kg_Eh kilogram-hartree relationship 2.06148579e+34 E_h 4.00000000e+22 CODATA2022
kg_Hz kilogram-hertz relationship 1.35639249e+50 1 / s 0.00000000e+00 CODATA2022
kg_invm kilogram-inverse meter relationship 4.52443833e+39 1 / cm 0.00000000e+00 CODATA2022
kg_J kilogram-joule relationship 8.98755179e+23 erg 0.00000000e+00 CODATA2022
kg_K kilogram-kelvin relationship 6.50965726e+39 K 0.00000000e+00 CODATA2022
aSi lattice parameter of silicon 5.43102051e-08 cm 8.90000000e-16 CODATA2022
n0 Loschmidt constant (273.15 K, 101.325 kPa) 2.68678011e+19 1 / cm3 0.00000000e+00 CODATA2022
mu0 mag. constant 1.25663706e-06 N A^-2 1.90000000e-16 CODATA2022
Phi0 mag. flux quantum 2.06783385e-15 Wb 0.00000000e+00 CODATA2022
R molar gas constant 8.31446262e+07 erg / (K mol) 0.00000000e+00 CODATA2022
Mu molar mass constant 1.00000000e+00 g / mol 3.00000000e-10 CODATA2022
MC12 molar mass of carbon-12 1.20000000e+01 g / mol 3.60000000e-09 CODATA2022
h_mol molar Planck constant 3.99031271e-03 St g / mol 0.00000000e+00 CODATA2022
ch_mol molar Planck constant times c 1.19626566e+08 cm erg / mol 5.40000000e-02 CODATA2022
v_mol_ideal_100kPa molar volume of ideal gas (273.15 K, 100 kPa) 2.27109546e+04 cm3 / mol 0.00000000e+00 CODATA2022
v_mol_ideal_101.325kPa molar volume of ideal gas (273.15 K, 101.325 kPa) 2.24139695e+04 cm3 / mol 0.00000000e+00 CODATA2022
vSI_mol molar volume of silicon 1.20588320e+01 cm3 / mol 6.00000000e-07 CODATA2022
xu Mo x unit 1.00209952e-11 cm 5.30000000e-18 CODATA2022
lambda_compt_mu muon Compton wavelength 1.17344411e-12 cm 2.60000000e-20 CODATA2022
lambda_compt_mu_2pi muon Compton wavelength over 2 pi 1.86759431e-13 cm 4.20000000e-21 CODATA2022
mMu_e muon-electron mass ratio 2.06768283e+02 4.60000000e-06 CODATA2022
g_mu muon g factor -2.00233184e+00 1.30000000e-09 CODATA2022
muMu muon mag. mom. -4.49044830e-26 J T^-1 1.00000000e-33 CODATA2022
muMu_anom muon mag. mom. anomaly 1.16592089e-03 6.30000000e-10 CODATA2022
muMu_Bhor muon mag. mom. to Bohr magneton ratio -4.84197047e-03 1.10000000e-10 CODATA2022
muMu_Nuc muon mag. mom. to nuclear magneton ratio -8.89059703e+00 2.00000000e-07 CODATA2022
mMu muon mass 1.88353163e-25 g 4.20000000e-33 CODATA2022
mMu_E muon mass energy equivalent 1.69283380e-04 erg 3.80000000e-12 CODATA2022
mMu_E_MeV muon mass energy equivalent in MeV 1.69283380e-04 erg 3.68500626e-12 CODATA2022
mMu_E_u muon mass in u 1.88353163e-25 g 4.15134767e-33 CODATA2022
MMu muon molar mass 1.13428926e-01 g / mol 2.50000000e-09 CODATA2022
mMu_n muon-neutron mass ratio 1.12454517e-01 2.50000000e-09 CODATA2022
muMu_p muon-proton mag. mom. ratio -3.18334514e+00 7.10000000e-08 CODATA2022
mMu_p muon-proton mass ratio 1.12609526e-01 2.50000000e-09 CODATA2022
mMu_tau muon-tau mass ratio 5.94635000e-02 4.00000000e-06 CODATA2022
1 natural unit of action 1.05457182e-27 erg s 0.00000000e+00 CODATA2022
1_eV_s natural unit of action in eV s 1.05457182e-27 erg s 0.00000000e+00 CODATA2022
E natural unit of energy 8.18710578e-07 erg 2.50000000e-16 CODATA2022
E_MeV natural unit of energy in MeV 8.18710578e-07 erg 2.40326495e-16 CODATA2022
L natural unit of length 3.86159268e-11 cm 1.20000000e-20 CODATA2022
M natural unit of mass 9.10938370e-28 g 2.80000000e-37 CODATA2022
p natural unit of momentum 2.73092449e-17 dyn s 3.40000000e-25 CODATA2022
p_MeV_c natural unit of momentum in MeV/c 5.10998946e-01 MeV/c 3.10000000e-09 CODATA2022
t natural unit of time 1.28808867e-21 s 3.90000000e-31 CODATA2022
v natural unit of velocity 2.99792458e+10 cm / s 0.00000000e+00 CODATA2022
lambda_compt_n neutron Compton wavelength 1.31959091e-13 cm 7.50000000e-23 CODATA2022
lambda_compt_n_2pi neutron Compton wavelength over 2 pi 2.10019415e-14 cm 1.40000000e-23 CODATA2022
muN_e neutron-electron mag. mom. ratio 1.04066882e-03 2.50000000e-10 CODATA2022
mN_e neutron-electron mass ratio 1.83868366e+03 8.90000000e-07 CODATA2022
g_n neutron g factor -3.82608545e+00 9.00000000e-07 CODATA2022
rg_n neutron gyromag. ratio 1.83247171e+08 s^-1 T^-1 4.30000000e+01 CODATA2022
rg_n_2pi neutron gyromag. ratio over 2 pi 2.91646933e+01 MHz T^-1 6.90000000e-06 CODATA2022
muN neutron mag. mom. -9.66236510e-27 J T^-1 2.30000000e-33 CODATA2022
muN_Bhor neutron mag. mom. to Bohr magneton ratio -1.04187563e-03 2.50000000e-10 CODATA2022
muN_Nuc neutron mag. mom. to nuclear magneton ratio -1.91304273e+00 4.50000000e-07 CODATA2022
mN neutron mass 1.67492750e-24 g 9.50000000e-34 CODATA2022
mN_E neutron mass energy equivalent 1.50534976e-03 erg 8.60000000e-13 CODATA2022
mN_E_MeV neutron mass energy equivalent in MeV 1.50534976e-03 erg 8.65175382e-13 CODATA2022
mN_u neutron mass in u 1.67492750e-24 g 8.13664143e-34 CODATA2022
MN neutron molar mass 1.00866492e+00 g / mol 5.70000000e-10 CODATA2022
mN_mu neutron-muon mass ratio 8.89248406e+00 2.00000000e-07 CODATA2022
muN_p neutron-proton mag. mom. ratio -6.84979340e-01 1.60000000e-07 CODATA2022
mN_p neutron-proton mass ratio 1.00137842e+00 4.90000000e-10 CODATA2022
mN_tau neutron-tau mass ratio 5.28779000e-01 3.60000000e-05 CODATA2022
muN_p_shield neutron to shielded proton mag. mom. ratio -6.84996940e-01 1.60000000e-07 CODATA2022
G Newtonian constant of gravitation 6.67430000e-08 cm3 / (g s2) 1.50000000e-12 CODATA2022
G_hbar_c Newtonian constant of gravitation over h-bar c 6.70883000e-39 (GeV/c^2)^-2 1.50000000e-43 CODATA2022
mu_N nuclear magneton 5.05078375e-27 J T^-1 1.50000000e-36 CODATA2022
mu_N_eV_T nuclear magneton in eV/T 3.15245126e-08 eV T^-1 9.60000000e-18 CODATA2022
mu_N_invm_T nuclear magneton in inverse meters per tesla 2.54262343e-02 m^-1 T^-1 1.60000000e-10 CODATA2022
mu_N_K_T nuclear magneton in K/T 3.65826778e-04 K T^-1 1.10000000e-13 CODATA2022
mu_N_MHz_T nuclear magneton in MHz/T 7.62259323e+00 MHz T^-1 2.30000000e-09 CODATA2022
h Planck constant 6.62607015e-27 erg s 0.00000000e+00 CODATA2022
h_eV_s Planck constant in eV s 6.62607009e-27 erg s 4.00544159e-35 CODATA2022
hbar Planck constant over 2 pi 1.05457180e-27 erg s 1.30000000e-35 CODATA2022
hbar_eV_s Planck constant over 2 pi in eV s 1.05457181e-27 erg s 6.40870654e-36 CODATA2022
chbar_MeV Planck constant over 2 pi times c in MeV fm 3.16152675e-17 cm erg 1.92261196e-25 CODATA2022
planck_length Planck length 1.61625500e-33 cm 1.80000000e-38 CODATA2022
planck_mass Planck mass 2.17643400e-05 g 2.40000000e-10 CODATA2022
planck_mass_E_GeV Planck mass energy equivalent in GeV 1.95608143e+16 erg 2.24304729e+11 CODATA2022
