1109 lines
47 KiB
C++
1109 lines
47 KiB
C++
#include "gridfire/engine/engine_graph.h"
|
|
#include "gridfire/reaction/reaction.h"
|
|
#include "gridfire/network.h"
|
|
#include "gridfire/screening/screening_types.h"
|
|
#include "gridfire/engine/procedures/priming.h"
|
|
#include "gridfire/partition/partition_ground.h"
|
|
#include "gridfire/engine/procedures/construction.h"
|
|
|
|
#include "fourdst/composition/species.h"
|
|
#include "fourdst/composition/atomicSpecies.h"
|
|
|
|
#include "quill/LogMacros.h"
|
|
|
|
#include <cstdint>
|
|
#include <iostream>
|
|
#include <set>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <string_view>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include <fstream>
|
|
#include <ranges>
|
|
|
|
#include <boost/numeric/odeint.hpp>
|
|
|
|
#include "cppad/cppad.hpp"
|
|
#include "cppad/utility/sparse_rc.hpp"
|
|
#include "cppad/utility/sparse_rcv.hpp"
|
|
|
|
|
|
namespace gridfire {
|
|
GraphEngine::GraphEngine(
|
|
const fourdst::composition::Composition &composition,
|
|
const BuildDepthType buildDepth
|
|
): GraphEngine(composition, partition::GroundStatePartitionFunction(), buildDepth) {}
|
|
|
|
GraphEngine::GraphEngine(
|
|
const fourdst::composition::Composition &composition,
|
|
const partition::PartitionFunction& partitionFunction,
|
|
const BuildDepthType buildDepth) :
|
|
m_reactions(build_reaclib_nuclear_network(composition, buildDepth, false)),
|
|
m_depth(buildDepth),
|
|
m_partitionFunction(partitionFunction.clone())
|
|
{
|
|
syncInternalMaps();
|
|
}
|
|
|
|
GraphEngine::GraphEngine(
|
|
const reaction::LogicalReactionSet &reactions
|
|
) :
|
|
m_reactions(reactions) {
|
|
syncInternalMaps();
|
|
}
|
|
|
|
std::expected<StepDerivatives<double>, expectations::StaleEngineError> GraphEngine::calculateRHSAndEnergy(
|
|
const std::vector<double> &Y,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
if (m_usePrecomputation) {
|
|
std::vector<double> bare_rates;
|
|
std::vector<double> bare_reverse_rates;
|
|
bare_rates.reserve(m_reactions.size());
|
|
bare_reverse_rates.reserve(m_reactions.size());
|
|
|
|
// TODO: Add cache to this
|
|
for (const auto& reaction: m_reactions) {
|
|
bare_rates.push_back(reaction.calculate_rate(T9));
|
|
bare_reverse_rates.push_back(calculateReverseRate(reaction, T9));
|
|
}
|
|
|
|
// --- The public facing interface can always use the precomputed version since taping is done internally ---
|
|
return calculateAllDerivativesUsingPrecomputation(Y, bare_rates, bare_reverse_rates, T9, rho);
|
|
} else {
|
|
return calculateAllDerivatives<double>(Y, T9, rho);
|
|
}
|
|
}
|
|
|
|
void GraphEngine::syncInternalMaps() {
|
|
LOG_INFO(m_logger, "Synchronizing internal maps for REACLIB graph network (serif::network::GraphNetwork)...");
|
|
collectNetworkSpecies();
|
|
populateReactionIDMap();
|
|
populateSpeciesToIndexMap();
|
|
collectAtomicReverseRateAtomicBases();
|
|
generateStoichiometryMatrix();
|
|
reserveJacobianMatrix();
|
|
recordADTape();
|
|
|
|
const size_t n = m_rhsADFun.Domain();
|
|
const size_t m = m_rhsADFun.Range();
|
|
|
|
const std::vector<bool> select_domain(n, true);
|
|
const std::vector<bool> select_range(m, true);
|
|
|
|
m_rhsADFun.subgraph_sparsity(select_domain, select_range, false, m_full_jacobian_sparsity_pattern);
|
|
m_jac_work.clear();
|
|
|
|
precomputeNetwork();
|
|
LOG_INFO(m_logger, "Internal maps synchronized. Network contains {} species and {} reactions.",
|
|
m_networkSpecies.size(), m_reactions.size());
|
|
}
|
|
|
|
// --- Network Graph Construction Methods ---
|
|
void GraphEngine::collectNetworkSpecies() {
|
|
m_networkSpecies.clear();
|
|
m_networkSpeciesMap.clear();
|
|
|
|
std::set<std::string_view> uniqueSpeciesNames;
|
|
|
|
for (const auto& reaction: m_reactions) {
|
|
for (const auto& reactant: reaction.reactants()) {
|
|
uniqueSpeciesNames.insert(reactant.name());
|
|
}
|
|
for (const auto& product: reaction.products()) {
|
|
uniqueSpeciesNames.insert(product.name());
|
|
}
|
|
}
|
|
|
|
for (const auto& name: uniqueSpeciesNames) {
|
|
auto it = fourdst::atomic::species.find(std::string(name));
|
|
if (it != fourdst::atomic::species.end()) {
|
|
m_networkSpecies.push_back(it->second);
|
|
m_networkSpeciesMap.insert({name, it->second});
|
|
} else {
|
|
LOG_ERROR(m_logger, "Species '{}' not found in global atomic species database.", name);
|
|
m_logger->flush_log();
|
|
throw std::runtime_error("Species not found in global atomic species database: " + std::string(name));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void GraphEngine::populateReactionIDMap() {
|
|
LOG_TRACE_L1(m_logger, "Populating reaction ID map for REACLIB graph network (serif::network::GraphNetwork)...");
|
|
m_reactionIDMap.clear();
|
|
for (auto& reaction: m_reactions) {
|
|
m_reactionIDMap.emplace(reaction.id(), &reaction);
|
|
}
|
|
LOG_TRACE_L1(m_logger, "Populated {} reactions in the reaction ID map.", m_reactionIDMap.size());
|
|
}
|
|
|
|
void GraphEngine::populateSpeciesToIndexMap() {
|
|
m_speciesToIndexMap.clear();
|
|
for (size_t i = 0; i < m_networkSpecies.size(); ++i) {
|
|
m_speciesToIndexMap.insert({m_networkSpecies[i], i});
|
|
}
|
|
}
|
|
|
|
void GraphEngine::reserveJacobianMatrix() const {
|
|
// The implementation of this function (and others) constrains this nuclear network to a constant temperature and density during
|
|
// each evaluation.
