feat(poly): lagrangian constrained weak form of 3D lane-Emden

added a basic implimentation of the 3D lane emden equation using a lagrangian multiplier to constrain the value at the center of a spherical domain
This commit is contained in:
2025-02-20 15:28:00 -05:00
parent deab5be0c1
commit 1fd1e624f2
4 changed files with 89 additions and 85 deletions

View File

@@ -13,67 +13,56 @@
// TODO: Come back to this and think of a better way to get the mesh file
const std::string SPHERICAL_MESH = std::string(getenv("MESON_SOURCE_ROOT")) + "/src/resources/mesh/sphere.msh";
PolySolver::PolySolver(double n, double order)
PolySolver::PolySolver(double n, double order)
: n(n),
order(order),
meshIO(SPHERICAL_MESH),
mesh(meshIO.GetMesh()),
gaussianCoeff(std::make_unique<polyMFEMUtils::GaussianCoefficient>(0.1)),
diffusionCoeff(std::make_unique<mfem::VectorConstantCoefficient>(mfem::Vector(mesh.SpaceDimension()))),
nonLinearSourceCoeff(std::make_unique<mfem::ConstantCoefficient>(1.0))
{
(*diffusionCoeff).GetVec() = 1.0;
feCollection = std::make_unique<mfem::H1_FECollection>(order, mesh.SpaceDimension());
feSpace = std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get());
lambdaFeSpace = std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get(), 1); // Scalar space for lambda
compositeIntegrator = std::make_unique<polyMFEMUtils::CompositeNonlinearIntegrator>();
nonlinearForm = std::make_unique<mfem::NonlinearForm>(feSpace.get());
C = std::make_unique<mfem::LinearForm>(feSpace.get());
u = std::make_unique<mfem::GridFunction>(feSpace.get());
feCollection(std::make_unique<mfem::H1_FECollection>(order, mesh.SpaceDimension())),
feSpace(std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get())),
lambdaFeSpace(std::make_unique<mfem::FiniteElementSpace>(&mesh, feCollection.get(), 1)), // Scalar space for lambda
compositeIntegrator(std::make_unique<polyMFEMUtils::CompositeNonlinearIntegrator>()),
nonlinearForm(std::make_unique<mfem::NonlinearForm>(feSpace.get())),
C(std::make_unique<mfem::LinearForm>(feSpace.get())),
u(std::make_unique<mfem::GridFunction>(feSpace.get())),
diffusionCoeff(std::make_unique<mfem::VectorConstantCoefficient>([&](){
mfem::Vector diffusionCoeffVec(mesh.SpaceDimension());
diffusionCoeffVec = 1.0;
return diffusionCoeffVec;
}())),
nonLinearSourceCoeff(std::make_unique<mfem::ConstantCoefficient>(1.0)),
gaussianCoeff(std::make_unique<polyMFEMUtils::GaussianCoefficient>(0.1)) {
assembleNonlinearForm();
assembleConstraintForm();
}
PolySolver::assembleNonlinearForm() {
PolySolver::~PolySolver() {}
void PolySolver::assembleNonlinearForm() {
// Add the \int_{\Omega}\nabla v\cdot\nabla\theta d\Omegaterm
compositeIntegrator->add_integrator(
new polyMFEMUtils::BilinearIntegratorWrapper(
new mfem::DiffusionIntegrator(diffusionCoeff.get()),
)
auto wrappedDiffusionIntegrator = std::make_unique<polyMFEMUtils::BilinearIntegratorWrapper>(
new mfem::DiffusionIntegrator(*diffusionCoeff)
