feat(fortran): Fortran interface can now use multi-zone

Fortran interface uses the new C api ability to call the naieve
multi-zone solver. This allows fortran calling code to make use of in
build parellaism for solving multiple zones
This commit is contained in:
2025-12-19 09:58:47 -05:00
parent 2a9649a72e
commit d65c237b26
17 changed files with 738 additions and 69 deletions

393
tools/gf_multi/main.cpp Normal file
View File

@@ -0,0 +1,393 @@
// ReSharper disable CppUnusedIncludeDirective
#include <iostream>
#include <fstream>
#include <chrono>
#include <thread>
#include <format>
#include "gridfire/gridfire.h"
#include <cppad/utility/thread_alloc.hpp> // Required for parallel_setup
#include "fourdst/composition/composition.h"
#include "fourdst/logging/logging.h"
#include "fourdst/atomic/species.h"
#include "fourdst/composition/utils.h"
#include "quill/Logger.h"
#include "quill/Backend.h"
#include "CLI/CLI.hpp"
#include <clocale>
#include "gridfire/utils/gf_omp.h"
static std::terminate_handler g_previousHandler = nullptr;
static std::vector<std::pair<double, std::unordered_map<std::string, std::pair<double, double>>>> g_callbackHistory;
static bool s_wrote_abundance_history = false;
void quill_terminate_handler();
enum class ScalingTypes {
LINEAR,
LOG,
GEOM
};
std::map<std::string, ScalingTypes> scaling_type_map = {
{"linear", ScalingTypes::LINEAR},
{"log", ScalingTypes::LOG},
{"geom", ScalingTypes::GEOM}
};
template<typename T>
concept IsOrderableLinear = std::floating_point<T>;
template<typename T>
concept IsOrderableLog = std::floating_point<T>;
template<IsOrderableLinear T>
constexpr std::vector<T> linspace(T start, T end, size_t N) {
if (N == 0) {
return {};
}
if (N == 1) {
return {start};
}
std::vector<T> result{};
result.resize(N);
for (std::size_t i = 0; i < N; ++i) {
const T t = static_cast<T>(i) / static_cast<T>(N - 1);
result[i] = std::lerp(start, end, t);
}
return result;
}
template<IsOrderableLog T>
std::vector<T> logspace(T start, T end, size_t N) {
if (N == 0) {
return {};
}
if (N == 1) {
return {start};
}
std::vector<T> result{};
result.resize(N);
const T log_start = start;
const T log_end = end;
for (std::size_t i = 0; i < N; ++i) {
const T t = static_cast<T>(i) / static_cast<T>(N - 1);
const T exponent = std::lerp(log_start, log_end, t);
result[i] = std::pow(static_cast<T>(10), exponent);
}
return result;
}
template<IsOrderableLog T>
std::vector<T> geomspace(T start, T end, size_t N) {
if (start <= 0 || end <= 0) {
throw std::domain_error("geomspace requires positive start/end values");
}
const T log_start = std::log10(start);
const T log_end = std::log10(end);
std::vector<T> result = logspace<T>(log_start, log_end, N);
result[0] = start;
result[N - 1] = end;
return result;
}
gridfire::NetIn init(const double temp, const double rho, const double tMax) {
std::setlocale(LC_ALL, "");
g_previousHandler = std::set_terminate(quill_terminate_handler);
quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log");
logger->set_log_level(quill::LogLevel::Info);
using namespace gridfire;
const std::vector<double> X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4};
const std::vector<std::string> symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"};
const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X);
NetIn netIn;
netIn.composition = composition;
netIn.temperature = temp;
netIn.density = rho;
netIn.energy = 0;
netIn.tMax = tMax;
netIn.dt0 = 1e-12;
return netIn;
}
void log_results(const gridfire::NetOut& netOut, const gridfire::NetIn& netIn) {
std::vector<fourdst::atomic::Species> logSpecies = {
fourdst::atomic::H_1,
fourdst::atomic::He_3,
fourdst::atomic::He_4,
fourdst::atomic::C_12,
fourdst::atomic::N_14,
fourdst::atomic::O_16,
fourdst::atomic::Ne_20,
fourdst::atomic::Mg_24
};
std::vector<double> initial;
std::vector<double> final;
std::vector<double> delta;
std::vector<double> fractional;