|
|
const size_t numSpecies = m_networkSpecies.size();
|
|
m_jacobianMatrix.clear();
|
|
m_jacobianMatrix.resize(numSpecies, numSpecies, false); // Sparse matrix, no initial values
|
|
LOG_TRACE_L2(m_logger, "Jacobian matrix resized to {} rows and {} columns.",
|
|
m_jacobianMatrix.size1(), m_jacobianMatrix.size2());
|
|
}
|
|
|
|
// --- Basic Accessors and Queries ---
|
|
const std::vector<fourdst::atomic::Species>& GraphEngine::getNetworkSpecies() const {
|
|
// Returns a constant reference to the vector of unique species in the network.
|
|
LOG_TRACE_L3(m_logger, "Providing access to network species vector. Size: {}.", m_networkSpecies.size());
|
|
return m_networkSpecies;
|
|
}
|
|
|
|
const reaction::LogicalReactionSet& GraphEngine::getNetworkReactions() const {
|
|
// Returns a constant reference to the set of reactions in the network.
|
|
LOG_TRACE_L3(m_logger, "Providing access to network reactions set. Size: {}.", m_reactions.size());
|
|
return m_reactions;
|
|
}
|
|
|
|
void GraphEngine::setNetworkReactions(const reaction::LogicalReactionSet &reactions) {
|
|
m_reactions = reactions;
|
|
syncInternalMaps();
|
|
}
|
|
|
|
bool GraphEngine::involvesSpecies(const fourdst::atomic::Species& species) const {
|
|
// Checks if a given species is present in the network's species map for efficient lookup.
|
|
const bool found = m_networkSpeciesMap.contains(species.name());
|
|
LOG_DEBUG(m_logger, "Checking if species '{}' is involved in the network: {}.", species.name(), found ? "Yes" : "No");
|
|
return found;
|
|
}
|
|
|
|
// --- Validation Methods ---
|
|
bool GraphEngine::validateConservation() const {
|
|
LOG_TRACE_L1(m_logger, "Validating mass (A) and charge (Z) conservation across all reactions in the network.");
|
|
|
|
for (const auto& reaction : m_reactions) {
|
|
uint64_t totalReactantA = 0;
|
|
uint64_t totalReactantZ = 0;
|
|
uint64_t totalProductA = 0;
|
|
uint64_t totalProductZ = 0;
|
|
|
|
// Calculate total A and Z for reactants
|
|
for (const auto& reactant : reaction.reactants()) {
|
|
auto it = m_networkSpeciesMap.find(reactant.name());
|
|
if (it != m_networkSpeciesMap.end()) {
|
|
totalReactantA += it->second.a();
|
|
totalReactantZ += it->second.z();
|
|
} else {
|
|
// This scenario indicates a severe data integrity issue:
|
|
// a reactant is part of a reaction but not in the network's species map.
|
|
LOG_ERROR(m_logger, "CRITICAL ERROR: Reactant species '{}' in reaction '{}' not found in network species map during conservation validation.",
|
|
reactant.name(), reaction.id());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Calculate total A and Z for products
|
|
for (const auto& product : reaction.products()) {
|
|
auto it = m_networkSpeciesMap.find(product.name());
|
|
if (it != m_networkSpeciesMap.end()) {
|
|
totalProductA += it->second.a();
|
|
totalProductZ += it->second.z();
|
|
} else {
|
|
// Similar critical error for product species
|
|
LOG_ERROR(m_logger, "CRITICAL ERROR: Product species '{}' in reaction '{}' not found in network species map during conservation validation.",
|
|
product.name(), reaction.id());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Compare totals for conservation
|
|
if (totalReactantA != totalProductA) {
|
|
LOG_ERROR(m_logger, "Mass number (A) not conserved for reaction '{}': Reactants A={} vs Products A={}.",
|
|
reaction.id(), totalReactantA, totalProductA);
|
|
return false;
|
|
}
|
|
if (totalReactantZ != totalProductZ) {
|
|
LOG_ERROR(m_logger, "Atomic number (Z) not conserved for reaction '{}': Reactants Z={} vs Products Z={}.",
|
|
reaction.id(), totalReactantZ, totalProductZ);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LOG_TRACE_L1(m_logger, "Mass (A) and charge (Z) conservation validated successfully for all reactions.");
|
|
return true; // All reactions passed the conservation check
|
|
}
|
|
|
|
void GraphEngine::validateComposition(const fourdst::composition::Composition &composition, double culling, double T9) {
|
|
// Check if the requested network has already been cached.
|
|
// PERF: Rebuilding this should be pretty fast but it may be a good point of optimization in the future.
|
|
const reaction::LogicalReactionSet validationReactionSet = build_reaclib_nuclear_network(composition, false);
|
|
// TODO: need some more robust method here to
|
|
// A. Build the basic network from the composition's species with non zero mass fractions.
|
|
// B. rebuild a new composition from the reaction set's reactants + products (with the mass fractions from the things that are only products set to 0)
|
|
// C. Rebuild the reaction set from the new composition
|
|
// D. Cull reactions where all reactants have mass fractions below the culling threshold.
|
|
// E. Be careful about maintaining caching through all of this
|
|
|
|
|
|
// This allows for dynamic network modification while retaining caching for networks which are very similar.
|
|
if (validationReactionSet != m_reactions) {
|
|
LOG_DEBUG(m_logger, "Reaction set not cached. Rebuilding the reaction set for T9={} and culling={}.", T9, culling);
|
|
m_reactions = validationReactionSet;
|
|
syncInternalMaps(); // Re-sync internal maps after updating reactions. Note this will also retrace the AD tape.
