Files
GridFire/tests/graphnet_sandbox/main.cpp
Emily Boudreaux 0b09ed1cb3 feat(SpectralSolver): Spectral Solver now works in a limited fashion
Major work on spectral solver, can now evolve up to about a year. At
that point we likely need to impliment repartitioning logic to stabalize
the network or some other scheme based on the jacobian structure
2025-12-12 17:24:53 -05:00

336 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// ReSharper disable CppUnusedIncludeDirective
#include <iostream>
#include <fstream>
#include <chrono>
#include <thread>
#include <format>
#include "gridfire/gridfire.h"
#include <cppad/utility/thread_alloc.hpp> // Required for parallel_setup
#include "fourdst/composition/composition.h"
#include "fourdst/logging/logging.h"
#include "fourdst/atomic/species.h"
#include "fourdst/composition/utils.h"
#include "quill/Logger.h"
#include "quill/Backend.h"
#include "CLI/CLI.hpp"
#include <clocale>
#include "gridfire/reaction/reaclib.h"
static std::terminate_handler g_previousHandler = nullptr;
static std::vector<std::pair<double, std::unordered_map<std::string, std::pair<double, double>>>> g_callbackHistory;
static bool s_wrote_abundance_history = false;
void quill_terminate_handler();
gridfire::NetIn init(const double temp, const double rho, const double tMax) {
std::setlocale(LC_ALL, "");
g_previousHandler = std::set_terminate(quill_terminate_handler);
quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log");
logger->set_log_level(quill::LogLevel::TraceL2);
using namespace gridfire;
const std::vector<double> X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4};
const std::vector<std::string> symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"};
const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X);
NetIn netIn;
netIn.composition = composition;
netIn.temperature = temp;
netIn.density = rho;
netIn.energy = 0;
netIn.tMax = tMax;
netIn.dt0 = 1e-12;
return netIn;
}
void log_results(const gridfire::NetOut& netOut, const gridfire::NetIn& netIn) {
std::vector<fourdst::atomic::Species> logSpecies = {
fourdst::atomic::H_1,
fourdst::atomic::He_3,
fourdst::atomic::He_4,
fourdst::atomic::C_12,
fourdst::atomic::N_14,
fourdst::atomic::O_16,
fourdst::atomic::Ne_20,
fourdst::atomic::Mg_24
};
std::vector<double> initial;
std::vector<double> final;
std::vector<double> delta;
std::vector<double> fractional;
for (const auto& species : logSpecies) {
double initial_X = netIn.composition.getMassFraction(species);
double final_X = netOut.composition.getMassFraction(species);
double delta_X = final_X - initial_X;
double fractionalChange = (delta_X) / initial_X * 100.0;
initial.push_back(initial_X);
final.push_back(final_X);
delta.push_back(delta_X);
fractional.push_back(fractionalChange);
}
initial.push_back(0.0); // Placeholder for energy
final.push_back(netOut.energy);
delta.push_back(netOut.energy);
fractional.push_back(0.0); // Placeholder for energy
initial.push_back(0.0);
final.push_back(netOut.dEps_dT);
delta.push_back(netOut.dEps_dT);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.dEps_dRho);
delta.push_back(netOut.dEps_dRho);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.specific_neutrino_energy_loss);
delta.push_back(netOut.specific_neutrino_energy_loss);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.specific_neutrino_flux);
delta.push_back(netOut.specific_neutrino_flux);
fractional.push_back(0.0);
initial.push_back(netIn.composition.getMeanParticleMass());
final.push_back(netOut.composition.getMeanParticleMass());
delta.push_back(final.back() - initial.back());
fractional.push_back((final.back() - initial.back()) / initial.back() * 100.0);
std::vector<std::string> rowLabels = [&]() -> std::vector<std::string> {
std::vector<std::string> labels;
for (const auto& species : logSpecies) {