for (const auto& species : logSpecies) {
double initial_X = netIn.composition.getMassFraction(species);
double final_X = netOut.composition.getMassFraction(species);
double delta_X = final_X - initial_X;
double fractionalChange = (delta_X) / initial_X * 100.0;
initial.push_back(initial_X);
final.push_back(final_X);
delta.push_back(delta_X);
fractional.push_back(fractionalChange);
}
initial.push_back(0.0); // Placeholder for energy
final.push_back(netOut.energy);
delta.push_back(netOut.energy);
fractional.push_back(0.0); // Placeholder for energy
initial.push_back(0.0);
final.push_back(netOut.dEps_dT);
delta.push_back(netOut.dEps_dT);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.dEps_dRho);
delta.push_back(netOut.dEps_dRho);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.specific_neutrino_energy_loss);
delta.push_back(netOut.specific_neutrino_energy_loss);
fractional.push_back(0.0);
initial.push_back(0.0);
final.push_back(netOut.specific_neutrino_flux);
delta.push_back(netOut.specific_neutrino_flux);
fractional.push_back(0.0);
initial.push_back(netIn.composition.getMeanParticleMass());
final.push_back(netOut.composition.getMeanParticleMass());
delta.push_back(final.back() - initial.back());
fractional.push_back((final.back() - initial.back()) / initial.back() * 100.0);
std::vector<std::string> rowLabels = [&]() -> std::vector<std::string> {
std::vector<std::string> labels;
for (const auto& species : logSpecies) {
labels.emplace_back(species.name());
}
labels.emplace_back("ε");
labels.emplace_back("dε/dT");
labels.emplace_back("dε/dρ");
labels.emplace_back("Eν");
labels.emplace_back("Fν");
labels.emplace_back("<μ>");
return labels;
}();
gridfire::utils::Column<std::string> paramCol("Parameter", rowLabels);
gridfire::utils::Column<double> initialCol("Initial", initial);
gridfire::utils::Column<double> finalCol ("Final", final);
gridfire::utils::Column<double> deltaCol ("δ", delta);
gridfire::utils::Column<double> percentCol("% Change", fractional);
std::vector<std::unique_ptr<gridfire::utils::ColumnBase>> columns;
columns.push_back(std::make_unique<gridfire::utils::Column<std::string>>(paramCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(initialCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(finalCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(deltaCol));
columns.push_back(std::make_unique<gridfire::utils::Column<double>>(percentCol));
gridfire::utils::print_table("Simulation Results", columns);
}
void record_abundance_history_callback(const gridfire::solver::PointSolverTimestepContext& ctx) {
s_wrote_abundance_history = true;
const auto& engine = ctx.engine;
// std::unordered_map<std::string, std::pair<double, double>> abundances;
std::vector<double> Y;
for (const auto& species : engine.getNetworkSpecies(ctx.state_ctx)) {
const size_t sid = engine.getSpeciesIndex(ctx.state_ctx, species);
double y = N_VGetArrayPointer(ctx.state)[sid];
Y.push_back(y > 0.0 ? y : 0.0); // Regularize tiny negative abundances to zero
}
fourdst::composition::Composition comp(engine.getNetworkSpecies(ctx.state_ctx), Y);
std::unordered_map<std::string, std::pair<double, double>> abundances;
for (const auto& sp : comp | std::views::keys) {
abundances.emplace(std::string(sp.name()), std::make_pair(sp.mass(), comp.getMolarAbundance(sp)));
}
g_callbackHistory.emplace_back(ctx.t, abundances);
}
void save_callback_data(const std::string_view filename) {
std::set<std::string> unique_species;
for (const auto &abundances: g_callbackHistory | std::views::values) {
for (const auto &species_name: abundances | std::views::keys) {
unique_species.insert(species_name);
}
}
std::ofstream csvFile(filename.data(), std::ios::out);
csvFile << "t,";
size_t i = 0;
for (const auto& species_name : unique_species) {
csvFile << species_name;
if (i < unique_species.size() - 1) {
csvFile << ",";
}
i++;
}
csvFile << "\n";