|
|
}
|
|
}
|
|
|
|
double GraphEngine::calculateReverseRate(
|
|
const reaction::Reaction &reaction,
|
|
const double T9
|
|
) const {
|
|
if (!m_useReverseReactions) {
|
|
LOG_TRACE_L3_LIMIT_EVERY_N(std::numeric_limits<int>::max(), m_logger, "Reverse reactions are disabled. Returning 0.0 for reverse rate of reaction '{}'.", reaction.id());
|
|
return 0.0; // If reverse reactions are not used, return 0.0
|
|
}
|
|
const double expFactor = std::exp(-reaction.qValue() / (m_constants.kB * T9));
|
|
if (s_debug) {
|
|
std::cout << "\texpFactor = exp(-qValue/(kB * T9))\n";
|
|
std::cout << "\texpFactor: " << expFactor << " for reaction: " << reaction.peName() << std::endl;
|
|
std::cout << "\tQ-value: " << reaction.qValue() << " at T9: " << T9 << std::endl;
|
|
std::cout << "\tT9: " << T9 << std::endl;
|
|
std::cout << "\tkB * T9: " << m_constants.kB * T9 << std::endl;
|
|
std::cout << "\tqValue/(kB * T9): " << reaction.qValue() / (m_constants.kB * T9) << std::endl;
|
|
}
|
|
double reverseRate = 0.0;
|
|
const double forwardRate = reaction.calculate_rate(T9);
|
|
|
|
if (reaction.reactants().size() == 2 && reaction.products().size() == 2) {
|
|
reverseRate = calculateReverseRateTwoBody(reaction, T9, forwardRate, expFactor);
|
|
} else {
|
|
LOG_WARNING_LIMIT_EVERY_N(1000000, m_logger, "Reverse rate calculation for reactions with more than two reactants or products is not implemented (reaction id {}).", reaction.peName());
|
|
}
|
|
LOG_TRACE_L2_LIMIT_EVERY_N(1000, m_logger, "Calculated reverse rate for reaction '{}': {:.3E} at T9={:.3E}.", reaction.id(), reverseRate, T9);
|
|
return reverseRate;
|
|
}
|
|
|
|
double GraphEngine::calculateReverseRateTwoBody(
|
|
const reaction::Reaction &reaction,
|
|
const double T9,
|
|
const double forwardRate,
|
|
const double expFactor
|
|
) const {
|
|
std::vector<double> reactantPartitionFunctions;
|
|
std::vector<double> productPartitionFunctions;
|
|
|
|
reactantPartitionFunctions.reserve(reaction.reactants().size());
|
|
productPartitionFunctions.reserve(reaction.products().size());
|
|
|
|
std::unordered_map<fourdst::atomic::Species, int> reactantMultiplicity;
|
|
std::unordered_map<fourdst::atomic::Species, int> productMultiplicity;
|
|
|
|
reactantMultiplicity.reserve(reaction.reactants().size());
|
|
productMultiplicity.reserve(reaction.products().size());
|
|
|
|
for (const auto& reactant : reaction.reactants()) {
|
|
reactantMultiplicity[reactant] += 1;
|
|
}
|
|
for (const auto& product : reaction.products()) {
|
|
productMultiplicity[product] += 1;
|
|
}
|
|
double reactantSymmetryFactor = 1.0;
|
|
double productSymmetryFactor = 1.0;
|
|
for (const auto& count : reactantMultiplicity | std::views::values) {
|
|
reactantSymmetryFactor *= std::tgamma(count + 1);
|
|
}
|
|
for (const auto& count : productMultiplicity | std::views::values) {
|
|
productSymmetryFactor *= std::tgamma(count + 1);
|
|
}
|
|
const double symmetryFactor = reactantSymmetryFactor / productSymmetryFactor;
|
|
|
|
// Accumulate mass terms
|
|
auto mass_op = [](double acc, const auto& species) { return acc * species.a(); };
|
|
const double massNumerator = std::accumulate(
|
|
reaction.reactants().begin(),
|
|
reaction.reactants().end(),
|
|
1.0,
|
|
mass_op
|
|
);
|
|
const double massDenominator = std::accumulate(
|
|
reaction.products().begin(),
|
|
reaction.products().end(),
|
|
1.0,
|
|
mass_op
|
|
);
|
|
|
|
// Accumulate partition functions
|
|
auto pf_op = [&](double acc, const auto& species) {
|
|
return acc * m_partitionFunction->evaluate(species.z(), species.a(), T9);
|
|
};
|
|
const double partitionFunctionNumerator = std::accumulate(
|
|
reaction.reactants().begin(),
|
|
reaction.reactants().end(),
|
|
1.0,
|
|
pf_op
|
|
);
|
|
const double partitionFunctionDenominator = std::accumulate(
|
|
reaction.products().begin(),
|
|
reaction.products().end(),
|
|
1.0,
|
|
pf_op
|
|
);
|
|
|
|
const double CT = std::pow(massNumerator/massDenominator, 1.5) *
|
|
(partitionFunctionNumerator/partitionFunctionDenominator);
|
|
|
|
const double reverseRate = forwardRate * symmetryFactor * CT * expFactor;
|
|
if (!std::isfinite(reverseRate)) {
|
|
return 0.0; // If the reverse rate is not finite, return 0.0
|
|
}
|
|
return reverseRate; // Return the calculated reverse rate
|
|
|
|
}
|
|
|
|
double GraphEngine::calculateReverseRateTwoBodyDerivative(
|
|
const reaction::Reaction &reaction,
|
|
const double T9,
|
|
const double reverseRate
|
|
) const {
|
|
if (!m_useReverseReactions) {
|
|
LOG_TRACE_L3_LIMIT_EVERY_N(std::numeric_limits<int>::max(), m_logger, "Reverse reactions are disabled. Returning 0.0 for reverse rate of reaction '{}'.", reaction.id());
|
|
return 0.0; // If reverse reactions are not used, return 0.0
|
|
}
|
|
const double d_log_kFwd = reaction.calculate_forward_rate_log_derivative(T9);
|
|
|
|
auto log_deriv_pf_op = [&](double acc, const auto& species) {
|
|
const double g = m_partitionFunction->evaluate(species.z(), species.a(), T9);
|
|
const double dg_dT = m_partitionFunction->evaluateDerivative(species.z(), species.a(), T9);
|
|
return (g == 0.0) ? acc : acc + (dg_dT / g);
|
|
};
|
|
|
|
const double reactant_log_derivative_sum = std::accumulate(
|
|
reaction.reactants().begin(),
|
|
reaction.reactants().end(),
|
|
0.0,
|
|
log_deriv_pf_op
|
|
);
|
|
|
|
const double product_log_derivative_sum = std::accumulate(
|
|
reaction.products().begin(),
|
|
reaction.products().end(),
|
|
0.0,
|
|
log_deriv_pf_op
|
|
);
|
|
|
|
const double d_log_C = reactant_log_derivative_sum - product_log_derivative_sum;
|
|
|
|
const double d_log_exp = reaction.qValue() / (m_constants.kB * T9 * T9);
|
|
|
|
const double log_total_derivative = d_log_kFwd + d_log_C + d_log_exp;
|
|
|
|
return reverseRate * log_total_derivative; // Return the derivative of the reverse rate with respect to T9
|
|
|
|
}
|
|
|
|
bool GraphEngine::isUsingReverseReactions() const {
|
|
return m_useReverseReactions;
|
|
}
|
|
|
|
void GraphEngine::setUseReverseReactions(const bool useReverse) {
|
|
m_useReverseReactions = useReverse;
|
|
}
|
|
|
|
int GraphEngine::getSpeciesIndex(const fourdst::atomic::Species &species) const {
|
|
return m_speciesToIndexMap.at(species); // Returns the index of the species in the stoichiometry matrix
|
|
}
|
|
|
|
