feat(fortran): Fortran interface can now use multi-zone

Fortran interface uses the new C api ability to call the naieve
multi-zone solver. This allows fortran calling code to make use of in
build parellaism for solving multiple zones
This commit is contained in:
2025-12-19 09:58:47 -05:00
parent 2a9649a72e
commit d65c237b26
17 changed files with 738 additions and 69 deletions

View File

@@ -2,6 +2,14 @@ module gridfire_mod
use iso_c_binding
implicit none
type, public :: GF_TYPE
integer(c_int) :: value
end type GF_TYPE
type(GF_TYPE), parameter, public :: &
SINGLE_ZONE = GF_TYPE(1001), &
MULTI_ZONE = GF_TYPE(1002)
enum, bind (C)
enumerator :: FDSSE_NON_4DSTAR_ERROR = -102
enumerator :: FDSSE_UNKNOWN_ERROR = -101
@@ -50,24 +58,46 @@ module gridfire_mod
enumerator :: GF_DEBUG_ERRROR = 30
enumerator :: GF_GRIDFIRE_ERROR = 31
enumerator :: GF_UNINITIALIZED_INPUT_MEMORY_ERROR = 32
enumerator :: GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR = 33
enumerator :: GF_INVALD_NUM_SPECIES = 34
enumerator :: GF_INVALID_TIMESTEPS = 35
enumerator :: GF_UNKNONWN_FREE_TYPE = 36
enumerator :: GF_INVALID_TYPE = 37
enumerator :: GF_SINGLE_ZONE = 1001
enumerator :: GF_MULTI_ZONE = 1002
end enum
interface
! void* gf_init()
function gf_init() bind(C, name="gf_init")
import :: c_ptr
function gf_init(ctx_type) bind(C, name="gf_init")
import :: c_ptr, c_int
type(c_ptr) :: gf_init
integer(c_int), value :: ctx_type
end function gf_init
! void gf_free(void* gf)
subroutine gf_free(gf) bind(C, name="gf_free")
import :: c_ptr
type(c_ptr), value :: gf
end subroutine gf_free
! int gf_free(void* gf)
function gf_free(ctx_type, ptr) result(c_res) bind(C, name="gf_free")
import :: c_ptr, c_int
type(c_ptr), value :: ptr
integer(c_int), value :: ctx_type
integer(c_int) :: c_res
end function gf_free
function gf_set_num_zones(ctx_type, ptr, num_zones) result(c_res) bind(C, name="gf_set_num_zones")
import :: c_ptr, c_int, c_size_t
type(c_ptr), value :: ptr
integer(c_int), value :: ctx_type
integer(c_size_t), value :: num_zones
integer(c_int) :: c_res
end function gf_set_num_zones
! char* gf_get_last_error_message(void* ptr);
function gf_get_last_error_message(ptr) result(c_msg) bind(C, name="gf_get_last_error_message")
import
import :: c_ptr, c_int
type(c_ptr), value :: ptr
type(c_ptr) :: c_msg
end function
@@ -102,49 +132,116 @@ module gridfire_mod
end function
! int gf_evolve(...)
function gf_evolve(ptr, Y_in, num_species, T, rho, dt, Y_out, energy_out, dEps_dT, dEps_dRho, specific_neutrino_loss, specific_neutrino_flux, mass_lost) result(ierr) &
function gf_evolve_c_scalar(ctx_type, ptr, Y_in, num_species, T, rho, tMax, dt0, &
Y_out, energy, dedt, dedrho, &
nue_loss, nu_flux, mass_lost) result(ierr) &
bind(C, name="gf_evolve")
import
import :: c_ptr, c_int, c_double, c_size_t
type(c_ptr), value :: ptr
real(c_double), dimension(*), intent(in) :: Y_in
integer(c_int), value :: ctx_type
integer(c_size_t), value :: num_species
real(c_double), value :: T, rho, dt
! Arrays
real(c_double), dimension(*), intent(in) :: Y_in
real(c_double), dimension(*), intent(out) :: Y_out
real(c_double), intent(out) :: energy_out, dEps_dT, dEps_dRho, specific_neutrino_loss, specific_neutrino_flux, mass_lost
! Scalars (Passed by Reference -> matches void*)
real(c_double), intent(in) :: T, rho
real(c_double), intent(out) :: energy, dedt, dedrho, nue_loss, nu_flux, mass_lost
! Scalars (Passed by Value)
real(c_double), value :: tMax, dt0
integer(c_int) :: ierr
end function
! 2. Interface for Multi Zone (Arrays)
function gf_evolve_c_array(ctx_type, ptr, Y_in, num_species, T, rho, tMax, dt0, &
Y_out, energy, dedt, dedrho, &
nue_loss, nu_flux, mass_lost) result(ierr) &
bind(C, name="gf_evolve")
import :: c_ptr, c_int, c_double, c_size_t
type(c_ptr), value :: ptr
integer(c_int), value :: ctx_type
integer(c_size_t), value :: num_species
! All Arrays (dimension(*))
real(c_double), dimension(*), intent(in) :: Y_in
real(c_double), dimension(*), intent(in) :: T, rho
real(c_double), dimension(*), intent(out) :: Y_out
real(c_double), dimension(*), intent(out) :: energy, dedt, dedrho, nue_loss, nu_flux, mass_lost
! Scalars (Passed by Value)
real(c_double), value :: tMax, dt0
integer(c_int) :: ierr
end function
end interface
type :: GridFire
type(c_ptr) :: ctx = c_null_ptr
integer(c_int) :: ctx_type = SINGLE_ZONE%value
integer(c_size_t) :: num_species = 0
integer(c_size_t) :: num_zones = 1
contains
procedure :: gff_init
procedure :: gff_free
procedure :: register_species
procedure :: setup_policy
procedure :: setup_solver
procedure :: evolve
procedure :: get_last_error
procedure :: gff_register_species
procedure :: gff_setup_policy
procedure :: gff_setup_solver
procedure :: gff_get_last_error
procedure :: gff_evolve_single
procedure :: gff_evolve_multi
generic :: gff_evolve => gff_evolve_single, gff_evolve_multi
end type GridFire
contains
subroutine gff_init(self)
subroutine gff_init(self, type, zones)
class(GridFire), intent(out) :: self
type(GF_TYPE), intent(in) :: type
integer(c_size_t), intent(in), optional :: zones
integer(c_int) :: ierr