planck_temp Planck temperature 1.41678400e+32 K 1.60000000e+27 CODATA2022
plank_time Planck time 5.39124700e-44 s 6.00000000e-49 CODATA2022
qP_mP proton charge to mass quotient 9.57883316e+07 C kg^-1 2.90000000e-02 CODATA2022
lambda_compt_p proton Compton wavelength 1.32140986e-13 cm 4.00000000e-23 CODATA2022
lambda_compt_p_2pi proton Compton wavelength over 2 pi 2.10308910e-14 cm 9.70000000e-24 CODATA2022
mP_e proton-electron mass ratio 1.83615267e+03 1.10000000e-07 CODATA2022
g_p proton g factor 5.58569469e+00 1.60000000e-09 CODATA2022
rg_p proton gyromag. ratio 2.67522187e+08 s^-1 T^-1 1.10000000e-01 CODATA2022
rg_p_2pi proton gyromag. ratio over 2 pi 4.25774789e+01 MHz T^-1 2.90000000e-07 CODATA2022
muP proton mag. mom. 1.41060680e-26 J T^-1 6.00000000e-36 CODATA2022
muP_Bhor proton mag. mom. to Bohr magneton ratio 1.52103220e-03 4.60000000e-13 CODATA2022
muP_Nuc proton mag. mom. to nuclear magneton ratio 2.79284734e+00 8.20000000e-10 CODATA2022
muP_shield proton mag. shielding correction 2.56890000e-05 1.10000000e-08 CODATA2022
mP proton mass 1.67262192e-24 g 5.10000000e-34 CODATA2022
mP_E proton mass energy equivalent 1.50327762e-03 erg 4.60000000e-13 CODATA2022
mP_E_MeV proton mass energy equivalent in MeV 1.50327762e-03 erg 4.64631224e-13 CODATA2022
mP_u proton mass in u 1.67262192e-24 g 8.80085705e-35 CODATA2022
MP proton molar mass 1.00727647e+00 g / mol 3.10000000e-10 CODATA2022
mP_mu proton-muon mass ratio 8.88024337e+00 2.00000000e-07 CODATA2022
muP_n proton-neutron mag. mom. ratio -1.45989805e+00 3.40000000e-07 CODATA2022
mP_n proton-neutron mass ratio 9.98623478e-01 4.90000000e-10 CODATA2022
RrmsP proton rms charge radius 8.41400000e-14 cm 1.90000000e-16 CODATA2022
mP_tau proton-tau mass ratio 5.28051000e-01 3.60000000e-05 CODATA2022
kappa quantum of circulation 3.63694755e+00 cm2 / s 1.10000000e-09 CODATA2022
2kappa quantum of circulation times 2 7.27389510e+00 cm2 / s 2.20000000e-09 CODATA2022
Rinf Rydberg constant 1.09737316e+05 1 / cm 2.10000000e-07 CODATA2022
cRinf_Hz Rydberg constant times c in Hz 3.28984196e+15 1 / s 6.40000000e+03 CODATA2022
hcRinf_eV Rydberg constant times hc in eV 2.17987236e-11 erg 4.16565925e-23 CODATA2022
hcRinf_J Rydberg constant times hc in J 2.17987236e-11 erg 4.20000000e-23 CODATA2022
S0_R_100kPa Sackur-Tetrode constant (1 K, 100 kPa) -1.15170754e+00 4.50000000e-10 CODATA2022
S0_R_101.325kPa Sackur-Tetrode constant (1 K, 101.325 kPa) -1.16487052e+00 4.50000000e-10 CODATA2022
c2 second radiation constant 1.43877688e+00 K cm 0.00000000e+00 CODATA2022
rg_h_shield shielded helion gyromag. ratio 2.03789457e+08 s^-1 T^-1 2.40000000e+00 CODATA2022
rg_h_shield_2pi shielded helion gyromag. ratio over 2 pi 3.24340997e+01 MHz T^-1 4.30000000e-07 CODATA2022
muH_shield shielded helion mag. mom. -1.07455309e-26 J T^-1 1.30000000e-34 CODATA2022
muH_shield_Bhor shielded helion mag. mom. to Bohr magneton ratio -1.15867147e-03 1.40000000e-11 CODATA2022
muH_shield_Nuc shielded helion mag. mom. to nuclear magneton rati -2.12749772e+00 2.50000000e-08 CODATA2022
muH_shield_p shielded helion to proton mag. mom. ratio -7.61766562e-01 8.90000000e-09 CODATA2022
muH_shield_p_shield shielded helion to shielded proton mag. mom. ratio -7.61786131e-01 3.30000000e-09 CODATA2022
rg_p_shield shielded proton gyromag. ratio 2.67515315e+08 s^-1 T^-1 2.90000000e+00 CODATA2022
rg_p_shield_2pi shielded proton gyromag. ratio over 2 pi 4.25763851e+01 MHz T^-1 5.30000000e-07 CODATA2022
muP_shield shielded proton mag. mom. 1.41057056e-26 J T^-1 1.50000000e-34 CODATA2022
muP_shield_Bhor shielded proton mag. mom. to Bohr magneton ratio 1.52099313e-03 1.70000000e-11 CODATA2022
muP_shield_Nuc shielded proton mag. mom. to nuclear magneton rati 2.79277560e+00 3.00000000e-08 CODATA2022
c speed of light in vacuum 2.99792458e+10 cm / s 0.00000000e+00 CODATA2022
g standard acceleration of gravity 9.80665000e+02 cm / s2 0.00000000e+00 CODATA2022
atm standard atmosphere 1.01325000e+06 P / s 0.00000000e+00 CODATA2022
sigma Stefan-Boltzmann constant 5.67037442e-05 g / (s3 K4) 0.00000000e+00 CODATA2022
lambda_compt_tau tau Compton wavelength 6.97771000e-14 cm 4.70000000e-18 CODATA2022
lambda_compt_tau_2pi tau Compton wavelength over 2 pi 1.11056000e-14 cm 1.00000000e-18 CODATA2022
mTau_e tau-electron mass ratio 3.47723000e+03 2.30000000e-01 CODATA2022
mTau tau mass 3.16754000e-24 g 2.10000000e-28 CODATA2022
mTau_E tau mass energy equivalent 2.84684000e-03 erg 1.90000000e-07 CODATA2022
mTau_E_MeV tau mass energy equivalent in MeV 2.84677949e-03 erg 2.56348261e-07 CODATA2022
mTau_u tau mass in u 3.16754469e-24 g 2.15870079e-28 CODATA2022
MTau tau molar mass 1.90754000e+00 g / mol 1.30000000e-04 CODATA2022
mTau_mu tau-muon mass ratio 1.68170000e+01 1.10000000e-03 CODATA2022
mTau_n tau-neutron mass ratio 1.89115000e+00 1.30000000e-04 CODATA2022
mTau_p tau-proton mass ratio 1.89376000e+00 1.30000000e-04 CODATA2022
sigma_T Thomson cross section 6.65245873e-25 cm2 6.00000000e-34 CODATA2022
muPsi_e triton-electron mag. mom. ratio -1.62051442e-03 2.10000000e-11 CODATA2022
mPsi_e triton-electron mass ratio 5.49692154e+03 2.70000000e-07 CODATA2022
g_psi triton g factor 5.95792493e+00 1.20000000e-08 CODATA2022
muPsi triton mag. mom. 1.50460952e-26 J T^-1 3.00000000e-35 CODATA2022
muPsi_Bhor triton mag. mom. to Bohr magneton ratio 1.62239367e-03 3.20000000e-12 CODATA2022
muPsi_Nuc triton mag. mom. to nuclear magneton ratio 2.97896247e+00 5.90000000e-09 CODATA2022
mPsi triton mass 5.00735674e-24 g 1.50000000e-33 CODATA2022
mPsi_E triton mass energy equivalent 4.50038781e-03 erg 1.40000000e-12 CODATA2022
mPsi_E_MeV triton mass energy equivalent in MeV 4.50038781e-03 erg 1.36185014e-12 CODATA2022
mPsi_u triton mass in u 5.00735674e-24 g 1.99264688e-34 CODATA2022
MPsi triton molar mass 3.01550072e+00 g / mol 9.20000000e-10 CODATA2022
muPsi_n triton-neutron mag. mom. ratio -1.55718553e+00 3.70000000e-07 CODATA2022
muPsi_p triton-proton mag. mom. ratio 1.06663991e+00 1.00000000e-08 CODATA2022
mPsi_p triton-proton mass ratio 2.99371703e+00 1.50000000e-10 CODATA2022
u unified atomic mass unit 1.66053907e-24 g 5.00000000e-34 CODATA2022
R_K von Klitzing constant 2.58128075e+04 ohm 0.00000000e+00 CODATA2022
theta_W weak mixing angle 2.22900000e-01 3.00000000e-04 CODATA2022
b_freq Wien frequency displacement law constant 5.87892576e+10 1 / (K s) 0.00000000e+00 CODATA2022
b_lambda Wien wavelength displacement law constant 2.89777196e-01 K cm 0.00000000e+00 CODATA2022