labels.emplace_back(species.name());
}
labels.emplace_back("ε");
labels.emplace_back("dε/dT");
labels.emplace_back("dε/dρ");
labels.emplace_back("Eν");
labels.emplace_back("Fν");
labels.emplace_back("<μ>");
return labels;
}();
gridfire::utils::Column<std::string> paramCol("Parameter", rowLabels);
gridfire::utils::Column<double> initialCol("Initial", initial);
gridfire::utils::Column<double> finalCol ("Final", final);
gridfire::utils::Column<double> deltaCol ("δ", delta);
gridfire::utils::Column<double> percentCol("% Change", fractional);
std::vector<std::unique_ptr<gridfire::utils::ColumnBase>> columns;
columns.push_back(std::make_unique<gridfire::utils::Column<std::string>>(paramCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(initialCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(finalCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(deltaCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(percentCol));
gridfire::utils::print_table("Simulation Results", columns);
}
void record_abundance_history_callback(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) {
s_wrote_abundance_history = true;
const auto& engine = ctx.engine;
// std::unordered_map<std::string, std::pair<double, double>> abundances;
std::vector<double> Y;
for (const auto& species : engine.getNetworkSpecies(ctx.state_ctx)) {
const size_t sid = engine.getSpeciesIndex(ctx.state_ctx, species);
double y = N_VGetArrayPointer(ctx.state)[sid];
Y.push_back(y > 0.0 ? y : 0.0); // Regularize tiny negative abundances to zero
}
fourdst::composition::Composition comp(engine.getNetworkSpecies(ctx.state_ctx), Y);
std::unordered_map<std::string, std::pair<double, double>> abundances;
for (const auto& sp : comp | std::views::keys) {
abundances.emplace(std::string(sp.name()), std::make_pair(sp.mass(), comp.getMolarAbundance(sp)));
}
g_callbackHistory.emplace_back(ctx.t, abundances);
}
void save_callback_data(const std::string_view filename) {
std::set<std::string> unique_species;
for (const auto &abundances: g_callbackHistory | std::views::values) {
for (const auto &species_name: abundances | std::views::keys) {
unique_species.insert(species_name);
}
}
std::ofstream csvFile(filename.data(), std::ios::out);
csvFile << "t,";
size_t i = 0;
for (const auto& species_name : unique_species) {
csvFile << species_name;
if (i < unique_species.size() - 1) {
csvFile << ",";
}
i++;
}
csvFile << "\n";
for (const auto& [time, data] : g_callbackHistory) {
csvFile << time << ",";
size_t j = 0;
for (const auto& species_name : unique_species) {
if (!data.contains(species_name)) {
csvFile << "0.0";
} else {
csvFile << data.at(species_name).second;
}
if (j < unique_species.size() - 1) {
csvFile << ",";
}
++j;
}
csvFile << "\n";
}
csvFile.close();
}
void log_callback_data(const double temp) {
if (s_wrote_abundance_history) {
std::cout << "Saving abundance history to abundance_history.csv" << std::endl;
save_callback_data("abundance_history_" + std::to_string(temp) + ".csv");
}
}
void quill_terminate_handler()
{
log_callback_data(1.5e7);
quill::Backend::stop();
if (g_previousHandler)
g_previousHandler();
else
std::abort();
}
void callback_main(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) {
record_abundance_history_callback(ctx);
}
int main() {
using namespace gridfire;
constexpr size_t breaks = 1;
double temp = 1.5e7;
double rho = 1.5e2;
double tMax = 3.1536e+16/breaks;
const NetIn netIn = init(temp, rho, tMax);
policy::MainSequencePolicy stellarPolicy(netIn.composition);
policy::ConstructionResults construct = stellarPolicy.construct();
std::println("Sandbox Engine Stack: {}", stellarPolicy);
std::println("Scratch Blob State: {}", *construct.scratch_blob);
constexpr size_t runs = 1000;
auto startTime = std::chrono::high_resolution_clock::now();