);
compositeIntegrator->add_integrator(wrappedDiffusionIntegrator.release());
// Add the \int_{\Omega}v\theta^{n} d\Omega term
compositeIntegrator->add_integrator(
new polyMFEMUtils::NonlinearPowerIntegrator(
nonLinearSourceCoeff.get(),
n
)
);
auto nonLinearIntegrator = std::make_unique<polyMFEMUtils::NonlinearPowerIntegrator>(*nonLinearSourceCoeff, n);
compositeIntegrator->add_integrator(nonLinearIntegrator.release());
compositeIntegrator->add_integrator(
new polyMFEMUtils::ConstraintIntegrator(
*gaussianCoeff
)
);
// Add the \int_{\Omega}v\eta(r) d\Omega term
auto constraintIntegrator = std::make_unique<polyMFEMUtils::ConstraintIntegrator>(*gaussianCoeff);
compositeIntegrator->add_integrator(constraintIntegrator.release());
nonlinearForm->AddDomainIntegrator(compositeIntegrator.get());
nonlinearForm->AddDomainIntegrator(compositeIntegrator.release());
}
PolySolver::assembleConstraintForm() {
C->AddDomainIntegrator(
new mfem::DomainLFIntegrator(
*gaussianCoeff
)
);
void PolySolver::assembleConstraintForm() {
auto constraintIntegrator = std::make_unique<mfem::DomainLFIntegrator>(*gaussianCoeff);
C->AddDomainIntegrator(constraintIntegrator.release());
C->Assemble();
}
PolySolver::solve(){
void PolySolver::solve(){
// --- Set the initial guess for the solution ---
mfem::FunctionCoefficient initCoeff (
[this](const mfem::Vector &x) {
@@ -86,6 +75,10 @@ PolySolver::solve(){
int lambdaDofOffset = feSpace->GetTrueVSize(); // Get the size of θ space
int totalTrueDofs = lambdaDofOffset + lambdaFeSpace->GetTrueVSize();
std::cout << "Total True Dofs: " << totalTrueDofs << std::endl;
std::cout << "Lambda Dof Offset: " << lambdaDofOffset << std::endl;
std::cout << "Lambda True Dofs: " << lambdaFeSpace->GetTrueVSize() << std::endl;
std::cout << "U True Dofs: " << feSpace->GetTrueVSize() << std::endl;
if (totalTrueDofs != lambdaDofOffset + 1) {
throw std::runtime_error("The total number of true dofs is not equal to the sum of the lambda offset and the lambda space size");
}
@@ -93,7 +86,8 @@ PolySolver::solve(){
mfem::Vector U(totalTrueDofs);
U = 0.0;
u->GetTrueDofs(U.GetBlock(0));
mfem::Vector u_view(U.GetData(), lambdaDofOffset);
u->GetTrueDofs(u_view);
// --- Setup the Newton Solver ---
mfem::NewtonSolver newtonSolver;
@@ -113,7 +107,7 @@ PolySolver::solve(){
// TODO: Change numeric tolerance to grab from the tol module
// --- Setup the Augmented Operator ---
polyMFEMUtils::AugmentedOperator aug_op(nonlinearForm.get(), C.get(), lambdaDofOffset);
polyMFEMUtils::AugmentedOperator aug_op(*nonlinearForm, *C, lambdaDofOffset);
newtonSolver.SetOperator(aug_op);
// --- Create the RHS of the augmented system ---
@@ -136,7 +130,8 @@ PolySolver::solve(){
newtonSolver.Mult(B, U);
// --- Extract the Solution ---
u->Distribute(U.GetBlock(0));
mfem::Vector u_sol_view(U.GetData(), lambdaDofOffset);
u->SetData(u_sol_view);
double lambda = U[lambdaDofOffset];
std::cout << "λ = " << lambda << std::endl;