self%ctx = gf_init()
if (type%value==1002) then
if (.not. present(zones)) then
print *, "GridFire Error: Multi-zone type requires number of zones to be specficied in the GridFire init method (i.e. GridFire(MULTI_ZONE, 10) for 10 zones)."
error stop
end if
self%num_zones = zones
end if
self%ctx_type = type%value
self%ctx = gf_init(self%ctx_type)
if (type%value==1002) then
ierr = gf_set_num_zones(self%ctx_type, self%ctx, self%num_zones)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Multi-Zone Error: ", self%gff_get_last_error()
error stop
end if
end if
end subroutine gff_init
subroutine gff_free(self)
class(GridFire), intent(inout) :: self
integer(c_int) :: ierr
if (c_associated(self%ctx)) then
call gf_free(self%ctx)
ierr = gf_free(self%ctx_type, self%ctx)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Free Error: ", self%gff_get_last_error()
error stop
end if
self%ctx = c_null_ptr
end if
end subroutine gff_free
function get_last_error(self) result(msg)
function gff_get_last_error(self) result(msg)
class(GridFire), intent(in) :: self
character(len=:), allocatable :: msg
type(c_ptr) :: c_msg_ptr
@@ -169,9 +266,9 @@ module gridfire_mod
do i = 1, len_str
msg(i+10:i+10) = char_ptr(i)
end do
end function get_last_error
end function gff_get_last_error
subroutine register_species(self, species_list)
subroutine gff_register_species(self, species_list)
class(GridFire), intent(inout) :: self
character(len=*), dimension(:), intent(in) :: species_list
@@ -179,7 +276,6 @@ module gridfire_mod
character(kind=c_char, len=:), allocatable, target :: temp_strs(:)
integer :: i, n, ierr
print *, "Registering ", size(species_list), " species."
n = size(species_list)
self%num_species = int(n, c_size_t)
@@ -191,17 +287,14 @@ module gridfire_mod
c_ptrs(i) = c_loc(temp_strs(i))
end do
print *, "Calling gf_register_species..."
ierr = gf_register_species(self%ctx, int(n, c_int), c_ptrs)
print *, "gf_register_species returned with code: ", ierr
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire: ", self%get_last_error()
print *, "GridFire: ", self%gff_get_last_error()
error stop
end if
end subroutine register_species
end subroutine gff_register_species
subroutine setup_policy(self, policy_name, abundances)
subroutine gff_setup_policy(self, policy_name, abundances)
class(GridFire), intent(in) :: self
character(len=*), intent(in) :: policy_name
real(c_double), dimension(:), intent(in) :: abundances
@@ -218,41 +311,59 @@ module gridfire_mod
self%num_species)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Policy Error: ", self%get_last_error()
print *, "GridFire Policy Error: ", self%gff_get_last_error()
error stop
end if
end subroutine setup_policy
end subroutine gff_setup_policy
subroutine setup_solver(self, solver_name)
subroutine gff_setup_solver(self, solver_name)
class(GridFire), intent(in) :: self
character(len=*), intent(in) :: solver_name
integer(c_int) :: ierr
ierr = gf_construct_solver_from_engine(self%ctx, trim(solver_name) // c_null_char)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Solver Error: ", self%get_last_error()
print *, "GridFire Solver Error: ", self%gff_get_last_error()
error stop
end if
end subroutine setup_solver
end subroutine gff_setup_solver
subroutine evolve(self, Y_in, T, rho, dt, Y_out, energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost, ierr)
subroutine gff_evolve_single(self, Y_in, T, rho, tMax, dt0, Y_out, energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost, ierr)
class(GridFire), intent(in) :: self
real(c_double), dimension(:), intent(in) :: Y_in
real(c_double), value :: T, rho, dt
real(c_double), intent(in) :: T, rho
real(c_double), value :: tMax, dt0
real(c_double), dimension(:), intent(out) :: Y_out
real(c_double), intent(out) :: energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost
integer, intent(out) :: ierr
integer(c_int) :: c_ierr
c_ierr = gf_evolve(self%ctx, &
c_ierr = gf_evolve_c_scalar(self%ctx_type, self%ctx, &
Y_in, self%num_species, &
T, rho, dt, &
T, rho, tMax, dt0, &
Y_out, &
energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost)
ierr = int(c_ierr)
if (ierr /= GF_SUCCESS .AND. ierr /= FDSSE_SUCCESS) then
print *, "GridFire Evolve Error: ", self%get_last_error()
end if
end subroutine evolve
end subroutine gff_evolve_single
subroutine gff_evolve_multi(self, Y_in, T, rho, tMax, dt0, Y_out, energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost, ierr)
class(GridFire), intent(in) :: self
real(c_double), dimension(:,:), intent(in) :: Y_in
real(c_double), dimension(:), intent(in) :: T, rho
real(c_double), value :: tMax, dt0
real(c_double), dimension(:,:), intent(out) :: Y_out
real(c_double), dimension(:), intent(out) :: energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost
integer, intent(out) :: ierr
integer(c_int) :: c_ierr
c_ierr = gf_evolve_c_array(self%ctx_type, self%ctx, &
Y_in, self%num_species, &
T, rho, tMax, dt0, &
Y_out, &
energy, dedt, dedrho, nu_e_loss, nu_flux, mass_lost)
ierr = int(c_ierr)
end subroutine gff_evolve_multi
end module gridfire_mod