auMom_um atomic unit of mom.um 1.99285188e-19 dyn s 2.40000000e-27 CODATA2022
mE_h electron-helion mass ratio 1.81954307e-04 7.90000000e-15 CODATA2022
mE_psi electron-triton mass ratio 1.81920006e-04 9.00000000e-15 CODATA2022
g_h helion g factor -4.25525061e+00 5.00000000e-08 CODATA2022
muH helion mag. mom. -1.07461753e-26 J T^-1 1.30000000e-34 CODATA2022
muH_Bhor helion mag. mom. to Bohr magneton ratio -1.15874096e-03 1.40000000e-11 CODATA2022
muH_Nuc helion mag. mom. to nuclear magneton ratio -2.12762531e+00 2.50000000e-08 CODATA2022
n0 Loschmidt constant (273.15 K, 100 kPa) 2.65164580e+19 1 / cm3 0.00000000e+00 CODATA2022
p_um natural unit of mom.um 2.73092449e-17 dyn s 3.40000000e-25 CODATA2022
p_um_MeV_c natural unit of mom.um in MeV/c 5.10998946e-01 MeV/c 3.10000000e-09 CODATA2022
mN-mP neutron-proton mass difference 2.30557435e-27 g 8.20000000e-34 CODATA2022
mN-mP_E neutron-proton mass difference energy equivalent 2.07214689e-06 erg 7.40000000e-13 CODATA2022
mN-mP_E_MeV neutron-proton mass difference energy equivalent i 2.07214689e-06 erg 7.37001252e-13 CODATA2022
mN-mP_u neutron-proton mass difference in u 2.30557435e-27 g 8.13664143e-34 CODATA2022
stp standard-state pressure 1.00000000e+06 P / s 0.00000000e+00 CODATA2022
mAlpha alpha particle relative atomic mass 4.00150618e+00 6.30000000e-11 CODATA2022
muB_invm_T Bohr magneton in inverse meter per tesla 4.66864478e+01 m^-1 T^-1 1.40000000e-08 CODATA2022
kB_invm Boltzmann constant in inverse meter per kelvin 6.95034800e-01 1 / (K cm) 0.00000000e+00 CODATA2022
ampere-90 conventional value of ampere-90 1.00000009e+00 A 0.00000000e+00 CODATA2022
coulomb-90 conventional value of coulomb-90 1.00000009e+00 C 0.00000000e+00 CODATA2022
farad-90 conventional value of farad-90 9.99999982e-01 F 0.00000000e+00 CODATA2022
henry-90 conventional value of henry-90 1.00000002e+00 H 0.00000000e+00 CODATA2022
ohm-90 conventional value of ohm-90 1.00000002e+00 ohm 0.00000000e+00 CODATA2022
volt-90 conventional value of volt-90 1.00000011e+00 V 0.00000000e+00 CODATA2022
watt-90 conventional value of watt-90 1.00000020e+07 erg / s 0.00000000e+00 CODATA2022
mD_amu_rel deuteron relative atomic mass 2.01355321e+00 4.00000000e-11 CODATA2022
rg_e_MHz_T electron gyromag. ratio in MHz/T 2.80249514e+04 MHz T^-1 8.50000000e-06 CODATA2022
mE_amu_rel electron relative atomic mass 5.48579909e-04 1.60000000e-14 CODATA2022
e_hbar elementary charge over h-bar 1.51926745e+15 A J^-1 0.00000000e+00 CODATA2022
mH_amu_rel helion relative atomic mass 3.01493225e+00 9.70000000e-11 CODATA2022
h_shield_shift helion shielding shift 5.99674300e-05 1.00000000e-10 CODATA2022
F_hyperfine_Cs-133 hyperfine transition frequency of Cs-133 9.19263177e+09 1 / s 0.00000000e+00 CODATA2022
aSi_220_ideal lattice spacing of ideal Si (220) 1.92015572e-08 cm 3.20000000e-16 CODATA2022
eta luminous efficacy 6.83000000e-05 s3 rad2 cd / (g cm2) 0.00000000e+00 CODATA2022
rg_n_MHz_T neutron gyromag. ratio in MHz/T 2.91646931e+01 MHz T^-1 6.90000000e-06 CODATA2022
mN_amu_rel neutron relative atomic mass 1.00866492e+00 4.90000000e-10 CODATA2022
mu_N_invm nuclear magneton in inverse meter per tesla 2.54262341e-02 m^-1 T^-1 7.80000000e-12 CODATA2022
h_eV_Hz Planck constant in eV/Hz 6.62607015e-27 erg s 0.00000000e+00 CODATA2022
rg_p_MHz_T proton gyromag. ratio in MHz/T 4.25774785e+01 MHz T^-1 1.80000000e-08 CODATA2022
mP_amu_rel proton relative atomic mass 1.00727647e+00 5.30000000e-11 CODATA2022
lambda_compt_bar reduced Compton wavelength 3.86159268e-11 cm 1.20000000e-20 CODATA2022
lambda_compt_mu_bar reduced muon Compton wavelength 1.86759431e-13 cm 4.20000000e-21 CODATA2022
lambda_compt_n_bar reduced neutron Compton wavelength 2.10019416e-14 cm 1.20000000e-23 CODATA2022
hbar reduced Planck constant 1.05457182e-27 erg s 0.00000000e+00 CODATA2022
hbar_eV_s reduced Planck constant in eV s 1.05457182e-27 erg s 0.00000000e+00 CODATA2022
chbar_MeV reduced Planck constant times c in MeV fm 3.16152677e-17 cm erg 0.00000000e+00 CODATA2022
lambda_compt_p_bar reduced proton Compton wavelength 2.10308910e-14 cm 6.40000000e-24 CODATA2022
lambda_compt_tau_bar reduced tau Compton wavelength 1.11053800e-14 cm 7.50000000e-19 CODATA2022
rg_h_shield_MHz_T shielded helion gyromag. ratio in MHz/T 3.24340994e+01 MHz T^-1 3.80000000e-07 CODATA2022
rg_p_shield_MHz_T shielded proton gyromag. ratio in MHz/T 4.25763847e+01 MHz T^-1 4.60000000e-07 CODATA2022
d_shield-p_shield_HD shielding difference of d and p in HD 2.02000000e-08 2.00000000e-11 CODATA2022
t_shield-p_shield_HT shielding difference of t and p in HT 2.41400000e-08 2.00000000e-11 CODATA2022
tau_E tau energy equivalent 2.84684357e-03 erg 1.92261196e-07 CODATA2022
psi_amu_rel triton relative atomic mass 3.01550072e+00 1.20000000e-10 CODATA2022
muPsi_p triton to proton mag. mom. ratio 1.06663992e+00 2.10000000e-09 CODATA2022
epsilon0 vacuum electric permittivity 8.85418781e-12 F m^-1 1.30000000e-21 CODATA2022
mu0 vacuum mag. permeability 1.25663706e-06 N A^-2 1.90000000e-16 CODATA2022
mWZ W to Z mass ratio 8.81530000e-01 1.70000000e-04 CODATA2022
au Astronomical Unit 1.49597871e+13 cm 0.00000000e+00 IAU 2012 Resolution B2
pc Parsec 3.08567758e+18 cm 0.00000000e+00 Derived from au + IAU 2015 Resolution B 2 note [4]
kpc Kiloparsec 3.08567758e+21 cm 0.00000000e+00 Derived from au + IAU 2015 Resolution B 2 note [4]
L_bol0 Luminosity for absolute bolometric magnitude 0 3.01280000e+35 erg / s 0.00000000e+00 IAU 2015 Resolution B 2
L_sun Nominal solar luminosity 3.82800000e+33 erg / s 0.00000000e+00 IAU 2015 Resolution B 3
GM_sun Nominal solar mass parameter 1.32712440e+26 cm3 / s2 0.00000000e+00 IAU 2015 Resolution B 3
M_sun Solar mass 1.98840987e+33 g 4.46880543e+28 IAU 2015 Resolution B 3 + CODATA 2018
R_sun Nominal solar radius 6.95700000e+10 cm 0.00000000e+00 IAU 2015 Resolution B 3
GM_jup Nominal Jupiter mass parameter 1.26686530e+23 cm3 / s2 0.00000000e+00 IAU 2015 Resolution B 3
M_jup Jupiter mass 1.89812460e+30 g 4.26589589e+25 IAU 2015 Resolution B 3 + CODATA 2018
R_jup Nominal Jupiter equatorial radius 7.14920000e+09 cm 0.00000000e+00 IAU 2015 Resolution B 3
GM_earth Nominal Earth mass parameter 3.98600400e+20 cm3 / s2 0.00000000e+00 IAU 2015 Resolution B 3
M_earth Earth mass 5.97216787e+27 g 1.34220095e+23 IAU 2015 Resolution B 3 + CODATA 2018
R_earth Nominal Earth equatorial radius 6.37810000e+08 cm 0.00000000e+00 IAU 2015 Resolution B 3