View File

@@ -8,6 +8,7 @@
#include "meshIO.h"
#include "polyCoeff.h"
#include "polyMFEMUtils.h"
class PolySolver {
@@ -28,8 +29,6 @@ private:
std::unique_ptr<mfem::GridFunction> u;
std::unique_ptr<mfem::Vector> oneVec;
std::unique_ptr<mfem::VectorConstantCoefficient> diffusionCoeff;
std::unique_ptr<mfem::ConstantCoefficient> nonLinearSourceCoeff;
std::unique_ptr<polyMFEMUtils::GaussianCoefficient> gaussianCoeff;
@@ -40,6 +39,7 @@ private:
public:
PolySolver(double n, double order);
~PolySolver();
void solve();
};

View File

@@ -132,11 +132,7 @@ namespace polyMFEMUtils {
CompositeNonlinearIntegrator::CompositeNonlinearIntegrator() { }
CompositeNonlinearIntegrator::~CompositeNonlinearIntegrator() {
for (size_t i = 0; i < integrators.size(); i++) {
delete integrators[i];
}
}
CompositeNonlinearIntegrator::~CompositeNonlinearIntegrator() { }
void CompositeNonlinearIntegrator::add_integrator(mfem::NonlinearFormIntegrator *integrator) {
integrators.push_back(integrator);
@@ -186,7 +182,7 @@ namespace polyMFEMUtils {
mfem::Vector shape(dof);
const int intOrder = 2 * el.GetOrder() + 3;
mfem::IntegrationRule ir(el.GetGeomType(), intOrder);
const mfem::IntegrationRule &ir = mfem::IntRules.Get(el.GetGeomType(), intOrder);
for (int i = 0; i < ir.GetNPoints(); i++) {
const mfem::IntegrationPoint &ip = ir.IntPoint(i);
@@ -210,7 +206,7 @@ namespace polyMFEMUtils {
: stdDev(stdDev_),
norm_coeff(1.0/(std::pow(std::sqrt(2*std::numbers::pi)*stdDev_,3))) {}
GaussianCoefficient::Eval(mfem::ElementTransformation &T, const mfem::IntegrationPoint &ip) {
double GaussianCoefficient::Eval(mfem::ElementTransformation &T, const mfem::IntegrationPoint &ip) {
mfem::Vector r;
T.Transform(ip, r);
double r2 = r * r;
@@ -221,11 +217,11 @@ namespace polyMFEMUtils {
AugmentedOperator::AugmentedOperator(mfem::NonlinearForm &nfl_, mfem::LinearForm &C_, int lambdaDofOffset_)
:
mfem::Operator( // Call the base class constructor
nfl_->FESpace()->GetTrueVSize()+1, // Sets the height attribute (+1 for the lambda component)
nfl_->FESpace()->GetTrueVSize()+1 // Sets the width attribute (+1 for the lambda component)
nfl_.FESpace()->GetTrueVSize()+1, // Sets the height attribute (+1 for the lambda component)
nfl_.FESpace()->GetTrueVSize()+1 // Sets the width attribute (+1 for the lambda component)
),
nfl(&nfl_),
C(&C_),
nfl(nfl_),
C(C_),
lambdaDofOffset(lambdaDofOffset_),
lastJacobian(nullptr) {}
@@ -236,51 +232,59 @@ namespace polyMFEMUtils {
// Compute the residual of the nonlinear form (F(u) - λC)
mfem::Vector F(lambdaDofOffset);
nfl->Mult(u, F); // This now includes the -λ∫vη(r) dΩ term
nfl.Mult(u, F); // This now includes the -λ∫vη(r) dΩ term
// Compute the transpose of C for the off diagonal terms of the augmented operator
y.SetSize(height);
y = 0.0;
y.SetBlock(0, F);
y[lambdaDofOffset] = (*C)(u); // Cᵀ×u. This is equivalent to ∫ η(r)θ dΩ
for (int i = 0; i < lambdaDofOffset; i++) {
y[i] = F[i];
}
mfem::GridFunction u_gf(C.FESpace());
u_gf.SetData(u);
y[lambdaDofOffset] = C.operator()(u_gf);
// add -lambda * C to the residual
mfem::Vector lambda_C(lambdaDofOffset);
