Major work on spectral solver, can now evolve up to about a year. At that point we likely need to impliment repartitioning logic to stabalize the network or some other scheme based on the jacobian structure
336 lines
12 KiB
C++
336 lines
12 KiB
C++
// ReSharper disable CppUnusedIncludeDirective
|
||
#include <iostream>
|
||
#include <fstream>
|
||
#include <chrono>
|
||
#include <thread>
|
||
#include <format>
|
||
|
||
#include "gridfire/gridfire.h"
|
||
#include <cppad/utility/thread_alloc.hpp> // Required for parallel_setup
|
||
|
||
#include "fourdst/composition/composition.h"
|
||
#include "fourdst/logging/logging.h"
|
||
#include "fourdst/atomic/species.h"
|
||
#include "fourdst/composition/utils.h"
|
||
|
||
#include "quill/Logger.h"
|
||
#include "quill/Backend.h"
|
||
#include "CLI/CLI.hpp"
|
||
|
||
#include <clocale>
|
||
|
||
#include "gridfire/reaction/reaclib.h"
|
||
|
||
|
||
static std::terminate_handler g_previousHandler = nullptr;
|
||
static std::vector<std::pair<double, std::unordered_map<std::string, std::pair<double, double>>>> g_callbackHistory;
|
||
static bool s_wrote_abundance_history = false;
|
||
void quill_terminate_handler();
|
||
|
||
gridfire::NetIn init(const double temp, const double rho, const double tMax) {
|
||
std::setlocale(LC_ALL, "");
|
||
g_previousHandler = std::set_terminate(quill_terminate_handler);
|
||
quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||
logger->set_log_level(quill::LogLevel::TraceL2);
|
||
|
||
using namespace gridfire;
|
||
const std::vector<double> X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4};
|
||
const std::vector<std::string> symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"};
|
||
|
||
|
||
const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X);
|
||
|
||
NetIn netIn;
|
||
netIn.composition = composition;
|
||
netIn.temperature = temp;
|
||
netIn.density = rho;
|
||
netIn.energy = 0;
|
||
|
||
netIn.tMax = tMax;
|
||
netIn.dt0 = 1e-12;
|
||
|
||
return netIn;
|
||
}
|
||
|
||
void log_results(const gridfire::NetOut& netOut, const gridfire::NetIn& netIn) {
|
||
std::vector<fourdst::atomic::Species> logSpecies = {
|
||
fourdst::atomic::H_1,
|
||
fourdst::atomic::He_3,
|
||
fourdst::atomic::He_4,
|
||
fourdst::atomic::C_12,
|
||
fourdst::atomic::N_14,
|
||
fourdst::atomic::O_16,
|
||
fourdst::atomic::Ne_20,
|
||
fourdst::atomic::Mg_24
|
||
};
|
||
|
||
std::vector<double> initial;
|
||
std::vector<double> final;
|
||
std::vector<double> delta;
|
||
std::vector<double> fractional;
|
||
for (const auto& species : logSpecies) {
|
||
double initial_X = netIn.composition.getMassFraction(species);
|
||
double final_X = netOut.composition.getMassFraction(species);
|
||
double delta_X = final_X - initial_X;
|
||
double fractionalChange = (delta_X) / initial_X * 100.0;
|
||
|
||
initial.push_back(initial_X);
|
||
final.push_back(final_X);
|
||
delta.push_back(delta_X);
|
||
fractional.push_back(fractionalChange);
|
||
}
|
||
|
||
initial.push_back(0.0); // Placeholder for energy
|
||
final.push_back(netOut.energy);
|
||
delta.push_back(netOut.energy);
|
||
fractional.push_back(0.0); // Placeholder for energy
|
||
|
||
initial.push_back(0.0);
|
||
final.push_back(netOut.dEps_dT);
|
||
delta.push_back(netOut.dEps_dT);
|
||
fractional.push_back(0.0);
|
||
|
||
initial.push_back(0.0);
|
||
final.push_back(netOut.dEps_dRho);
|
||
delta.push_back(netOut.dEps_dRho);
|
||
fractional.push_back(0.0);
|
||
|
||
initial.push_back(0.0);
|
||
final.push_back(netOut.specific_neutrino_energy_loss);
|
||
delta.push_back(netOut.specific_neutrino_energy_loss);
|
||
fractional.push_back(0.0);
|
||
|
||
initial.push_back(0.0);
|
||
final.push_back(netOut.specific_neutrino_flux);
|
||
delta.push_back(netOut.specific_neutrino_flux);
|
||
fractional.push_back(0.0);
|
||
|
||
initial.push_back(netIn.composition.getMeanParticleMass());
|
||
final.push_back(netOut.composition.getMeanParticleMass());
|
||
delta.push_back(final.back() - initial.back());
|
||
fractional.push_back((final.back() - initial.back()) / initial.back() * 100.0);
|
||
|
||
std::vector<std::string> rowLabels = [&]() -> std::vector<std::string> {
|
||
std::vector<std::string> labels;
|
||
for (const auto& species : logSpecies) {
|
||
labels.emplace_back(species.name());
|
||
}
|
||
labels.emplace_back("ε");