View File

@@ -0,0 +1,4 @@
eos:
helm: "eos/helm_table.dat"
mesh:
sphere: "mesh/sphere.msh"

View File

@@ -2,11 +2,28 @@ project('4DSSE', 'cpp', version: '0.0.1a', default_options: ['cpp_std=c++23'], m
# Add default visibility for all C++ targets
add_project_arguments('-fvisibility=default', language: 'cpp')
# Determine the mode
mode = 1
if get_option('user_mode')
mode = 0
endif
# Define DATA_DIR based on mode
if mode == 1
data_dir = meson.project_source_root() + '/assets/dynamic'
else
data_dir = get_option('prefix') + '/' + get_option('datadir') + '/4DSSE'
endif
# Pass the DATA_DIR definition to the compiler
add_project_arguments('-DDATA_DIR=' + data_dir, language : 'cpp')
# Build external dependencies first so that all the embedded resources are available to the other targets
subdir('build-config')
subdir('subprojects/PicoSHA2')
subdir('assets/static')
# Build the main project
subdir('src')
if get_option('build_tests')

View File

@@ -1 +1,2 @@
option('build_tests', type: 'boolean', value: true, description: 'Build tests')
option('user_mode', type: 'boolean', value: false, description: 'Enable user mode (set mode = 0)')

View File

@@ -46,6 +46,7 @@ bool Config::loadConfig(const std::string& configFile) {
std::cerr << "Error: " << e.what() << std::endl;
return false;
}
m_loaded = true;
return true;
}
@@ -60,3 +61,45 @@ void Config::addToCache(const std::string &key, const YAML::Node &node) {
void Config::registerUnknownKey(const std::string &key) {
unknownKeys.push_back(key);
}
bool Config::has(const std::string &key) {
if (!m_loaded) {
throw std::runtime_error("Error! Config file not loaded");
}
if (isKeyInCache(key)) { return true; }
YAML::Node node = YAML::Clone(yamlRoot);
std::istringstream keyStream(key);
std::string subKey;
while (std::getline(keyStream, subKey, ':')) {
if (!node[subKey]) {
registerUnknownKey(key);
return false;
}
node = node[subKey]; // go deeper
}
// Key exists and is of the requested type
addToCache(key, node);
return true;
}
void recurse_keys(const YAML::Node& node, std::vector<std::string>& keyList, const std::string& path = "") {
if (node.IsMap()) {
for (const auto& it : node) {
std::string key = it.first.as<std::string>();
std::string new_path = path.empty() ? key : path + ":" + key;
recurse_keys(it.second, keyList, new_path);
}
} else {
keyList.push_back(path);
}
}
std::vector<std::string> Config::keys() const {
std::vector<std::string> keyList;
YAML::Node node = YAML::Clone(yamlRoot);
recurse_keys(node, keyList);
return keyList;
}

View File

@@ -23,14 +23,18 @@
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <map>
#include <algorithm>
#include <stdexcept>
// Required for YAML parsing
#include "yaml-cpp/yaml.h"
// -- Forward Def of Resource manager to let it act as a friend of Config --
class ResourceManager;
/**
* @class Config
* @brief Singleton class to manage configuration settings loaded from a YAML file.
@@ -94,6 +98,21 @@ private:
*/
void registerUnknownKey(const std::string &key);
bool m_loaded = false;
// Only friends can access get without a default value
template <typename T>
T get(const std::string &key) {
if (!m_loaded) {
throw std::runtime_error("Error! Config file not loaded");
}
if (has(key)) {
return getFromCache<T>(key, T());
} else {
throw std::runtime_error("Error! Key not found in config file");
}
}
public:
/**
* @brief Get the singleton instance of the Config class.
@@ -136,6 +155,9 @@ public:
*/
template <typename T>
T get(const std::string &key, T defaultValue) {
if (!m_loaded) {
throw std::runtime_error("Error! Config file not loaded");
}
// --- Check if the key has already been checked for existence
if (std::find(unknownKeys.begin(), unknownKeys.end(), key) != unknownKeys.end()) {
return defaultValue; // If the key has already been added to the unknown cache do not traverse the YAML tree or hit the cache
@@ -171,6 +193,19 @@ public:
}
}
/**
* @brief Check if the key exists in the given config file
* @param key Key to check;
* @return boolean true or false
*/
bool has(const std::string &key);
/**
* @brief Get all keys defined in the configuration file.
* @return Vector of all keys in the configuration file.
*/
std::vector<std::string> keys() const;
/**
* @brief Print the configuration file path and the YAML root node.
* @param os Output stream.
@@ -178,6 +213,10 @@ public:
* @return Output stream.
*/
friend std::ostream& operator<<(std::ostream& os, const Config& config) {
if (!config.m_loaded) {
os << "Config file not loaded" << std::endl;
return os;
}
if (!config.debug) {
os << "Config file: " << config.configFilePath << std::endl;
} else{
@@ -190,6 +229,8 @@ public:
// Setup gTest class as a friend
friend class configTestPrivateAccessor;
// -- Resource Manager is a friend of config so it can create a seperate instance
friend class ResourceManager;
};
#endif

View File

@@ -1,23 +1,34 @@
# Define the library
eos_sources = files(
'private/helm.cpp',
'private/eosIO.cpp'
)
eos_headers = files(
'public/helm.h'
'public/helm.h',
'public/eosIO.h'
)
dependencies = [
const_dep,
quill_dep,
probe_dep,
config_dep,
mfem_dep,
macros_dep,
]
# Define the libconst library so it can be linked against by other parts of the build system
libeos = static_library('eos',
eos_sources,
include_directories: include_directories('public'),
cpp_args: ['-fvisibility=default'],
dependencies: [const_dep, quill_dep, probe_dep, config_dep, mfem_dep],
dependencies: dependencies,
install : true)
eos_dep = declare_dependency(
include_directories: include_directories('public'),
link_with: libeos,
dependencies: dependencies
)
# Make headers accessible
install_headers(eos_headers, subdir : '4DSSE/eos')

36
src/eos/private/eosIO.cpp Normal file
View File

@@ -0,0 +1,36 @@
#include <string>
#include "eosIO.h"
#include "helm.h"
#include "debug.h"
EosIO::EosIO(const std::string filename) : m_filename(filename) {
load();
}
std::string EosIO::getFormat() const {
return m_format;
}
EOSTable& EosIO::getTable() {
return m_table;
}
void EosIO::load() {
// Load the EOS table from the file
// For now, just set the format to HELM
m_format = "helm";
if (m_format == "helm") {
loadHelm();
}
}
void EosIO::loadHelm() {
// Load the HELM table from the file
auto helmTabptr = helmholtz::read_helm_table(m_filename);
m_table = std::move(helmTabptr);
m_loaded = true;
}

