Files
libcomposition/build-config/cppad/include/cppad/utility/sparse_rcv.hpp
Emily Boudreaux 2bca6e447c build(CppAD): brought in CppAD for autodiff
we need an autodiff library at some point (or we need to roll our own but I do not think that makes sense). CppAD is well tested and header only and easy to include. It is also Liscene compatible with GPL v3.0. Here we bring it in as a dependency
2025-06-19 14:51:02 -04:00

316 lines
8.5 KiB
C++

# ifndef CPPAD_UTILITY_SPARSE_RCV_HPP
# define CPPAD_UTILITY_SPARSE_RCV_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-20 Bradley M. Bell
CppAD is distributed under the terms of the
Eclipse Public License Version 2.0.
This Source Code may also be made available under the following
Secondary License when the conditions for such availability set forth
in the Eclipse Public License, Version 2.0 are satisfied:
GNU General Public License, Version 2.0 or later.
---------------------------------------------------------------------------- */
/*
------------------------------------------------------------------------------
$begin sparse_rcv$$
$spell
CppAD
nr
nc
const
var
nnz
cppad
hpp
rcv
rc
Eigen
$$
$section Sparse Matrix Row, Column, Value Representation$$
$head Syntax$$
$codei%# include <cppad/utility/sparse_rcv.hpp>
%$$
$codei%sparse_rcv<%SizeVector%, %ValueVector%> %empty%
%$$
$codei%sparse_rcv<%SizeVector%, %ValueVector%> %matrix%(%pattern%)
%$$
$icode%matrix% = %other%
%$$
$icode%matrix%.swap( %other% )
%$$
$icode%matrix%.set(%k%, %v%)
%$$
$icode%nr% = %matrix%.nr()
%$$
$icode%nc% = %matrix%.nc()
%$$
$icode%nnz% = %matrix%.nnz()
%$$
$codei%const %SizeVector%& %row%( %matrix%.row() )
%$$
$codei%const %SizeVector%& %col%( %matrix%.col() )
%$$
$codei%const %ValueVector%& %val%( %matrix%.val() )
%$$
$codei%const sparse_rc<%SizeVector%>& %pat%( %matrix%.pat() )
%$$
$icode%row_major% = %matrix%.row_major()
%$$
$icode%col_major% = %matrix%.col_major()
%$$
$head SizeVector$$
We use $cref/SizeVector/sparse_rc/SizeVector/$$ to denote the
$cref SimpleVector$$ class corresponding to $icode pattern$$.
$head ValueVector$$
We use $icode ValueVector$$ to denote the
$cref SimpleVector$$ class corresponding to $icode val$$.
$head empty$$
This is an empty sparse matrix object. To be specific,
the corresponding number of rows $icode nr$$,
number of columns $icode nc$$,
and number of possibly non-zero values $icode nnz$$,
are all zero.
$head pattern$$
This constructor argument has prototype
$codei%
const sparse_rc<%SizeVector%>& %pattern%
%$$
It specifies the number of rows, number of columns and
the possibly non-zero entries in the $icode matrix$$.
$head matrix$$
This is a sparse matrix object with the sparsity specified by $icode pattern$$.
Only the $icode val$$ vector can be changed. All other values returned by
$icode matrix$$ are fixed during the constructor and constant there after.
The $icode val$$ vector is only changed by the constructor
and the $code set$$ function.
There are two exceptions to this rule, where $icode other$$ appears in the
assignment and swap syntax.
$head other$$
The $icode other$$ variable has prototype
$codei%
sparse_rcv<%SizeVector%, %ValueVector%> %other%
%$$
$subhead Assignment$$
After this assignment statement, $icode other$$ is an independent copy
of $icode matrix$$; i.e. it has all the same values as $icode matrix$$
and changes to $icode other$$ do not affect $icode matrix$$.
A move semantics version of the assignment operator is defined; e.g.,
it is used when $icode other$$ in the assignment syntax
is a function return value;
$subhead swap$$
After the swap operation $icode other$$ ($icode matrix$$) is equivalent
to $icode matrix$$ ($icode other$$) before the operation.
$head nr$$
This return value has prototype
$codei%
size_t %nr%
%$$
and is the number of rows in $icode matrix$$.
$head nc$$
This argument and return value has prototype
$codei%
size_t %nc%
%$$
and is the number of columns in $icode matrix$$.
$head nnz$$
We use the notation $icode nnz$$ to denote the number of
possibly non-zero entries in $icode matrix$$.
$head set$$
This function sets the value
$codei%
%val%[%k%] = %v%
%$$
$subhead k$$
This argument has type
$codei%
size_t %k%
%$$
and must be less than $icode nnz$$.
$subhead v$$
This argument has type
$codei%
const %ValueVector%::value_type& %v%
%$$
It specifies the value assigned to $icode%val%[%k%]%$$.