std::vector<double> GraphEngine::mapNetInToMolarAbundanceVector(const NetIn &netIn) const {
|
|
std::vector<double> Y(m_networkSpecies.size(), 0.0); // Initialize with zeros
|
|
for (const auto& [symbol, entry] : netIn.composition) {
|
|
Y[getSpeciesIndex(entry.isotope())] = netIn.composition.getMolarAbundance(symbol); // Map species to their molar abundance
|
|
}
|
|
return Y; // Return the vector of molar abundances
|
|
}
|
|
|
|
PrimingReport GraphEngine::primeEngine(const NetIn &netIn) {
|
|
NetIn fullNetIn;
|
|
fourdst::composition::Composition composition;
|
|
|
|
std::vector<std::string> symbols;
|
|
symbols.reserve(m_networkSpecies.size());
|
|
for (const auto &symbol: m_networkSpecies) {
|
|
symbols.emplace_back(symbol.name());
|
|
}
|
|
composition.registerSymbol(symbols);
|
|
for (const auto& [symbol, entry] : netIn.composition) {
|
|
if (m_networkSpeciesMap.contains(symbol)) {
|
|
composition.setMassFraction(symbol, entry.mass_fraction());
|
|
} else {
|
|
composition.setMassFraction(symbol, 0.0);
|
|
}
|
|
}
|
|
composition.finalize(true);
|
|
fullNetIn.composition = composition;
|
|
fullNetIn.temperature = netIn.temperature;
|
|
fullNetIn.density = netIn.density;
|
|
|
|
auto primingReport = primeNetwork(fullNetIn, *this);
|
|
|
|
return primingReport;
|
|
}
|
|
|
|
BuildDepthType GraphEngine::getDepth() const {
|
|
return m_depth;
|
|
}
|
|
|
|
void GraphEngine::rebuild(const fourdst::composition::Composition& comp, const BuildDepthType depth) {
|
|
if (depth != m_depth) {
|
|
m_depth = depth;
|
|
m_reactions = build_reaclib_nuclear_network(comp, m_depth, false);
|
|
syncInternalMaps(); // Resync internal maps after changing the depth
|
|
} else {
|
|
LOG_DEBUG(m_logger, "Rebuild requested with the same depth. No changes made to the network.");
|
|
}
|
|
}
|
|
|
|
StepDerivatives<double> GraphEngine::calculateAllDerivativesUsingPrecomputation(
|
|
const std::vector<double> &Y_in,
|
|
const std::vector<double> &bare_rates,
|
|
const std::vector<double> &bare_reverse_rates,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
// --- Calculate screening factors ---
|
|
const std::vector<double> screeningFactors = m_screeningModel->calculateScreeningFactors(
|
|
m_reactions,
|
|
m_networkSpecies,
|
|
Y_in,
|
|
T9,
|
|
rho
|
|
);
|
|
|
|
// --- Optimized loop ---
|
|
std::vector<double> molarReactionFlows;
|
|
molarReactionFlows.reserve(m_precomputedReactions.size());
|
|
|
|
for (const auto& precomp : m_precomputedReactions) {
|
|
double forwardAbundanceProduct = 1.0;
|
|
// bool below_threshold = false;
|
|
for (size_t i = 0; i < precomp.unique_reactant_indices.size(); ++i) {
|
|
const size_t reactantIndex = precomp.unique_reactant_indices[i];
|
|
const int power = precomp.reactant_powers[i];
|
|
// const double abundance = Y_in[reactantIndex];
|
|
// if (abundance < MIN_ABUNDANCE_THRESHOLD) {
|
|
// below_threshold = true;
|
|
// break;
|
|
// }
|
|
|
|
forwardAbundanceProduct *= std::pow(Y_in[reactantIndex], power);
|
|
}
|
|
// if (below_threshold) {
|
|
// molarReactionFlows.push_back(0.0);
|
|
// continue; // Skip this reaction if any reactant is below the abundance threshold
|
|
// }
|
|
|
|
const double bare_rate = bare_rates[precomp.reaction_index];
|
|
const double screeningFactor = screeningFactors[precomp.reaction_index];
|
|
const size_t numReactants = m_reactions[precomp.reaction_index].reactants().size();
|
|
const size_t numProducts = m_reactions[precomp.reaction_index].products().size();
|
|
|
|
const double forwardMolarReactionFlow =
|
|
screeningFactor *
|
|
bare_rate *
|
|
precomp.symmetry_factor *
|
|
forwardAbundanceProduct *
|
|
std::pow(rho, numReactants > 1 ? numReactants - 1 : 0.0);
|
|
|
|
double reverseMolarReactionFlow = 0.0;
|
|
if (precomp.reverse_symmetry_factor != 0.0 and m_useReverseReactions) {
|
|
const double bare_reverse_rate = bare_reverse_rates[precomp.reaction_index];
|
|
double reverseAbundanceProduct = 1.0;
|
|
for (size_t i = 0; i < precomp.unique_product_indices.size(); ++i) {
|
|
reverseAbundanceProduct *= std::pow(Y_in[precomp.unique_product_indices[i]], precomp.product_powers[i]);
|
|
}
|
|
reverseMolarReactionFlow = screeningFactor *
|
|
bare_reverse_rate *
|
|
precomp.reverse_symmetry_factor *
|
|
reverseAbundanceProduct *
|
|
std::pow(rho, numProducts > 1 ? numProducts - 1 : 0.0);
|
|
}
|
|
|
|
molarReactionFlows.push_back(forwardMolarReactionFlow - reverseMolarReactionFlow);
|
|
|
|
}
|
|
|
|
// --- Assemble molar abundance derivatives ---
|
|
StepDerivatives<double> result;
|
|
result.dydt.assign(m_networkSpecies.size(), 0.0); // Initialize derivatives to zero
|
|
for (size_t j = 0; j < m_precomputedReactions.size(); ++j) {
|
|
const auto& precomp = m_precomputedReactions[j];
|
|
const double R_j = molarReactionFlows[j];
|
|
|
|
for (size_t i = 0; i < precomp.affected_species_indices.size(); ++i) {
|
|
const size_t speciesIndex = precomp.affected_species_indices[i];
|
|
const int stoichiometricCoefficient = precomp.stoichiometric_coefficients[i];
|
|
|
|
// Update the derivative for this species
|
|
result.dydt[speciesIndex] += static_cast<double>(stoichiometricCoefficient) * R_j;
|
|
}
|
|
}
|
|
|
|
// --- Calculate the nuclear energy generation rate ---
|
|
double massProductionRate = 0.0; // [mol][s^-1]
|
|
for (size_t i = 0; i < m_networkSpecies.size(); ++i) {
|
|
const auto& species = m_networkSpecies[i];
|
|
massProductionRate += result.dydt[i] * species.mass() * m_constants.u;
|
|
}
|
|
result.nuclearEnergyGenerationRate = -massProductionRate * m_constants.Na * m_constants.c * m_constants.c; // [erg][s^-1][g^-1]
|
|
return result;
|
|
|
|
}
|
|
|
|
// --- Generate Stoichiometry Matrix ---
|
|
void GraphEngine::generateStoichiometryMatrix() {
|
|
LOG_TRACE_L1(m_logger, "Generating stoichiometry matrix...");
|
|
|
|
// Task 1: Set dimensions and initialize the matrix
|
|
size_t numSpecies = m_networkSpecies.size();
|
|
size_t numReactions = m_reactions.size();
|
|
m_stoichiometryMatrix.resize(numSpecies, numReactions, false);
|
|
|
|
LOG_TRACE_L1(m_logger, "Stoichiometry matrix initialized with dimensions: {} rows (species) x {} columns (reactions).",
|
|
numSpecies, numReactions);
|
|
|
|
// Task 2: Populate the stoichiometry matrix
|
|
// Iterate through all reactions, assign them a column index, and fill in their stoichiometric coefficients.