View File

@@ -7,8 +7,8 @@
extern "C" {
#endif
enum GF_TYPE {
SINGLE_ZONE = 0,
MULTI_ZONE = 1
SINGLE_ZONE = 1001,
MULTI_ZONE = 1002
};

View File

@@ -222,6 +222,21 @@ extern "C" {
void* mass_lost
) {
printf("In C Starting gf_evolve with type %d\n", type);
printf("In C num_species: %zu, tMax: %e, dt0: %e\n", num_species, tMax, dt0);
printf("In C Y_in ptr: %p, T ptr: %p, rho ptr: %p\n", Y_in, T, rho);
// values
printf("In C Y_in first 5 values: ");
const auto* Y_in_ptr = static_cast<const double*>(Y_in);
for (size_t i = 0; i < std::min(num_species, size_t(5)); ++i) {
printf("%e ", Y_in_ptr[i]);
}
printf("\n");
printf("In C T value: %e\n", *(static_cast<const double*>(T)));
printf("In C rho value: %e\n", *(static_cast<const double*>(rho)));
printf("In C tMax value: %e\n", tMax);
printf("In C dt0 value: %e\n", dt0);
if (!ptr || !Y_in || !T || !rho) {
return GF_UNINITIALIZED_INPUT_MEMORY_ERROR;
}
@@ -252,6 +267,8 @@ extern "C" {
auto* specific_neutrino_flux_local = static_cast<double*>(specific_neutrino_flux);
auto* mass_lost_local = static_cast<double*>(mass_lost);
printf("Evolving single zone with T = %e, rho = %e for tMax = %e and dt0 = %e\n", *T_ptr, *rho_ptr, tMax, dt0);
return execute_guarded(ctx, [&]() {
return ctx->evolve(
static_cast<const double*>(Y_in),
@@ -283,12 +300,7 @@ extern "C" {
auto* specific_neutrino_flux_local = static_cast<double*>(specific_neutrino_flux);
auto* mass_lost_local = static_cast<double*>(mass_lost);
// for (size_t i = 0; i < ctx->get_zones(); ++i) {
// if (!Y_out_local[i]) {
// std::cerr << "Uninitialized memory for Y_out at zone " << i << std::endl;
// return GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR;
// }
// }
printf("Evolving multi zone for tMax = %e and dt0 = %e\n", tMax, dt0);
return execute_guarded(ctx, [&]() {
return ctx->evolve(