View File

@@ -24,6 +24,7 @@
#include <iostream>
#include <fstream>
#include <memory>
#include <sstream>
#include <cmath>
#include <string>
@@ -121,21 +122,22 @@ namespace helmholtz {
}
// this function reads in the HELM table and stores in the above arrays
HELMTable read_helm_table(const std::string filename) {
std::unique_ptr<HELMTable> read_helm_table(const std::string filename) {
Config& config = Config::getInstance();
std::string logFile = config.get<std::string>("EOS:Helm:LogFile", "log");
Probe::LogManager& logManager = Probe::LogManager::getInstance();
quill::Logger* logger = logManager.getLogger(logFile);
LOG_INFO(logger, "read_helm_table : Reading HELM table from file {}", filename);
HELMTable table;
// Make a unique pointer to the HELMTable
std::unique_ptr<HELMTable> table = std::make_unique<HELMTable>();
string data;
int i, j;
//set T and Rho (d) arrays
for (j=0; j<table.jmax; j++) { table.t[j] = pow(10, tlo + tstp*j); }
for (j=0; j<table->jmax; j++) { table->t[j] = pow(10, tlo + tstp*j); }
for (i=0; i<table.imax; i++) { table.d[i] = pow(10, dlo + dstp*i); }
for (i=0; i<table->imax; i++) { table->d[i] = pow(10, dlo + dstp*i); }
ifstream helm_table(filename);
if (!helm_table) {
@@ -144,83 +146,83 @@ namespace helmholtz {
throw std::runtime_error("Error (" + std::to_string(errorCode) + ") opening file " + filename);
}
//read the Helmholtz free energy and its derivatives
for (j=0; j<table.jmax; j++) {
for (i=0; i<table.imax; i++){
for (j=0; j<table->jmax; j++) {
for (i=0; i<table->imax; i++){
getline(helm_table, data);
stringstream id(data);
id >> table.f[i][j];
id >> table.fd[i][j];
id >> table.ft[i][j];
id >> table.fdd[i][j];
id >> table.ftt[i][j];
id >> table.fdt[i][j];
id >> table.fddt[i][j];
id >> table.fdtt[i][j];
id >> table.fddtt[i][j];
id >> table->f[i][j];
id >> table->fd[i][j];
id >> table->ft[i][j];
id >> table->fdd[i][j];
id >> table->ftt[i][j];
id >> table->fdt[i][j];
id >> table->fddt[i][j];
id >> table->fdtt[i][j];
id >> table->fddtt[i][j];
}
}
//read the pressure derivative with density
for (j=0; j<table.jmax; j++) {
for (i=0; i<table.imax; i++){
for (j=0; j<table->jmax; j++) {
for (i=0; i<table->imax; i++){
getline(helm_table, data);
stringstream id(data);
id >> table.dpdf[i][j];
id >> table.dpdfd[i][j];
id >> table.dpdft[i][j];
id >> table.dpdfdt[i][j];
id >> table->dpdf[i][j];
id >> table->dpdfd[i][j];
id >> table->dpdft[i][j];
id >> table->dpdfdt[i][j];
}
}
//read the electron chemical potential
for (j=0; j<table.jmax; j++) {
for (i=0; i<table.imax; i++){
for (j=0; j<table->jmax; j++) {
for (i=0; i<table->imax; i++){
getline(helm_table, data);
stringstream id(data);
id >> table.ef[i][j];
id >> table.efd[i][j];
id >> table.eft[i][j];
id >> table.efdt[i][j];
id >> table->ef[i][j];
id >> table->efd[i][j];
id >> table->eft[i][j];
id >> table->efdt[i][j];
}
}
//read the number density
for (j=0; j<table.jmax; j++) {
for (i=0; i<table.imax; i++){
for (j=0; j<table->jmax; j++) {
for (i=0; i<table->imax; i++){
getline(helm_table, data);
stringstream id(data);
id >> table.xf[i][j];
id >> table.xfd[i][j];
id >> table.xft[i][j];
id >> table.xfdt[i][j];
id >> table->xf[i][j];
id >> table->xfd[i][j];
id >> table->xft[i][j];
id >> table->xfdt[i][j];
}
}
helm_table.close(); //done reading
// construct the temperature and density deltas and their inverses
for (j=0; j<table.jmax; j++) {
double dth = table.t[j+1] - table.t[j];
for (j=0; j<table->jmax; j++) {
double dth = table->t[j+1] - table->t[j];
double dt2 = dth * dth;
double dti = 1.0/dth;
double dt2i = 1.0/dt2;
table.dt_sav[j] = dth;
table.dt2_sav[j] = dt2;
table.dti_sav[j] = dti;
table.dt2i_sav[j] = dt2i;
table->dt_sav[j] = dth;
table->dt2_sav[j] = dt2;
table->dti_sav[j] = dti;
table->dt2i_sav[j] = dt2i;
}
for (i=0; i<table.imax; i++) {
double dd = table.d[i+1] - table.d[i];
for (i=0; i<table->imax; i++) {
double dd = table->d[i+1] - table->d[i];
double dd2 = dd * dd;
double ddi = 1.0/dd;
table.dd_sav[i] = dd;
table.dd2_sav[i] = dd2;
table.ddi_sav[i] = ddi;
table->dd_sav[i] = dd;
table->dd2_sav[i] = dd2;
table->ddi_sav[i] = ddi;
}
table.loaded = true;
table->loaded = true;
return table;
}

70
src/eos/public/eosIO.h Normal file
View File

@@ -0,0 +1,70 @@
#ifndef EOSIO_H
#define EOSIO_H
#include <string>
#include <variant>
#include <memory>
// EOS table format includes
#include "helm.h"
using EOSTable = std::variant<
std::unique_ptr<helmholtz::HELMTable>
>;
/**
* @class EosIO
* @brief Handles the input/output operations for EOS tables.
*
* The EosIO class is responsible for loading and managing EOS tables from files.
* It supports different formats, currently only HELM format.
*
* Example usage:
* @code
* EosIO eosIO("path/to/file");
* std::string format = eosIO.getFormat();
* EOSTable& table = eosIO.getTable();
* @endcode
*/
class EosIO {
private:
std::string m_filename; ///< The filename of the EOS table.
bool m_loaded = false; ///< Flag indicating if the table is loaded.
std::string m_format; ///< The format of the EOS table.
EOSTable m_table; ///< The EOS table data.
/**
* @brief Loads the EOS table from the file.
*/
void load();
/**
* @brief Loads the HELM format EOS table.
*/
void loadHelm();
public:
/**
* @brief Constructs an EosIO object with the given filename.
* @param filename The filename of the EOS table.
*/
EosIO(const std::string filename);
/**
* @brief Default destructor.
*/
~EosIO() = default;
/**
* @brief Gets the format of the EOS table.
* @return The format of the EOS table as a string.
*/
std::string getFormat() const;
/**
* @brief Gets the EOS table.
* @return A reference to the EOS table.
*/
EOSTable& getTable();
};
#endif // EOSIO_H

View File

@@ -35,6 +35,8 @@
#include <string>
#include <format>
#include "debug.h"
/**
* @brief 2D array template alias.
* @tparam T Type of the array elements.
@@ -139,6 +141,118 @@ namespace helmholtz
heap_deallocate_contiguous_2D_memory(xfdt);
}
// // Delete copy constructor and copy assignment operator to prevent accidental shallow copies
// HELMTable(const HELMTable&) = delete;
// HELMTable& operator=(const HELMTable&) = delete;
// // Move constructor
// HELMTable(HELMTable&& other) noexcept
// : loaded(other.loaded),
// f(other.f), fd(other.fd), ft(other.ft), fdd(other.fdd), ftt(other.ftt), fdt(other.fdt),
// fddt(other.fddt), fdtt(other.fdtt), fddtt(other.fddtt),
// dpdf(other.dpdf), dpdfd(other.dpdfd), dpdft(other.dpdft), dpdfdt(other.dpdfdt),
// ef(other.ef), efd(other.efd), eft(other.eft), efdt(other.efdt),
// xf(other.xf), xfd(other.xfd), xft(other.xft), xfdt(other.xfdt)
// {
// other.f = nullptr;
// other.fd = nullptr;
// other.ft = nullptr;
// other.fdd = nullptr;
// other.ftt = nullptr;
// other.fdt = nullptr;
// other.fddt = nullptr;
// other.fdtt = nullptr;
// other.fddtt = nullptr;
// other.dpdf = nullptr;
// other.dpdfd = nullptr;
// other.dpdft = nullptr;
// other.dpdfdt = nullptr;
// other.ef = nullptr;
// other.efd = nullptr;
// other.eft = nullptr;
// other.efdt = nullptr;
// other.xf = nullptr;
// other.xfd = nullptr;
// other.xft = nullptr;
// other.xfdt = nullptr;
// }
// // Move assignment operator
// HELMTable& operator=(HELMTable&& other) noexcept {
// if (this != &other) {
// // Deallocate current memory
// heap_deallocate_contiguous_2D_memory(f);
// heap_deallocate_contiguous_2D_memory(fd);
// heap_deallocate_contiguous_2D_memory(ft);
// heap_deallocate_contiguous_2D_memory(fdd);
// heap_deallocate_contiguous_2D_memory(ftt);
// heap_deallocate_contiguous_2D_memory(fdt);
// heap_deallocate_contiguous_2D_memory(fddt);
// heap_deallocate_contiguous_2D_memory(fdtt);
// heap_deallocate_contiguous_2D_memory(fddtt);
// heap_deallocate_contiguous_2D_memory(dpdf);
// heap_deallocate_contiguous_2D_memory(dpdfd);
// heap_deallocate_contiguous_2D_memory(dpdft);
// heap_deallocate_contiguous_2D_memory(dpdfdt);
// heap_deallocate_contiguous_2D_memory(ef);
// heap_deallocate_contiguous_2D_memory(efd);
// heap_deallocate_contiguous_2D_memory(eft);
// heap_deallocate_contiguous_2D_memory(efdt);
// heap_deallocate_contiguous_2D_memory(xf);
// heap_deallocate_contiguous_2D_memory(xfd);
// heap_deallocate_contiguous_2D_memory(xft);
// heap_deallocate_contiguous_2D_memory(xfdt);
// // Transfer ownership of resources
// loaded = other.loaded;
// f = other.f;
// fd = other.fd;
// ft = other.ft;
// fdd = other.fdd;
// ftt = other.ftt;
// fdt = other.fdt;
// fddt = other.fddt;
// fdtt = other.fdtt;
// fddtt = other.fddtt;
// dpdf = other.dpdf;
// dpdfd = other.dpdfd;
// dpdft = other.dpdft;
// dpdfdt = other.dpdfdt;
// ef = other.ef;
// efd = other.efd;
// eft = other.eft;
// efdt = other.efdt;
// xf = other.xf;
// xfd = other.xfd;
// xft = other.xft;
// xfdt = other.xfdt;
// // Null out the other object's pointers
// other.f = nullptr;
// other.fd = nullptr;
// other.ft = nullptr;
// other.fdd = nullptr;
// other.ftt = nullptr;
// other.fdt = nullptr;
// other.fddt = nullptr;
// other.fdtt = nullptr;
// other.fddtt = nullptr;
// other.dpdf = nullptr;
// other.dpdfd = nullptr;
// other.dpdft = nullptr;
// other.dpdfdt = nullptr;
// other.ef = nullptr;
// other.efd = nullptr;
// other.eft = nullptr;
// other.efdt = nullptr;
// other.xf = nullptr;
// other.xfd = nullptr;
// other.xft = nullptr;
// other.xfdt = nullptr;
// }
// return *this;
// }
friend std::ostream& operator<<(std::ostream& os, const helmholtz::HELMTable& table) {
if (!table.loaded) {
os << "HELMTable not loaded\n";
@@ -371,7 +485,7 @@ namespace helmholtz
* @param filename Path to the file containing the table.
* @return HELMTable structure containing the table data.
*/
HELMTable read_helm_table(const std::string filename);
std::unique_ptr<HELMTable> read_helm_table(const std::string filename);
/**
* @brief Calculate the Helmholtz EOS components.