C->GetVector(lambda_C) // Get the coefficient vector for C. I.e. ∫ vη(r) dΩ
lambda_C *= -lambda; // Multiply by -λ (this is now the term −λ ∫ vη(r)dΩ)
mfem::GridFunction constraint_gf(C.FESpace());
constraint_gf = 0.0;
y.AddBlockVector(0, lambda_C); // Add the term to the residual
mfem::Vector constraint_tdofs;
C.Assemble();
lambda_C = C.GetData();
lambda_C *= -lambda; // Multiply by -λ (this is now the term −λ ∫ vη(r)dΩ)
for (int i = 0; i < lambdaDofOffset; i++) {
y[i] += lambda_C[i];
}
}
mfem::Operator &AugmentedOperator::GetGradient(const mfem::Vector &x) const {
// Select the lambda component of the input vector and seperate it from the θ component
mfem::Vector u(x.GetData(), lambdaDofOffset);
double lambda = x[lambdaDofOffset];
// --- Create the augmented Jacobian matrix ---
mfem::Operator *Jnfl = nfl->GetGradient(u); // Get the gradient of the nonlinear form
mfem::SparseMatrix *J_aug = new mfem::SparseMatrix(height, width);
// Fill in the blocks of the augmented Jacobian matrix
// Top-Left: Jacobian of the nonlinear form
mfem::SparseMatrix *Jnfl_sparse = dynamic_cast<mfem::SparseMatrix*>(Jnfl);
// Copy the original Jacobian into the augmented Jacobian
if (Jnfl_sparse) { // Checks if the dynamic cast was successful
for (int i = 0; i < Jnfl_sparse->Height(); i++) {
for (int j = 0; j < Jnfl_sparse->Width(); j++) {
J_aug->Set(i, j, Jnfl_sparse->Get(i, j));
}
}
} else {
mfem::SparseMatrix *Jnfl_sparse = dynamic_cast<mfem::SparseMatrix*>(&nfl.GetGradient(u));
if (!Jnfl_sparse) {
MFEM_ABORT("GetGradient did not return a SparseMatrix");
}
mfem::SparseMatrix *J_aug = new mfem::SparseMatrix(height, width);
// Copy the original Jacobian into the augmented Jacobian
for (int i = 0; i < Jnfl_sparse->Height(); i++) {
for (int j = 0; j < Jnfl_sparse->Width(); j++) {
J_aug->Set(i, j, Jnfl_sparse->Elem(i, j));
}
}
// Bottom-left C (the constraint matrix)
mfem::Vector CVec(lambdaDofOffset);
C->GetVector(CVec);
mfem::GridFunction tempCGrid(C.FESpace());
C.Assemble();
CVec = C.GetData();
for (int i = 0; i < CVec.Size(); i++) {
J_aug->Set(lambdaDofOffset, i, CVec[i]);
}
@@ -297,7 +301,7 @@ namespace polyMFEMUtils {
return *lastJacobian;
}
AugmentedOperator::~AugAugmentedOperator() {
AugmentedOperator::~AugmentedOperator() {
delete lastJacobian;
}
} // namespace polyMFEMUtils

View File

@@ -1,3 +1,6 @@
#ifndef POLYMFEMUTILS_H
#define POLYMFEMUTILS_H
#include "mfem.hpp"
#include <string>
@@ -183,10 +186,10 @@ namespace polyMFEMUtils {
class AugmentedOperator : public mfem::Operator {
private:
std::unique_ptr<mfem::NonlinearForm> nfl;
std::unique_ptr<mfem::LinearForm> C;
mfem::NonlinearForm &nfl;
mfem::LinearForm &C;
int lambdaDofOffset;
mfem::SparseMatrix *lastJacobian = nullptr;
mutable mfem::SparseMatrix *lastJacobian = nullptr;
public:
AugmentedOperator(mfem::NonlinearForm &nfl_, mfem::LinearForm &C_, int lambdaDofOffset_);
@@ -196,4 +199,6 @@ namespace polyMFEMUtils {
virtual mfem::Operator &GetGradient(const mfem::Vector &x) const override;
};
} // namespace polyMFEMUtils
} // namespace polyMFEMUtils
#endif // POLYMFEMUTILS_H