for (const auto& [time, data] : g_callbackHistory) {
csvFile << time << ",";
size_t j = 0;
for (const auto& species_name : unique_species) {
if (!data.contains(species_name)) {
csvFile << "0.0";
} else {
csvFile << data.at(species_name).second;
}
if (j < unique_species.size() - 1) {
csvFile << ",";
}
++j;
}
csvFile << "\n";
}
csvFile.close();
}
void log_callback_data(const double temp) {
if (s_wrote_abundance_history) {
std::cout << "Saving abundance history to abundance_history.csv" << std::endl;
save_callback_data("abundance_history_" + std::to_string(temp) + ".csv");
}
}
void quill_terminate_handler()
{
log_callback_data(1.5e7);
quill::Backend::stop();
if (g_previousHandler)
g_previousHandler();
else
std::abort();
}
void callback_main(const gridfire::solver::PointSolverTimestepContext& ctx) {
record_abundance_history_callback(ctx);
}
int main(int argc, char** argv) {
GF_PAR_INIT();
using namespace gridfire;
double tMin = 1e7;
double tMax = 3e7;
ScalingTypes tempScaling = ScalingTypes::LINEAR;
double rhoMin = 1e2;
double rhoMax = 1e3;
ScalingTypes rhoScaling = ScalingTypes::LOG;
double evolveTime = 1e13;
size_t shells = 10;
CLI::App app("GridFire Quick CLI Test");
// Add temp, rho, and tMax as options if desired
app.add_option("--tMin", tMin, "Initial Temperature")->default_val(std::format("{:5.2E}", tMin));
app.add_option("--tMax", tMax, "Maximum Temperature")->default_val(std::format("{:5.2E}", tMax));
app.add_option("--tempScaling", tempScaling, "Temperature Scaling Type (linear, log, geom)")->default_val(ScalingTypes::LINEAR)->transform(CLI::CheckedTransformer(scaling_type_map, CLI::ignore_case));
app.add_option("--rhoMin", rhoMin, "Initial Density")->default_val(std::format("{:5.2E}", rhoMin));
app.add_option("--rhoMax", rhoMax, "Maximum Density")->default_val(std::format("{:5.2E}", rhoMax));
app.add_option("--rhoScaling", rhoScaling, "Density Scaling Type (linear, log, geom)")->default_val(ScalingTypes::LOG)->transform(CLI::CheckedTransformer(scaling_type_map, CLI::ignore_case));
app.add_option("--shell", shells, "Number of Shells")->default_val(shells);
app.add_option("--evolveTime", evolveTime, "Evolution Time")->default_val(std::format("{:5.2E}", evolveTime));
CLI11_PARSE(app, argc, argv);
NetIn rootNetIn = init(tMin, tMax, evolveTime);
std::vector<double> temps;
std::vector<double> densities;
switch (tempScaling) {
case ScalingTypes::LINEAR:
temps = linspace<double>(tMin, tMax, static_cast<size_t>(shells));
break;
case ScalingTypes::LOG:
temps = logspace<double>(std::log10(tMin), std::log10(tMax), static_cast<size_t>(shells));
break;
case ScalingTypes::GEOM:
temps = geomspace<double>(tMin, tMax, static_cast<size_t>(shells));
break;
}
switch (rhoScaling) {
case ScalingTypes::LINEAR:
densities = linspace<double>(rhoMin, rhoMax, static_cast<size_t>(shells));
break;
case ScalingTypes::LOG:
densities = logspace<double>(std::log10(rhoMin), std::log10(rhoMax), static_cast<size_t>(shells));
break;
case ScalingTypes::GEOM:
densities = geomspace<double>(rhoMin, rhoMax, static_cast<size_t>(shells));
break;
}
std::vector<NetIn> netIns;
netIns.reserve(shells);
for (size_t i = 0; i < static_cast<size_t>(shells); ++i) {
NetIn netIn = rootNetIn;
netIn.temperature = temps[i];
netIn.density = densities[i];
netIns.emplace_back(netIn);
}
policy::MainSequencePolicy stellarPolicy(rootNetIn.composition);
auto [engine, ctx_template] = stellarPolicy.construct();
solver::PointSolver point_solver(engine);
solver::GridSolver grid_solver(engine, point_solver);
solver::GridSolverContext solver_ctx(*ctx_template);
std::vector<NetOut> results = grid_solver.evaluate(solver_ctx, netIns);
for (size_t i = 0; i < results.size(); ++i) {
std::cout << "=== Shell " << i << " ===" << std::endl;
log_results(results[i], netIns[i]);
}
}

View File

@@ -0,0 +1 @@
executable('gf_multi', 'main.cpp', dependencies: [gridfire_dep, cli11_dep])