View File

@@ -6,14 +6,22 @@ meshIO_sources = files(
meshIO_headers = files(
'public/meshIO.h'
)
dependencies = [
mfem_dep
]
# Define the libmeshIO library so it can be linked against by other parts of the build system
libmeshIO = static_library('meshIO',
meshIO_sources,
include_directories: include_directories('public'),
cpp_args: ['-fvisibility=default'],
dependencies: [mfem_dep],
dependencies: dependencies,
install : true)
meshio_dep = declare_dependency(
include_directories: include_directories('public'),
link_with: libmeshIO,
dependencies: dependencies
)
# Make headers accessible
install_headers(meshIO_headers, subdir : '4DSSE/meshIO')

View File

@@ -26,7 +26,7 @@
#include "meshIO.h"
MeshIO::MeshIO(const std::string &mesh_file)
MeshIO::MeshIO(const std::string mesh_file)
{
mesh_file_ = mesh_file;
std::ifstream mesh_stream(mesh_file);

View File

@@ -39,7 +39,7 @@ public:
* @brief Constructor that initializes the MeshIO object with a mesh file.
* @param mesh_file The name of the mesh file.
*/
MeshIO(const std::string &mesh_file);
MeshIO(const std::string mesh_file);
/**
* @brief Destructor for the MeshIO class.

View File

@@ -1,11 +1,18 @@
# Build resources first so that all the embedded resources are available to the other targets
subdir('resources')
# Build the main source code in the correct order
# Build the main source code
subdir('dobj')
subdir('const')
subdir('opatIO')
subdir('meshIO')
# Utility Libraries
subdir('misc')
subdir('config')
subdir('probe')
subdir('eos')
subdir('const')
subdir('dobj')
# Asset Libraries
subdir('eos')
subdir('opatIO')
subdir('meshIO')
# Resouce Manager Libraries
subdir('resource')
# Physics Libraries

36
src/misc/macros/debug.h Normal file
View File

@@ -0,0 +1,36 @@
/**
* @file debug.h
* @brief Defines a macro for triggering a breakpoint in different compilers and platforms.
*
* This file provides a macro `BREAKPOINT()` that triggers a breakpoint
* in the debugger, depending on the compiler and platform being used.
*
* Usage:
* @code
* BREAKPOINT(); // Triggers a breakpoint in the debugger
* @endcode
*/
#ifdef __GNUC__ // GCC and Clang
/**
* @brief Triggers a breakpoint in GCC and Clang.
*/
#define BREAKPOINT() __builtin_debugtrap()
#elif defined(_MSC_VER) // MSVC
/**
* @brief Triggers a breakpoint in MSVC.
*/
#define BREAKPOINT() __debugbreak()
#elif defined(__APPLE__) && defined(__MACH__) // macOS with Clang and LLDB
#include <signal.h>
/**
* @brief Triggers a breakpoint in macOS with Clang and LLDB.
*/
#define BREAKPOINT() raise(SIGTRAP)
#else
#include <csignal>
/**
* @brief Triggers a breakpoint in other platforms.
*/
#define BREAKPOINT() std::raise(SIGTRAP)
#endif

View File

@@ -0,0 +1,21 @@
# ***********************************************************************
#
# Copyright (C) 2025 -- The 4D-STAR Collaboration
# File Author: Emily Boudreaux
# Last Modified: March 19, 2025
#
# 4DSSE is free software; you can use it and/or modify
# it under the terms and restrictions the GNU General Library Public
# License version 3 (GPLv3) as published by the Free Software Foundation.
#
# 4DSSE is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with this software; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# *********************************************************************** #
macros_dep = declare_dependency(include_directories: include_directories('.'))

View File

@@ -0,0 +1,16 @@
#ifndef WARNING_CONTROL_H
#define WARNING_CONTROL_H
#if defined(__GNUC__) || defined(__clang__)
#define DEPRECATION_WARNING_OFF _Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
#define DEPRECATION_WARNING_ON _Pragma("GCC diagnostic pop")
#elif defined(_MSC_VER)
#define DEPRECATION_WARNING_OFF __pragma(warning(push)) __pragma(warning(disable: 4996))
#define DEPRECATION_WARNING_ON __pragma(warning(pop))
#else
#define DEPRECATION_WARNING_OFF
#define DEPRECATION_WARNING_ON
#endif
#endif // WARNING_CONTROL_H

2
src/misc/meson.build Normal file
View File

@@ -0,0 +1,2 @@
# IMPORTANT: DO NOT MAKE MISC DEPEND ON ANY OTHER MODULE AS IT IS THE FIRST MODULE TO BE BUILT
subdir('macros')

View File

@@ -16,5 +16,9 @@ libopatIO = library('opatIO',
install : true,
)
opatio_dep = declare_dependency(
include_directories: include_directories('public'),
link_with: libopatIO,
)
# Make headers accessible
install_headers(opatIO_headers, subdir : '4DSSE/opatIO')

View File

@@ -56,7 +56,7 @@ T swap_bytes(T value) {
// Constructor
OpatIO::OpatIO() {}
OpatIO::OpatIO(std::string filename) : filename(filename) {
OpatIO::OpatIO(const std::string filename) : filename(filename) {
load();
}

View File

@@ -21,7 +21,6 @@
#ifndef OPATIO_H
#define OPATIO_H
#include <iostream>
#include <fstream>
#include <string>
#include <vector>

40
src/resource/meson.build Normal file
View File

@@ -0,0 +1,40 @@
# Define the library
resourceManager_sources = files(
'private/resourceManager.cpp',
'private/resourceManagerTypes.cpp'
)
resourceManager_headers = files(
'public/resourceManager.h',
'public/resourceManagerTypes.h'
)
dependencies = [
yaml_cpp_dep,
opatio_dep,
eos_dep,
quill_dep,
config_dep,
probe_dep,
mfem_dep,
macros_dep,
meshio_dep
]
libResourceHeader_dep = declare_dependency(include_directories: include_directories('public'))
# Define the libresourceManager library so it can be linked against by other parts of the build system
libresourceManager = static_library('resourceManager',
resourceManager_sources,
include_directories: include_directories('public'),
cpp_args: ['-fvisibility=default'],
dependencies: dependencies,
install : true)
resourceManager_dep = declare_dependency(
include_directories: include_directories('public'),
link_with: libresourceManager,
dependencies: dependencies
)
# Make headers accessible
install_headers(resourceManager_headers, subdir : '4DSSE/resource')