$head row$$
This vector has size $icode nnz$$ and
$icode%row%[%k%]%$$
is the row index of the $th k$$ possibly non-zero
element in $icode matrix$$.
$head col$$
This vector has size $icode nnz$$ and
$icode%col[%k%]%$$ is the column index of the $th k$$ possibly non-zero
element in $icode matrix$$
$head val$$
This vector has size $icode nnz$$ and
$icode%val[%k%]%$$ is value of the $th k$$ possibly non-zero entry
in the sparse matrix (the value may be zero).
$head pat$$
This is equal to the sparsity pattern; i.e.,
$icode pattern$$ in the constructor.
$head row_major$$
This vector has prototype
$codei%
%SizeVector% %row_major%
%$$
and its size $icode nnz$$.
It sorts the sparsity pattern in row-major order.
To be specific,
$codei%
%col%[ %row_major%[%k%] ] <= %col%[ %row_major%[%k%+1] ]
%$$
and if $icode%col%[ %row_major%[%k%] ] == %col%[ %row_major%[%k%+1] ]%$$,
$codei%
%row%[ %row_major%[%k%] ] < %row%[ %row_major%[%k%+1] ]
%$$
This routine generates an assert if there are two entries with the same
row and column values (if $code NDEBUG$$ is not defined).
$head col_major$$
This vector has prototype
$codei%
%SizeVector% %col_major%
%$$
and its size $icode nnz$$.
It sorts the sparsity pattern in column-major order.
To be specific,
$codei%
%row%[ %col_major%[%k%] ] <= %row%[ %col_major%[%k%+1] ]
%$$
and if $icode%row%[ %col_major%[%k%] ] == %row%[ %col_major%[%k%+1] ]%$$,
$codei%
%col%[ %col_major%[%k%] ] < %col%[ %col_major%[%k%+1] ]
%$$
This routine generates an assert if there are two entries with the same
row and column values (if $code NDEBUG$$ is not defined).
$head Eigen Matrix$$
If you have the $cref/eigen package/eigen/$$ in your include path,
you can use $cref sparse2eigen$$ to convert a sparse matrix to eigen format.
$children%
example/utility/sparse_rcv.cpp
%$$
$head Example$$
The file $cref sparse_rcv.cpp$$
contains an example and test of this class.
$end
*/
/*!
\file sparse_rcv.hpp
A sparse matrix class.
*/
# include <cppad/utility/sparse_rc.hpp>
namespace CppAD { // BEGIN CPPAD_NAMESPACE
/// Sparse matrices with elements of type Scalar
template <class SizeVector, class ValueVector>
class sparse_rcv {
private:
/// sparsity pattern
sparse_rc<SizeVector> pattern_;
/// value_type
typedef typename ValueVector::value_type value_type;
/// val_[k] is the value for the k-th possibly non-zero entry in the matrix
ValueVector val_;
public:
// ------------------------------------------------------------------------
/// default constructor
sparse_rcv(void)
: pattern_(0, 0, 0)
{ }
/// move semantics constructor
/// (none of the default constructor values are used by destructor)
sparse_rcv(sparse_rcv&& other)
{ swap(other); }
/// destructor
~sparse_rcv(void)
{ }
/// constructor
sparse_rcv(const sparse_rc<SizeVector>& pattern )
:
pattern_(pattern) ,
val_(pattern_.nnz())
{ }
/// assignment
void operator=(const sparse_rcv& other)
{ pattern_ = other.pattern_;
// simple vector assignment requires vectors to have same size
val_.resize( other.nnz() );
val_ = other.val();
}
/// swap
void swap(sparse_rcv& other)
{ pattern_.swap( other.pattern_ );
val_.swap( other.val_ );
}
/// move semantics assignment
void operator=(sparse_rcv&& other)
{ swap(other); }
// ------------------------------------------------------------------------
void set(size_t k, const value_type& v)
{ CPPAD_ASSERT_KNOWN(
pattern_.nnz(),
"The index k is not less than nnz in sparse_rcv::set"
);
val_[k] = v;
}
/// number of rows in matrix
size_t nr(void) const
{ return pattern_.nr(); }
/// number of columns in matrix
size_t nc(void) const
{ return pattern_.nc(); }
/// number of possibly non-zero elements in matrix
size_t nnz(void) const
{ return pattern_.nnz(); }
/// row indices
const SizeVector& row(void) const
{ return pattern_.row(); }
/// column indices
const SizeVector& col(void) const
{ return pattern_.col(); }
/// value for possibly non-zero elements
const ValueVector& val(void) const
{ return val_; }
/// sparsity pattern
const sparse_rc<SizeVector>& pat(void) const
{ return pattern_; }
/// row-major order
SizeVector row_major(void) const
{ return pattern_.row_major(); }
/// column-major indices
SizeVector col_major(void) const
{ return pattern_.col_major(); }
};
} // END_CPPAD_NAMESPACE
# endif