perf(multi): Simple parallel multi zone solver

Added a simple parallel multi-zone solver
This commit is contained in:
2025-12-18 12:47:39 -05:00
parent 4e1edfc142
commit dcfd7b60aa
27 changed files with 1018 additions and 2193 deletions

View File

@@ -13,17 +13,24 @@ namespace gridfire::solver {
template <typename EngineT>
concept IsEngine = std::is_base_of_v<engine::Engine, EngineT>;
struct SolverContextBase {
virtual void init() = 0;
virtual void set_stdout_logging(bool enable) = 0;
virtual void set_detailed_logging(bool enable) = 0;
virtual ~SolverContextBase() = default;
};
/**
* @struct SolverContextBase
* @struct TimestepContextBase
* @brief Base class for solver callback contexts.
*
* This struct serves as a base class for contexts that can be passed to solver callbacks, it enforces
* that derived classes implement a `describe` method that returns a vector of tuples describing
* the context that a callback will receive when called.
*/
class SolverContextBase {
class TimestepContextBase {
public:
virtual ~SolverContextBase() = default;
virtual ~TimestepContextBase() = default;
/**
* @brief Describe the context for callback functions.
@@ -54,11 +61,9 @@ namespace gridfire::solver {
* @param engine The engine to use for evaluating the network.
*/
explicit SingleZoneNetworkSolver(
const EngineT& engine,
const engine::scratch::StateBlob& ctx
const EngineT& engine
) :
m_engine(engine),
m_scratch_blob(ctx.clone_structure()) {};
m_engine(engine) {};
/**
* @brief Virtual destructor.
@@ -67,58 +72,39 @@ namespace gridfire::solver {
/**
* @brief Evaluates the network for a given timestep.
* @param solver_ctx
* @param engine_ctx
* @param netIn The input conditions for the network.
* @return The output conditions after the timestep.
*/
virtual NetOut evaluate(const NetIn& netIn) = 0;
virtual NetOut evaluate(
SolverContextBase& solver_ctx,
const NetIn& netIn
) const = 0;
/**
* @brief set the callback function to be called at the end of each timestep.
*
* This function allows the user to set a callback function that will be called at the end of each timestep.
* The callback function will receive a gridfire::solver::<SOMESOLVER>::TimestepContext object. Note that
* depending on the solver, this context may contain different information. Further, the exact
* signature of the callback function is left up to each solver. Every solver should provide a type or type alias
* TimestepCallback that defines the signature of the callback function so that the user can easily
* get that type information.
*
* @param callback The callback function to be called at the end of each timestep.
*/
virtual void set_callback(const std::any& callback) = 0;
/**
* @brief Describe the context that will be passed to the callback function.
* @return A vector of tuples, each containing a string for the parameter's name and a string for its type.
*
* This method should be overridden by derived classes to provide a description of the context
* that will be passed to the callback function. The intent of this method is that an end user can investigate
* the context that will be passed to the callback function, and use this information to craft their own
* callback function.
*/
[[nodiscard]] virtual std::vector<std::tuple<std::string, std::string>> describe_callback_context() const = 0;
protected:
const EngineT& m_engine; ///< The engine used by this solver strategy.
std::unique_ptr<engine::scratch::StateBlob> m_scratch_blob;
};
template <IsEngine EngineT>
class MultiZoneNetworkSolver {
public:
explicit MultiZoneNetworkSolver(
const EngineT& engine
const EngineT& engine,
const SingleZoneNetworkSolver<EngineT>& solver
) :
m_engine(engine) {};
m_engine(engine),
m_solver(solver) {};
virtual ~MultiZoneNetworkSolver() = default;
virtual std::vector<NetOut> evaluate(
const std::vector<NetIn>& netIns,
const std::vector<double>& mass_coords, const engine::scratch::StateBlob &ctx_template
) = 0;
virtual void set_callback(const std::any& callback) = 0;
[[nodiscard]] virtual std::vector<std::tuple<std::string, std::string>> describe_callback_context() const = 0;
SolverContextBase& solver_ctx,
const std::vector<NetIn>& netIns
) const = 0;
protected:
const EngineT& m_engine; ///< The engine used by this solver strategy.
const SingleZoneNetworkSolver<EngineT>& m_solver;
};
/**