View File

@@ -0,0 +1,68 @@
#include <iostream>
#include <vector>
#include <string>
#include <filesystem>
#include "quill/LogMacros.h"
#include "resourceManager.h"
#include "resourceManagerTypes.h"
#include "debug.h"
#include "config.h"
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
ResourceManager::ResourceManager() {
std::string defaultDataDir = TOSTRING(DATA_DIR);
m_dataDir = m_config.get<std::string>("Data:Dir", defaultDataDir);
// -- Get the index file path using filesytem to make it a system safe path
std::string indexFilePath = m_dataDir + "/index.yaml";
std::filesystem::path indexFile(indexFilePath);
m_resourceConfig.loadConfig(indexFile.string());
std::vector<std::string> assets = m_resourceConfig.keys();
for (auto key : assets ) {
load(key);
}
}
std::vector<std::string> ResourceManager::getAvaliableResources() {
std::vector<std::string> resources;
resources = m_resourceConfig.keys();
return resources;
}
const Resource& ResourceManager::getResource(const std::string &name) const {
auto it = m_resources.find(name);
if (it != m_resources.end()) {
return it->second;
}
throw std::runtime_error("Resource " + name + " not found");
}
bool ResourceManager::loadResource(std::string& name) {
return load(name);
}
bool ResourceManager::load(const std::string& name) {
const std::string resourcePath = m_dataDir + "/" + m_resourceConfig.get<std::string>(name);
std::filesystem::path resourceFile(resourcePath);
if (!std::filesystem::exists(resourceFile)) {
LOG_ERROR(m_logger, "Resource file not found: {}", resourceFile.string());
return false;
}
LOG_INFO(m_logger, "Loading resource: {}", resourceFile.string());
if (m_resources.find(name) != m_resources.end()) {
LOG_INFO(m_logger, "Resource already loaded: {}", name);
return true;
}
Resource resource = createResource(name, resourcePath);
m_resources[name] = std::move(resource);
// -- Check if the resource is already in the map
return true;
}

View File

@@ -0,0 +1,41 @@
#include <string>
#include "resourceManagerTypes.h"
#include "opatIO.h"
#include "meshIO.h"
#include "eosIO.h"
#include "debug.h"
std::string getFirstSegment(const std::string& input) {
size_t pos = input.find(':');
if (pos == std::string::npos) {
// No colon found, return the entire string
return input;
} else {
// Return substring from start to the position of the first colon
return input.substr(0, pos);
}
}
Resource createResource(const std::string& type, const std::string& path) {
static const std::unordered_map<std::string, std::function<Resource(const std::string&)>> factoryMap = {
{"opac", [](const std::string& p) { return Resource(
std::make_unique<OpatIO>(p));
}},
{"mesh", [](const std::string& p) { return Resource(
std::make_unique<MeshIO>(p));
}},
{"eos", [](const std::string& p) { return Resource(
std::make_unique<EosIO>(p));
}}
// Add more mappings as needed
};
auto it = factoryMap.find(getFirstSegment(type));
if (it != factoryMap.end()) {
return it->second(path);
} else {
throw std::invalid_argument("Unknown resource type: " + type);
}
}

View File

@@ -0,0 +1,115 @@
#ifndef RESOURCE_MANAGER_H
#define RESOURCE_MANAGER_H
#include <vector>
#include <string>
#include <stdexcept>
#include <unordered_map>
#include "resourceManagerTypes.h"
#include "config.h"
#include "probe.h"
#include "quill/LogMacros.h"
/**
* @class ResourceManager
* @brief Manages resources within the application.
*
* The ResourceManager class is responsible for loading, storing, and providing access to resources.
* It follows the Singleton design pattern to ensure only one instance of the manager exists.
*/
class ResourceManager {
private:
/**
* @brief Private constructor to prevent instantiation.
*/
ResourceManager();
/**
* @brief Deleted copy constructor to prevent copying.
*/
ResourceManager(const ResourceManager&) = delete;
/**
* @brief Deleted assignment operator to prevent assignment.
*/
ResourceManager& operator=(const ResourceManager&) = delete;
Config& m_config = Config::getInstance();
Probe::LogManager& m_logManager = Probe::LogManager::getInstance();
quill::Logger* m_logger = m_logManager.getLogger("log");
Config m_resourceConfig;
std::string m_dataDir;
std::unordered_map<std::string, Resource> m_resources;
/**
* @brief Loads a resource by name.
* @param name The name of the resource to load.
* @return True if the resource was loaded successfully, false otherwise.
*/
bool load(const std::string& name);
public:
/**
* @brief Gets the singleton instance of the ResourceManager.
* @return The singleton instance of the ResourceManager.
*/
static ResourceManager& getInstance() {
static ResourceManager instance;
return instance;
}
/**
* @brief Gets a list of available resources.
* @return A vector of strings containing the names of available resources.
*
* Example usage:
* @code
* ResourceManager& manager = ResourceManager::getInstance();
* std::vector<std::string> resources = manager.getAvaliableResources();
* @endcode
*/
std::vector<std::string> getAvaliableResources();
/**
* @brief Gets a resource by name.
* @param name The name of the resource to retrieve.
* @return A constant reference to the requested resource.
* @throws std::runtime_error if the resource is not found.
*
* Example usage:
* @code
* ResourceManager& manager = ResourceManager::getInstance();
* const Resource& resource = manager.getResource("exampleResource");
* @endcode
*/
const Resource& getResource(const std::string &name) const;
/**
* @brief Loads a resource by name.
* @param name The name of the resource to load.
* @return True if the resource was loaded successfully, false otherwise.
*
* Example usage:
* @code
* ResourceManager& manager = ResourceManager::getInstance();
* bool success = manager.loadResource("exampleResource");
* @endcode
*/
bool loadResource(std::string& name);
/**
* @brief Loads all resources.
* @return An unordered map with resource names as keys and load success as values.
*
* Example usage:
* @code
* ResourceManager& manager = ResourceManager::getInstance();
* std::unordered_map<std::string, bool> results = manager.loadAllResources();
* @endcode
*/
std::unordered_map<std::string, bool> loadAllResources();
};
#endif // RESOURCE_MANAGER_H

View File

@@ -0,0 +1,71 @@
#ifndef RESOURCE_MANAGER_TYPES_H
#define RESOURCE_MANAGER_TYPES_H
#include <memory>
#include <variant>
#include "opatIO.h"
#include "helm.h"
#include "meshIO.h"
#include "eosIO.h"
/**
* @file resourceManagerTypes.h
* @brief Defines types and functions for managing resources.
*
* This file provides type definitions and functions for handling different
* types of resources in a unified manner.
*/
// -- Valid resource types
/**
* @brief A variant type that can hold different types of resources.
*
* The Resource type is a std::variant that can hold a unique pointer to
* an OpatIO, MeshIO, or EosIO object.
*
* Example usage:
* @code
* Resource resource = std::make_unique<OpatIO>(...);
* @endcode
*/
using Resource = std::variant<
std::unique_ptr<OpatIO>,
std::unique_ptr<MeshIO>,
std::unique_ptr<EosIO>>;
/**
* @brief Extracts the first segment of a given string.
*
* This function takes a string input and returns the first segment
* separated by a delimiter (default is '/').
*
* @param input The input string to be processed.
* @return The first segment of the input string.
*
* Example usage:
* @code
* std::string segment = getFirstSegment("path/to/resource");
* // segment == "path"
* @endcode
*/
std::string getFirstSegment(const std::string& input);
/**
* @brief Creates a resource based on the specified type and path.
*
* This function creates a resource object based on the provided type
* and initializes it using the given path.
*
* @param type The type of the resource to be created (e.g., "OpatIO", "MeshIO", "EosIO").
* @param path The path to initialize the resource with.
* @return A Resource object initialized with the specified type and path.
*
* Example usage:
* @code
* Resource resource = createResource("OpatIO", "path/to/opat");
* @endcode
*/
Resource createResource(const std::string& type, const std::string& path);
#endif // RESOURCE_MANAGER_TYPES_H