// arrays to store timings
std::array<std::chrono::duration<double>, runs> setup_times;
std::array<std::chrono::duration<double>, runs> eval_times;
std::array<NetOut, runs> serial_results;
for (size_t i = 0; i < runs; ++i) {
auto start_setup_time = std::chrono::high_resolution_clock::now();
std::print("Run {}/{}\r", i + 1, runs);
solver::CVODESolverStrategy solver(construct.engine, *construct.scratch_blob);
// solver.set_callback(solver::CVODESolverStrategy::TimestepCallback(callback_main));
solver.set_stdout_logging_enabled(false);
auto end_setup_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> setup_elapsed = end_setup_time - start_setup_time;
setup_times[i] = setup_elapsed;
auto start_eval_time = std::chrono::high_resolution_clock::now();
const NetOut netOut = solver.evaluate(netIn);
auto end_eval_time = std::chrono::high_resolution_clock::now();
serial_results[i] = netOut;
std::chrono::duration<double> eval_elapsed = end_eval_time - start_eval_time;
eval_times[i] = eval_elapsed;
// log_results(netOut, netIn);
}
auto endTime = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = endTime - startTime;
std::println("");
// Summarize serial timings
double total_setup_time = 0.0;
double total_eval_time = 0.0;
for (size_t i = 0; i < runs; ++i) {
total_setup_time += setup_times[i].count();
total_eval_time += eval_times[i].count();
}
std::println("Average Setup Time over {} runs: {:.6f} seconds", runs, total_setup_time / runs);
std::println("Average Evaluation Time over {} runs: {:.6f} seconds", runs, total_eval_time / runs);
std::println("Total Time for {} runs: {:.6f} seconds", runs, elapsed.count());
std::println("Final H-1 Abundances Serial: {}", serial_results[0].composition.getMolarAbundance(fourdst::atomic::H_1));
// OPTIONAL: Prevent CppAD from returning memory to the system
// during execution to reduce overhead (can speed up tight loops)
CppAD::thread_alloc::hold_memory(true);
std::array<NetOut, runs> parallelResults;
std::array<std::chrono::duration<double>, runs> setupTimes;
std::array<std::chrono::duration<double>, runs> evalTimes;
std::array<std::unique_ptr<gridfire::engine::scratch::StateBlob>, runs> workspaces;
for (size_t i = 0; i < runs; ++i) {
workspaces[i] = construct.scratch_blob->clone_structure();
}
// Parallel runs
startTime = std::chrono::high_resolution_clock::now();
for (size_t i = 0; i < runs; ++i) {
auto start_setup_time = std::chrono::high_resolution_clock::now();
solver::CVODESolverStrategy solver(construct.engine, *workspaces[i]);
solver.set_stdout_logging_enabled(false);
auto end_setup_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> setup_elapsed = end_setup_time - start_setup_time;
setupTimes[i] = setup_elapsed;
auto start_eval_time = std::chrono::high_resolution_clock::now();
parallelResults[i] = solver.evaluate(netIn);
auto end_eval_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> eval_elapsed = end_eval_time - start_eval_time;
evalTimes[i] = eval_elapsed;
}
endTime = std::chrono::high_resolution_clock::now();
elapsed = endTime - startTime;
std::println("");
// Summarize parallel timings
total_setup_time = 0.0;
total_eval_time = 0.0;
for (size_t i = 0; i < runs; ++i) {
total_setup_time += setupTimes[i].count();
total_eval_time += evalTimes[i].count();
}
std::println("Average Parallel Setup Time over {} runs: {:.6f} seconds", runs, total_setup_time / runs);
std::println("Average Parallel Evaluation Time over {} runs: {:.6f} seconds", runs, total_eval_time / runs);
std::println("Total Parallel Time for {} runs: {:.6f} seconds", runs, elapsed.count());
std::println("Final H-1 Abundances Parallel: {}", utils::iterable_to_delimited_string(parallelResults, ",", [](const auto& result) {
return result.composition.getMolarAbundance(fourdst::atomic::H_1);
}));
}