|
||
labels.emplace_back("dε/dT");
|
||
labels.emplace_back("dε/dρ");
|
||
labels.emplace_back("Eν");
|
||
labels.emplace_back("Fν");
|
||
labels.emplace_back("<μ>");
|
||
return labels;
|
||
}();
|
||
|
||
|
||
gridfire::utils::Column<std::string> paramCol("Parameter", rowLabels);
|
||
gridfire::utils::Column<double> initialCol("Initial", initial);
|
||
gridfire::utils::Column<double> finalCol ("Final", final);
|
||
gridfire::utils::Column<double> deltaCol ("δ", delta);
|
||
gridfire::utils::Column<double> percentCol("% Change", fractional);
|
||
|
||
std::vector<std::unique_ptr<gridfire::utils::ColumnBase>> columns;
|
||
columns.push_back(std::make_unique<gridfire::utils::Column<std::string>>(paramCol));
|
||
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(initialCol));
|
||
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(finalCol));
|
||
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(deltaCol));
|
||
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(percentCol));
|
||
|
||
|
||
gridfire::utils::print_table("Simulation Results", columns);
|
||
}
|
||
|
||
|
||
void record_abundance_history_callback(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) {
|
||
s_wrote_abundance_history = true;
|
||
const auto& engine = ctx.engine;
|
||
// std::unordered_map<std::string, std::pair<double, double>> abundances;
|
||
std::vector<double> Y;
|
||
for (const auto& species : engine.getNetworkSpecies(ctx.state_ctx)) {
|
||
const size_t sid = engine.getSpeciesIndex(ctx.state_ctx, species);
|
||
double y = N_VGetArrayPointer(ctx.state)[sid];
|
||
Y.push_back(y > 0.0 ? y : 0.0); // Regularize tiny negative abundances to zero
|
||
}
|
||
|
||
fourdst::composition::Composition comp(engine.getNetworkSpecies(ctx.state_ctx), Y);
|
||
|
||
|
||
std::unordered_map<std::string, std::pair<double, double>> abundances;
|
||
for (const auto& sp : comp | std::views::keys) {
|
||
abundances.emplace(std::string(sp.name()), std::make_pair(sp.mass(), comp.getMolarAbundance(sp)));
|
||
}
|
||
g_callbackHistory.emplace_back(ctx.t, abundances);
|
||
}
|
||
|
||
|
||
void save_callback_data(const std::string_view filename) {
|
||
std::set<std::string> unique_species;
|
||
for (const auto &abundances: g_callbackHistory | std::views::values) {
|
||
for (const auto &species_name: abundances | std::views::keys) {
|
||
unique_species.insert(species_name);
|
||
}
|
||
}
|
||
std::ofstream csvFile(filename.data(), std::ios::out);
|
||
csvFile << "t,";
|
||
|
||
size_t i = 0;
|
||
for (const auto& species_name : unique_species) {
|
||
csvFile << species_name;
|
||
if (i < unique_species.size() - 1) {
|
||
csvFile << ",";
|
||
}
|
||
i++;
|
||
}
|
||
|
||
csvFile << "\n";
|
||
|
||
for (const auto& [time, data] : g_callbackHistory) {
|
||
csvFile << time << ",";
|
||
size_t j = 0;
|
||
for (const auto& species_name : unique_species) {
|
||
if (!data.contains(species_name)) {
|
||
csvFile << "0.0";
|
||
} else {
|
||
csvFile << data.at(species_name).second;
|
||
}
|
||
if (j < unique_species.size() - 1) {
|
||
csvFile << ",";
|
||
}
|
||
++j;
|
||
}
|
||
csvFile << "\n";
|
||
}
|
||
|
||
csvFile.close();
|
||
}
|
||
|
||
void log_callback_data(const double temp) {
|
||
if (s_wrote_abundance_history) {
|
||
std::cout << "Saving abundance history to abundance_history.csv" << std::endl;
|
||
save_callback_data("abundance_history_" + std::to_string(temp) + ".csv");
|
||
}
|
||
|
||
}
|
||
|
||
void quill_terminate_handler()
|
||
{
|
||
log_callback_data(1.5e7);
|
||
quill::Backend::stop();
|
||
if (g_previousHandler)
|
||
g_previousHandler();
|
||
else
|
||
std::abort();
|
||
}
|
||
|
||
void callback_main(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) {
|
||
record_abundance_history_callback(ctx);
|
||
}
|
||
|
||
int main() {
|
||
using namespace gridfire;
|
||
|
||
constexpr size_t breaks = 1;
|
||
double temp = 1.5e7;
|
||
double rho = 1.5e2;
|
||
double tMax = 3.1536e+16/breaks;
|
||
|
||
const NetIn netIn = init(temp, rho, tMax);
|
||
|
||
policy::MainSequencePolicy stellarPolicy(netIn.composition);
|
||
policy::ConstructionResults construct = stellarPolicy.construct();
|
||
std::println("Sandbox Engine Stack: {}", stellarPolicy);
|
||
std::println("Scratch Blob State: {}", *construct.scratch_blob);
|
||
|
||
|
||