View File

@@ -1,11 +1,12 @@
#include <gtest/gtest.h>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include <set>
#include <sstream>
#include "helm.h"
#include "resourceManager.h"
#include "config.h"
/**
* @file constTest.cpp
@@ -17,21 +18,20 @@
*/
class eosTest : public ::testing::Test {};
std::string HELM_FILENAME = std::string(getenv("MESON_SOURCE_ROOT")) + "/assets/eos/helm_table.dat";
std::string TEST_CONFIG = std::string(getenv("MESON_SOURCE_ROOT")) + "/tests/testsConfig.yaml";
/**
* @test Verify default constructor initializes correctly.
*/
TEST_F(eosTest, constructor) {
using namespace helmholtz;
EXPECT_NO_THROW(HELMTable table = read_helm_table(HELM_FILENAME));
}
TEST_F(eosTest, read_helm_table) {
using namespace helmholtz;
HELMTable table = read_helm_table(HELM_FILENAME);
// Capture the << operator output as a string
Config::getInstance().loadConfig(TEST_CONFIG);
ResourceManager& rm = ResourceManager::getInstance();
auto& eos = std::get<std::unique_ptr<EosIO>>(rm.getResource("eos:helm"));
auto& table = eos->getTable();
auto& helmTable = *std::get<std::unique_ptr<helmholtz::HELMTable>>(table);
std::stringstream ss;
ss << table;
ss << helmTable;
EXPECT_EQ(ss.str(), "HELMTable Data:\n imax: 541, jmax: 201\n Temperature Range: [1000, 1e+13]\n Density Range: [1e-12, 1e+15]\n");
}
@@ -58,28 +58,31 @@ TEST_F(eosTest, get_helm_EOS) {
eos1.abar = 1.0/asum;
eos1.zbar = eos1.abar*zsum;
HELMTable table = read_helm_table(HELM_FILENAME);
EOS eos = get_helm_EOS(eos1, table);
// std::cout << eos << std::endl;
ResourceManager& rm = ResourceManager::getInstance();
auto& eos = std::get<std::unique_ptr<EosIO>>(rm.getResource("eos:helm"));
auto& table = eos->getTable();
auto& helmTable = *std::get<std::unique_ptr<helmholtz::HELMTable>>(table);
EOS helmEos = get_helm_EOS(eos1, helmTable);
const double absErr = 1e-12;
//Check composition info
EXPECT_DOUBLE_EQ( eos.ye, 8.75e-01);
EXPECT_NEAR( helmEos.ye, 8.75e-01, absErr);
//Check E, P, S and derivatives of each wrt Rho and T
EXPECT_DOUBLE_EQ( eos.etaele, 2.3043348231021554e+01);
EXPECT_DOUBLE_EQ( eos.etot, 1.1586558190936826e+17);
EXPECT_DOUBLE_EQ(eos.denerdd, 6.1893000468285858e+10);
EXPECT_DOUBLE_EQ(eos.denerdt, 1.2129708972542575e+08);
EXPECT_DOUBLE_EQ( eos.ptot, 6.9610135220017030e+22);
EXPECT_DOUBLE_EQ(eos.dpresdd, 1.0296440482849070e+17);
EXPECT_DOUBLE_EQ(eos.dpresdt, 7.7171347517311625e+13);
EXPECT_DOUBLE_EQ( eos.stot, 6.0647461970567346e+08);
EXPECT_DOUBLE_EQ(eos.dentrdd,-7.7171347517311645e+01);
EXPECT_DOUBLE_EQ(eos.dentrdt, 1.2129708972542577e+00);
EXPECT_NEAR( helmEos.etaele, 2.3043348231021554e+01, absErr);
EXPECT_NEAR( helmEos.etot, 1.1586558190936826e+17, 1e3);
EXPECT_NEAR(helmEos.denerdd, 6.1893000468285858e+10, 1e-2);
EXPECT_NEAR(helmEos.denerdt, 1.2129708972542575e+08, 1e-7);
EXPECT_NEAR( helmEos.ptot, 6.9610135220017030e+22, 1e10);
EXPECT_NEAR(helmEos.dpresdd, 1.0296440482849070e+17, 1e3);
EXPECT_NEAR(helmEos.dpresdt, 7.7171347517311625e+13, 1.0);
EXPECT_NEAR( helmEos.stot, 6.0647461970567346e+08, 1e-7);
EXPECT_NEAR(helmEos.dentrdd,-7.7171347517311645e+01, absErr);
EXPECT_NEAR(helmEos.dentrdt, 1.2129708972542577e+00, absErr);
const double abs_err = 1.0e-12;
// Maxwell relations, should always be zero
EXPECT_NEAR( eos.dse, 0, abs_err);
EXPECT_NEAR( eos.dpe, 0, abs_err);
EXPECT_NEAR( eos.dsp, 0, abs_err);
EXPECT_NEAR( helmEos.dse, 0, absErr);
EXPECT_NEAR( helmEos.dpe, 0, absErr);
EXPECT_NEAR( helmEos.dsp, 0, absErr);
}

View File

@@ -11,7 +11,7 @@ foreach test_file : test_sources
test_exe = executable(
exe_name,
test_file,
dependencies: [gtest_dep, eos_dep, gtest_main],
dependencies: [gtest_dep, eos_dep, gtest_main, resourceManager_dep, config_dep],
install_rpath: '@loader_path/../../src' # Ensure runtime library path resolves correctly
)

View File

@@ -1,6 +1,5 @@
#include <gtest/gtest.h>
#include "meshIO.h"
#include <iostream>
#include <string>
#include "mfem.hpp"

View File

@@ -11,6 +11,7 @@ subdir('meshIO')
subdir('config')
subdir('probe')
subdir('eos')
subdir('resource')
# Subdirectories for sandbox tests
subdir('dobj_sandbox')

View File

@@ -0,0 +1,24 @@
# Test files for const
test_sources = [
'resourceManagerTest.cpp',
]
foreach test_file : test_sources
exe_name = test_file.split('.')[0]
message('Building test: ' + exe_name)
# Create an executable target for each test
test_exe = executable(
exe_name,
test_file,
dependencies: [gtest_dep, resourceManager_dep, gtest_main, macros_dep],
include_directories: include_directories('../../src/resource/public'),
install_rpath: '@loader_path/../../src' # Ensure runtime library path resolves correctly
)
# Add the executable as a test
test(
exe_name,
test_exe,
env: ['MESON_SOURCE_ROOT=' + meson.project_source_root(), 'MESON_BUILD_ROOT=' + meson.project_build_root()])
endforeach

View File

@@ -0,0 +1,61 @@
#include <gtest/gtest.h>
#include "resourceManager.h"
#include "config.h"
#include "eosIO.h"
#include "helm.h"
#include "resourceManagerTypes.h"
#include <string>
#include <stdexcept>
#include <vector>
#include <set>
#include "debug.h"
/**
* @file configTest.cpp
* @brief Unit tests for the resourceManager class.
*/
std::string TEST_CONFIG = std::string(getenv("MESON_SOURCE_ROOT")) + "/tests/testsConfig.yaml";
/**
* @brief Test suite for the resourceManager class.
*/
class resourceManagerTest : public ::testing::Test {};
/**
* @brief Test the constructor of the resourceManager class.
*/
TEST_F(resourceManagerTest, constructor) {
Config::getInstance().loadConfig(TEST_CONFIG);
EXPECT_NO_THROW(ResourceManager::getInstance());
}
TEST_F(resourceManagerTest, getAvaliableResources) {
Config::getInstance().loadConfig(TEST_CONFIG);
ResourceManager& rm = ResourceManager::getInstance();
std::vector<std::string> resources = rm.getAvaliableResources();
std::set<std::string> expected = {"eos:helm", "mesh:sphere"};
std::set<std::string> actual(resources.begin(), resources.end());
EXPECT_EQ(expected, actual);
}
TEST_F(resourceManagerTest, getResource) {
Config::getInstance().loadConfig(TEST_CONFIG);
ResourceManager& rm = ResourceManager::getInstance();
std::string name = "eos:helm";
const Resource &r = rm.getResource(name);
// BREAKPOINT();
const auto &eos = std::get<std::unique_ptr<EosIO>>(r);
EXPECT_EQ("helm", eos->getFormat());
EOSTable &table = eos->getTable();
// -- Extract the Helm table from the EOSTable
helmholtz::HELMTable &helmTable = *std::get<std::unique_ptr<helmholtz::HELMTable>>(table);
EXPECT_DOUBLE_EQ(helmTable.f[0][0], -1692098915534.8142);
EXPECT_THROW(rm.getResource("opac:GS98:high:doesNotExist"), std::runtime_error);
}

38
tests/testsConfig.yaml Normal file
View File

@@ -0,0 +1,38 @@
Debug: true
Probe:
GLVis:
Visualization: true
# Host: "10.8.0.14"
Host: "localhost"
Port: 19916
DefaultKeyset: "iimmMMc"
GetRaySolution:
MakeDir: true
Poly:
Solver:
ViewInitialGuess: true
GMRES:
MaxIter: 5000
RelTol: 1.0e-8
AbsTol: 1.0e-10
PrintLevel: 0
Newton:
MaxIter: 200
RelTol: 1.0e-8
AbsTol: 1.0e-10
PrintLevel: 1
Newton:
Output:
1D:
Save: true
Path: "output/Poly/1D/poly.csv"
RaySamples: 1000
RayCoLatitude: 0.0
RayLongitude: 0.0
# THESE ARE ONLY USED BY THE TEST SUITE AND NOT THE MAIN CODE
# ANY OPTIONS NEEDED FOR THE TEST SUITE SHOULD BE PLACED HERE
Tests:
Poly:
Index: 1.1