|
|
size_t reactionColumnIndex = 0;
|
|
for (const auto& reaction : m_reactions) {
|
|
// Get the net stoichiometry for the current reaction
|
|
std::unordered_map<fourdst::atomic::Species, int> netStoichiometry = reaction.stoichiometry();
|
|
|
|
// Iterate through the species and their coefficients in the stoichiometry map
|
|
for (const auto& [species, coefficient] : netStoichiometry) {
|
|
// Find the row index for this species
|
|
auto it = m_speciesToIndexMap.find(species);
|
|
if (it != m_speciesToIndexMap.end()) {
|
|
const size_t speciesRowIndex = it->second;
|
|
// Set the matrix element. Boost.uBLAS handles sparse insertion.
|
|
m_stoichiometryMatrix(speciesRowIndex, reactionColumnIndex) = coefficient;
|
|
} else {
|
|
// This scenario should ideally not happen if m_networkSpeciesMap and m_speciesToIndexMap are correctly synced
|
|
LOG_ERROR(m_logger, "CRITICAL ERROR: Species '{}' from reaction '{}' stoichiometry not found in species to index map.",
|
|
species.name(), reaction.id());
|
|
m_logger -> flush_log();
|
|
throw std::runtime_error("Species not found in species to index map: " + std::string(species.name()));
|
|
}
|
|
}
|
|
reactionColumnIndex++; // Move to the next column for the next reaction
|
|
}
|
|
|
|
LOG_TRACE_L1(m_logger, "Stoichiometry matrix population complete. Number of non-zero elements: {}.",
|
|
m_stoichiometryMatrix.nnz()); // Assuming nnz() exists for compressed_matrix
|
|
}
|
|
|
|
StepDerivatives<double> GraphEngine::calculateAllDerivatives(
|
|
const std::vector<double> &Y_in,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
return calculateAllDerivatives<double>(Y_in, T9, rho);
|
|
}
|
|
|
|
StepDerivatives<ADDouble> GraphEngine::calculateAllDerivatives(
|
|
const std::vector<ADDouble> &Y_in,
|
|
const ADDouble &T9,
|
|
const ADDouble &rho
|
|
) const {
|
|
return calculateAllDerivatives<ADDouble>(Y_in, T9, rho);
|
|
}
|
|
|
|
void GraphEngine::setScreeningModel(const screening::ScreeningType model) {
|
|
m_screeningModel = screening::selectScreeningModel(model);
|
|
m_screeningType = model;
|
|
}
|
|
|
|
screening::ScreeningType GraphEngine::getScreeningModel() const {
|
|
return m_screeningType;
|
|
}
|
|
|
|
void GraphEngine::setPrecomputation(const bool precompute) {
|
|
m_usePrecomputation = precompute;
|
|
}
|
|
|
|
bool GraphEngine::isPrecomputationEnabled() const {
|
|
return m_usePrecomputation;
|
|
}
|
|
|
|
const partition::PartitionFunction & GraphEngine::getPartitionFunction() const {
|
|
return *m_partitionFunction;
|
|
}
|
|
|
|
double GraphEngine::calculateMolarReactionFlow(
|
|
const reaction::Reaction &reaction,
|
|
const std::vector<double> &Y,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
return calculateMolarReactionFlow<double>(reaction, Y, T9, rho);
|
|
}
|
|
|
|
void GraphEngine::generateJacobianMatrix(
|
|
const std::vector<double> &Y_dynamic,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
|
|
LOG_TRACE_L1_LIMIT_EVERY_N(1000, m_logger, "Generating jacobian matrix for T9={}, rho={}..", T9, rho);
|
|
const size_t numSpecies = m_networkSpecies.size();
|
|
|
|
// 1. Pack the input variables into a vector for CppAD
|
|
std::vector<double> adInput(numSpecies + 2, 0.0); // +2 for T9 and rho
|
|
for (size_t i = 0; i < numSpecies; ++i) {
|
|
adInput[i] = std::max(Y_dynamic[i], 1e-99); // regularize the jacobian...