constexpr size_t runs = 1000;
|
||
auto startTime = std::chrono::high_resolution_clock::now();
|
||
|
||
// arrays to store timings
|
||
std::array<std::chrono::duration<double>, runs> setup_times;
|
||
std::array<std::chrono::duration<double>, runs> eval_times;
|
||
std::array<NetOut, runs> serial_results;
|
||
for (size_t i = 0; i < runs; ++i) {
|
||
auto start_setup_time = std::chrono::high_resolution_clock::now();
|
||
std::print("Run {}/{}\r", i + 1, runs);
|
||
solver::CVODESolverStrategy solver(construct.engine, *construct.scratch_blob);
|
||
// solver.set_callback(solver::CVODESolverStrategy::TimestepCallback(callback_main));
|
||
solver.set_stdout_logging_enabled(false);
|
||
auto end_setup_time = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> setup_elapsed = end_setup_time - start_setup_time;
|
||
setup_times[i] = setup_elapsed;
|
||
|
||
auto start_eval_time = std::chrono::high_resolution_clock::now();
|
||
const NetOut netOut = solver.evaluate(netIn);
|
||
auto end_eval_time = std::chrono::high_resolution_clock::now();
|
||
serial_results[i] = netOut;
|
||
std::chrono::duration<double> eval_elapsed = end_eval_time - start_eval_time;
|
||
eval_times[i] = eval_elapsed;
|
||
|
||
// log_results(netOut, netIn);
|
||
}
|
||
auto endTime = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> elapsed = endTime - startTime;
|
||
std::println("");
|
||
|
||
// Summarize serial timings
|
||
double total_setup_time = 0.0;
|
||
double total_eval_time = 0.0;
|
||
for (size_t i = 0; i < runs; ++i) {
|
||
total_setup_time += setup_times[i].count();
|
||
total_eval_time += eval_times[i].count();
|
||
}
|
||
std::println("Average Setup Time over {} runs: {:.6f} seconds", runs, total_setup_time / runs);
|
||
std::println("Average Evaluation Time over {} runs: {:.6f} seconds", runs, total_eval_time / runs);
|
||
std::println("Total Time for {} runs: {:.6f} seconds", runs, elapsed.count());
|
||
std::println("Final H-1 Abundances Serial: {}", serial_results[0].composition.getMolarAbundance(fourdst::atomic::H_1));
|
||
|
||
// OPTIONAL: Prevent CppAD from returning memory to the system
|
||
// during execution to reduce overhead (can speed up tight loops)
|
||
CppAD::thread_alloc::hold_memory(true);
|
||
|
||
std::array<NetOut, runs> parallelResults;
|
||
std::array<std::chrono::duration<double>, runs> setupTimes;
|
||
std::array<std::chrono::duration<double>, runs> evalTimes;
|
||
std::array<std::unique_ptr<gridfire::engine::scratch::StateBlob>, runs> workspaces;
|
||
for (size_t i = 0; i < runs; ++i) {
|
||
workspaces[i] = construct.scratch_blob->clone_structure();
|
||
}
|
||
|
||
|
||
// Parallel runs
|
||
startTime = std::chrono::high_resolution_clock::now();
|
||
for (size_t i = 0; i < runs; ++i) {
|
||
auto start_setup_time = std::chrono::high_resolution_clock::now();
|
||
solver::CVODESolverStrategy solver(construct.engine, *workspaces[i]);
|
||
solver.set_stdout_logging_enabled(false);
|
||
auto end_setup_time = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> setup_elapsed = end_setup_time - start_setup_time;
|
||
setupTimes[i] = setup_elapsed;
|
||
auto start_eval_time = std::chrono::high_resolution_clock::now();
|
||
parallelResults[i] = solver.evaluate(netIn);
|
||
auto end_eval_time = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> eval_elapsed = end_eval_time - start_eval_time;
|
||
evalTimes[i] = eval_elapsed;
|
||
}
|
||
endTime = std::chrono::high_resolution_clock::now();
|
||
elapsed = endTime - startTime;
|
||
std::println("");
|
||
|
||
// Summarize parallel timings
|
||
total_setup_time = 0.0;
|
||
total_eval_time = 0.0;
|
||
for (size_t i = 0; i < runs; ++i) {
|
||
total_setup_time += setupTimes[i].count();
|
||
total_eval_time += evalTimes[i].count();
|
||
}
|
||
|
||
std::println("Average Parallel Setup Time over {} runs: {:.6f} seconds", runs, total_setup_time / runs);
|
||
std::println("Average Parallel Evaluation Time over {} runs: {:.6f} seconds", runs, total_eval_time / runs);
|
||
std::println("Total Parallel Time for {} runs: {:.6f} seconds", runs, elapsed.count());
|
||
|
||
std::println("Final H-1 Abundances Parallel: {}", utils::iterable_to_delimited_string(parallelResults, ",", [](const auto& result) {
|
||
return result.composition.getMolarAbundance(fourdst::atomic::H_1);
|
||
}));
|
||
} |