|
|
}
|
|
adInput[numSpecies] = T9; // T9
|
|
adInput[numSpecies + 1] = rho; // rho
|
|
|
|
// 2. Calculate the full jacobian
|
|
const std::vector<double> dotY = m_rhsADFun.Jacobian(adInput);
|
|
|
|
// 3. Pack jacobian vector into sparse matrix
|
|
m_jacobianMatrix.clear();
|
|
for (size_t i = 0; i < numSpecies; ++i) {
|
|
for (size_t j = 0; j < numSpecies; ++j) {
|
|
const double value = dotY[i * (numSpecies + 2) + j];
|
|
if (std::abs(value) > MIN_JACOBIAN_THRESHOLD || i == j) { // Always keep diagonal elements to avoid pathological stiffness
|
|
m_jacobianMatrix(i, j) = value;
|
|
}
|
|
}
|
|
}
|
|
LOG_TRACE_L1_LIMIT_EVERY_N(1000, m_logger, "Jacobian matrix generated with dimensions: {} rows x {} columns.", m_jacobianMatrix.size1(), m_jacobianMatrix.size2());
|
|
}
|
|
|
|
void GraphEngine::generateJacobianMatrix(
|
|
const std::vector<double> &Y_dynamic,
|
|
const double T9,
|
|
const double rho,
|
|
const SparsityPattern &sparsityPattern
|
|
) const {
|
|
// --- Pack the input variables into a vector for CppAD ---
|
|
const size_t numSpecies = m_networkSpecies.size();
|
|
std::vector<double> x(numSpecies + 2, 0.0);
|
|
for (size_t i = 0; i < numSpecies; ++i) {
|
|
x[i] = Y_dynamic[i];
|
|
}
|
|
x[numSpecies] = T9;
|
|
x[numSpecies + 1] = rho;
|
|
|
|
// --- Convert into CppAD Sparsity pattern ---
|
|
const size_t nnz = sparsityPattern.size(); // Number of non-zero entries in the sparsity pattern
|
|
std::vector<size_t> row_indices(nnz);
|
|
std::vector<size_t> col_indices(nnz);
|
|
|
|
for (size_t k = 0; k < nnz; ++k) {
|
|
row_indices[k] = sparsityPattern[k].first;
|
|
col_indices[k] = sparsityPattern[k].second;
|
|
}
|
|
|
|
std::vector<double> values(nnz);
|
|
const size_t num_rows_jac = numSpecies;
|
|
const size_t num_cols_jac = numSpecies + 2; // +2 for T9 and rho
|
|
|
|
CppAD::sparse_rc<std::vector<size_t>> CppAD_sparsity_pattern(num_rows_jac, num_cols_jac, nnz);
|
|
for (size_t k = 0; k < nnz; ++k) {
|
|
CppAD_sparsity_pattern.set(k, sparsityPattern[k].first, sparsityPattern[k].second);
|
|
}
|
|
|
|
CppAD::sparse_rcv<std::vector<size_t>, std::vector<double>> jac_subset(CppAD_sparsity_pattern);
|
|
|
|
m_rhsADFun.sparse_jac_rev(
|
|
x,
|
|
jac_subset, // Sparse Jacobian output
|
|
m_full_jacobian_sparsity_pattern,
|
|
"cppad",
|
|
m_jac_work // Work vector for CppAD
|
|
);
|
|
|
|
// --- Convert the sparse Jacobian back to the Boost uBLAS format ---
|
|
m_jacobianMatrix.clear();
|
|
for (size_t k = 0; k < nnz; ++k) {
|
|
const size_t row = jac_subset.row()[k];
|
|
const size_t col = jac_subset.col()[k];
|
|
const double value = jac_subset.val()[k];
|
|
|
|
if (std::abs(value) > MIN_JACOBIAN_THRESHOLD) {
|
|
m_jacobianMatrix(row, col) = value; // Insert into the sparse matrix
|
|
}
|
|
}
|
|
}
|
|
|
|
double GraphEngine::getJacobianMatrixEntry(const int i, const int j) const {
|
|
// LOG_TRACE_L3(m_logger, "Getting jacobian matrix entry for {},{} = {}", i, j, m_jacobianMatrix(i, j));
|
|
return m_jacobianMatrix(i, j);
|
|
}
|
|
|
|
std::unordered_map<fourdst::atomic::Species, int> GraphEngine::getNetReactionStoichiometry(
|
|
const reaction::Reaction &reaction
|
|
) {
|
|
return reaction.stoichiometry();
|
|
}
|
|
|
|
int GraphEngine::getStoichiometryMatrixEntry(
|
|
const int speciesIndex,
|
|
const int reactionIndex
|
|
) const {
|
|
return m_stoichiometryMatrix(speciesIndex, reactionIndex);
|
|
}
|
|
|
|
void GraphEngine::exportToDot(const std::string &filename) const {
|
|
LOG_TRACE_L1(m_logger, "Exporting network graph to DOT file: {}", filename);
|
|
|
|
std::ofstream dotFile(filename);
|
|
if (!dotFile.is_open()) {
|
|
LOG_ERROR(m_logger, "Failed to open file for writing: {}", filename);
|
|
m_logger->flush_log();
|
|
throw std::runtime_error("Failed to open file for writing: " + filename);
|
|
}
|
|
|
|
dotFile << "digraph NuclearReactionNetwork {\n";
|
|
dotFile << " graph [rankdir=LR, splines=true, overlap=false, bgcolor=\"#f0f0f0\"];\n";
|
|
dotFile << " node [shape=circle, style=filled, fillcolor=\"#a7c7e7\", fontname=\"Helvetica\"];\n";
|
|
dotFile << " edge [fontname=\"Helvetica\", fontsize=10];\n\n";
|
|
|
|
// 1. Define all species as nodes
|
|
dotFile << " // --- Species Nodes ---\n";
|
|
for (const auto& species : m_networkSpecies) {
|
|
dotFile << " \"" << species.name() << "\" [label=\"" << species.name() << "\"];\n";
|
|
}
|
|
dotFile << "\n";
|
|
|
|
// 2. Define all reactions as intermediate nodes and connect them
|
|
dotFile << " // --- Reaction Edges ---\n";
|
|
for (const auto& reaction : m_reactions) {
|
|
// Create a unique ID for the reaction node
|
|
std::string reactionNodeId = "reaction_" + std::string(reaction.id());
|
|
|
|
// Define the reaction node (small, black dot)
|
|
dotFile << " \"" << reactionNodeId << "\" [shape=point, fillcolor=black, width=0.1, height=0.1, label=\"\"];\n";
|
|
|
|
// Draw edges from reactants to the reaction node
|
|
for (const auto& reactant : reaction.reactants()) {
|
|
dotFile << " \"" << reactant.name() << "\" -> \"" << reactionNodeId << "\";\n";
|
|
}
|
|
|
|
// Draw edges from the reaction node to products
|
|
for (const auto& product : reaction.products()) {
|
|
dotFile << " \"" << reactionNodeId << "\" -> \"" << product.name() << "\" [label=\"" << reaction.qValue() << " MeV\"];\n";
|
|
}
|
|
dotFile << "\n";
|
|
}
|
|
|
|
dotFile << "}\n";
|
|
dotFile.close();
|
|
LOG_TRACE_L1(m_logger, "Successfully exported network to {}", filename);
|
|
}
|
|
|
|
void GraphEngine::exportToCSV(const std::string &filename) const {
|
|
LOG_TRACE_L1(m_logger, "Exporting network graph to CSV file: {}", filename);
|
|
|
|
std::ofstream csvFile(filename, std::ios::out | std::ios::trunc);
|
|
if (!csvFile.is_open()) {
|
|
LOG_ERROR(m_logger, "Failed to open file for writing: {}", filename);
|
|
m_logger->flush_log();
|
|
throw std::runtime_error("Failed to open file for writing: " + filename);
|
|
}
|
|
csvFile << "Reaction;Reactants;Products;Q-value;sources;rates\n";
|
|
for (const auto& reaction : m_reactions) {
|
|
// Dynamic cast to REACLIBReaction to access specific properties
|
|
csvFile << reaction.id() << ";";
|
|
// Reactants
|
|
size_t count = 0;
|
|
for (const auto& reactant : reaction.reactants()) {
|
|
csvFile << reactant.name();
|
|
if (++count < reaction.reactants().size()) {
|
|
csvFile << ",";
|
|
}
|
|
}
|
|
csvFile << ";";
|
|
count = 0;
|
|
for (const auto& product : reaction.products()) {
|
|
csvFile << product.name();
|
|
if (++count < reaction.products().size()) {
|
|
csvFile << ",";
|
|
}
|
|
}
|
|
csvFile << ";" << reaction.qValue() << ";";
|
|
// Reaction coefficients
|
|
auto sources = reaction.sources();
|
|
count = 0;
|
|
for (const auto& source : sources) {
|
|
csvFile << source;
|
|
if (++count < sources.size()) {
|
|
csvFile << ",";
|
|
}
|
|
}
|
|
csvFile << ";";
|
|
// Reaction coefficients
|
|
count = 0;
|
|
for (const auto& rates : reaction) {
|
|
csvFile << rates;
|
|
if (++count < reaction.size()) {
|
|
csvFile << ",";
|
|
}
|
|
}
|
|
csvFile << "\n";
|
|
}
|
|
csvFile.close();
|
|
LOG_TRACE_L1(m_logger, "Successfully exported network graph to {}", filename);
|
|
}
|
|
|
|
std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> GraphEngine::getSpeciesTimescales(
|
|
const std::vector<double> &Y,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
auto [dydt, _] = calculateAllDerivatives<double>(Y, T9, rho);
|
|
std::unordered_map<fourdst::atomic::Species, double> speciesTimescales;
|
|
speciesTimescales.reserve(m_networkSpecies.size());
|
|
for (size_t i = 0; i < m_networkSpecies.size(); ++i) {
|
|
double timescale = std::numeric_limits<double>::infinity();
|
|
const auto species = m_networkSpecies[i];
|
|
if (std::abs(dydt[i]) > 0.0) {
|
|
timescale = std::abs(Y[i] / dydt[i]);
|
|
}
|
|
speciesTimescales.emplace(species, timescale);
|
|
}
|
|
return speciesTimescales;
|
|
}
|
|
|
|
std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> GraphEngine::getSpeciesDestructionTimescales(
|
|
const std::vector<double> &Y,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
auto [dydt, _] = calculateAllDerivatives<double>(Y, T9, rho);
|
|
std::unordered_map<fourdst::atomic::Species, double> speciesDestructionTimescales;
|
|
speciesDestructionTimescales.reserve(m_networkSpecies.size());
|
|
for (const auto& species : m_networkSpecies) {
|
|
double netDestructionFlow = 0.0;
|
|
for (const auto& reaction : m_reactions) {
|
|
if (reaction.stoichiometry(species) < 0) {
|
|
const double flow = calculateMolarReactionFlow<double>(reaction, Y, T9, rho);
|
|
netDestructionFlow += flow;
|
|
}
|
|
}
|
|
double timescale = std::numeric_limits<double>::infinity();
|
|
if (netDestructionFlow != 0.0) {
|
|
timescale = Y[getSpeciesIndex(species)] / netDestructionFlow;
|
|
}
|
|
speciesDestructionTimescales.emplace(species, timescale);
|
|
}
|
|
return speciesDestructionTimescales;
|
|
}
|
|
|
|
fourdst::composition::Composition GraphEngine::update(const NetIn &netIn) {
|
|
fourdst::composition::Composition baseUpdatedComposition = netIn.composition;
|
|
for (const auto& species : m_networkSpecies) {
|
|
if (!netIn.composition.contains(species)) {
|
|
baseUpdatedComposition.registerSpecies(species);
|
|
baseUpdatedComposition.setMassFraction(species, 0.0);
|
|
}
|
|
}
|
|
baseUpdatedComposition.finalize(false);
|
|
return baseUpdatedComposition;
|
|
}
|
|
|
|
bool GraphEngine::isStale(const NetIn &netIn) {
|
|
return false;
|
|
}
|
|
|
|
void GraphEngine::recordADTape() {
|
|
LOG_TRACE_L1(m_logger, "Recording AD tape for the RHS calculation...");
|
|
|
|
// Task 1: Set dimensions and initialize the matrix
|
|
const size_t numSpecies = m_networkSpecies.size();
|
|
if (numSpecies == 0) {
|
|
LOG_ERROR(m_logger, "Cannot record AD tape: No species in the network.");
|
|
m_logger->flush_log();
|
|
throw std::runtime_error("Cannot record AD tape: No species in the network.");
|
|
}
|
|
const size_t numADInputs = numSpecies + 2; // Note here that by not letting T9 and rho be independent variables, we are constraining the network to a constant temperature and density during each evaluation.
|
|
|
|
// --- CppAD Tape Recording ---
|
|
// 1. Declare independent variable (adY)
|
|
// We also initialize the dummy variable for tape recording (these tell CppAD what the derivative chain looks like).
|
|
// Their numeric values are irrelevant except for in so far as they avoid numerical instabilities.
|
|
|
|
// Distribute total mass fraction uniformly between species in the dummy variable space
|
|
const auto uniformMassFraction = static_cast<CppAD::AD<double>>(1.0 / static_cast<double>(numSpecies));
|
|
std::vector<CppAD::AD<double>> adInput(numADInputs, uniformMassFraction);
|
|
adInput[numSpecies] = 1.0; // Dummy T9
|
|
adInput[numSpecies + 1] = 1.0; // Dummy rho
|
|
|
|
// 3. Declare independent variables (what CppAD will differentiate wrt.)
|
|
// This also beings the tape recording process.
|
|
CppAD::Independent(adInput);
|
|
|
|
std::vector<CppAD::AD<double>> adY(numSpecies);
|
|
for(size_t i = 0; i < numSpecies; ++i) {
|
|
adY[i] = adInput[i];
|
|
}
|
|
const CppAD::AD<double> adT9 = adInput[numSpecies];
|
|
const CppAD::AD<double> adRho = adInput[numSpecies + 1];
|
|
|
|
|
|
// 5. Call the actual templated function
|
|
// We let T9 and rho be constant, so we pass them as fixed values.
|
|
auto [dydt, nuclearEnergyGenerationRate] = calculateAllDerivatives<CppAD::AD<double>>(adY, adT9, adRho);
|
|
|
|
m_rhsADFun.Dependent(adInput, dydt);
|
|
|
|
LOG_TRACE_L1(m_logger, "AD tape recorded successfully for the RHS calculation. Number of independent variables: {}.",
|
|
adInput.size());
|
|
}
|
|
|
|
void GraphEngine::collectAtomicReverseRateAtomicBases() {
|
|
m_atomicReverseRates.clear();
|
|
m_atomicReverseRates.reserve(m_reactions.size());
|
|
|
|
for (const auto& reaction: m_reactions) {
|
|
if (reaction.qValue() != 0.0) {
|
|
m_atomicReverseRates.push_back(std::make_unique<AtomicReverseRate>(reaction, *this));
|
|
} else {
|
|
m_atomicReverseRates.push_back(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GraphEngine::precomputeNetwork() {
|
|
LOG_TRACE_L1(m_logger, "Pre-computing constant components of GraphNetwork state...");
|
|
|
|
// --- Reverse map for fast species lookups ---
|
|
std::unordered_map<fourdst::atomic::Species, size_t> speciesIndexMap;
|
|
for (size_t i = 0; i < m_networkSpecies.size(); ++i) {
|
|
speciesIndexMap[m_networkSpecies[i]] = i;
|
|
}
|
|
|
|
m_precomputedReactions.clear();
|
|
m_precomputedReactions.reserve(m_reactions.size());
|
|
|
|
for (size_t i = 0; i < m_reactions.size(); ++i) {
|
|
const auto& reaction = m_reactions[i];
|
|
PrecomputedReaction precomp;
|
|
precomp.reaction_index = i;
|
|
|
|
// --- Precompute forward reaction information ---
|
|
// Count occurrences for each reactant to determine powers and symmetry
|
|
std::unordered_map<size_t, int> reactantCounts;
|
|
for (const auto& reactant: reaction.reactants()) {
|
|
size_t reactantIndex = speciesIndexMap.at(reactant);
|
|
reactantCounts[reactantIndex]++;
|
|
}
|
|
|
|
double symmetryDenominator = 1.0;
|
|
for (const auto& [index, count] : reactantCounts) {
|
|
precomp.unique_reactant_indices.push_back(index);
|
|
precomp.reactant_powers.push_back(count);
|
|
|
|
symmetryDenominator *= std::tgamma(count + 1);
|
|
}
|
|
|
|
precomp.symmetry_factor = 1.0/symmetryDenominator;
|
|
|
|
// --- Precompute reverse reaction information ---
|
|
if (reaction.qValue() != 0.0) {
|
|
std::unordered_map<size_t, int> productCounts;
|
|
for (const auto& product : reaction.products()) {
|
|
productCounts[speciesIndexMap.at(product)]++;
|
|
}
|
|
double reverseSymmetryDenominator = 1.0;
|
|
for (const auto& [index, count] : productCounts) {
|
|
precomp.unique_product_indices.push_back(index);
|
|
precomp.product_powers.push_back(count);
|
|
reverseSymmetryDenominator *= std::tgamma(count + 1);
|
|
}
|
|
|
|
precomp.reverse_symmetry_factor = 1.0/reverseSymmetryDenominator;
|
|
} else {
|
|
precomp.unique_product_indices.clear();
|
|
precomp.product_powers.clear();
|
|
precomp.reverse_symmetry_factor = 0.0; // No reverse reaction for Q = 0 reactions
|
|
}
|
|
|
|
// --- Precompute stoichiometry information ---
|
|
const auto stoichiometryMap = reaction.stoichiometry();
|
|
precomp.affected_species_indices.reserve(stoichiometryMap.size());
|
|
precomp.stoichiometric_coefficients.reserve(stoichiometryMap.size());
|
|
|
|
for (const auto& [species, coeff] : stoichiometryMap) {
|
|
precomp.affected_species_indices.push_back(speciesIndexMap.at(species));
|
|
precomp.stoichiometric_coefficients.push_back(coeff);
|
|
}
|
|
|
|
m_precomputedReactions.push_back(std::move(precomp));
|
|
}
|
|
}
|
|
|
|
bool GraphEngine::AtomicReverseRate::forward(
|
|
const size_t p,
|
|
const size_t q,
|
|
const CppAD::vector<bool> &vx,
|
|
CppAD::vector<bool> &vy,
|
|
const CppAD::vector<double> &tx,
|
|
CppAD::vector<double> &ty
|
|
) {
|
|
|
|
if ( p != 0) { return false; }
|
|
const double T9 = tx[0];
|
|
|
|
const double reverseRate = m_engine.calculateReverseRate(m_reaction, T9);
|
|
// std::cout << m_reaction.peName() << " reverseRate: " << reverseRate << " at T9: " << T9 << "\n";
|
|
ty[0] = reverseRate; // Store the reverse rate in the output vector
|
|
|
|
if (vx.size() > 0) {
|
|
vy[0] = vx[0];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GraphEngine::AtomicReverseRate::reverse(
|
|
size_t q,
|
|
const CppAD::vector<double> &tx,
|
|
const CppAD::vector<double> &ty,
|
|
CppAD::vector<double> &px,
|
|
const CppAD::vector<double> &py
|
|
) {
|
|
const double T9 = tx[0];
|
|
const double reverseRate = ty[0];
|
|
|
|
const double derivative = m_engine.calculateReverseRateTwoBodyDerivative(m_reaction, T9, reverseRate);
|
|
// std::cout << m_reaction.peName() << " reverseRate Derivative: " << derivative << "\n";
|
|
|
|
px[0] = py[0] * derivative; // Return the derivative of the reverse rate with respect to T9
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GraphEngine::AtomicReverseRate::for_sparse_jac(
|
|
size_t q,
|
|
const CppAD::vector<std::set<size_t>> &r,
|
|
CppAD::vector<std::set<size_t>> &s
|
|
) {
|
|
s[0] = r[0];
|
|
return true;
|
|
}
|
|
|
|
bool GraphEngine::AtomicReverseRate::rev_sparse_jac(
|
|
size_t q,
|
|
const CppAD::vector<std::set<size_t>> &rt,
|
|
CppAD::vector<std::set<size_t>> &st
|
|
) {
|
|
st[0] = rt[0];
|
|
return true;
|
|
}
|
|
}
|