we need an autodiff library at some point (or we need to roll our own but I do not think that makes sense). CppAD is well tested and header only and easy to include. It is also Liscene compatible with GPL v3.0. Here we bring it in as a dependency
236 lines
6.6 KiB
C++
236 lines
6.6 KiB
C++
# ifndef CPPAD_LOCAL_ATAN_OP_HPP
|
|
# define CPPAD_LOCAL_ATAN_OP_HPP
|
|
/* --------------------------------------------------------------------------
|
|
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell
|
|
|
|
CppAD is distributed under the terms of the
|
|
Eclipse Public License Version 2.0.
|
|
|
|
This Source Code may also be made available under the following
|
|
Secondary License when the conditions for such availability set forth
|
|
in the Eclipse Public License, Version 2.0 are satisfied:
|
|
GNU General Public License, Version 2.0 or later.
|
|
---------------------------------------------------------------------------- */
|
|
|
|
|
|
namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE
|
|
/*!
|
|
\file atan_op.hpp
|
|
Forward and reverse mode calculations for z = atan(x).
|
|
*/
|
|
|
|
|
|
/*!
|
|
Forward mode Taylor coefficient for result of op = AtanOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = atan(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = 1 + x * x
|
|
\endverbatim
|
|
The value of y, and its derivatives, are computed along with the value
|
|
and derivatives of z.
|
|
|
|
\copydetails CppAD::local::forward_unary2_op
|
|
*/
|
|
template <class Base>
|
|
void forward_atan_op(
|
|
size_t p ,
|
|
size_t q ,
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AtanOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AtanOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( q < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN( p <= q );
|
|
|
|
// Taylor coefficients corresponding to argument and result
|
|
Base* x = taylor + i_x * cap_order;
|
|
Base* z = taylor + i_z * cap_order;
|
|
Base* b = z - cap_order; // called y in documentation
|
|
|
|
size_t k;
|
|
if( p == 0 )
|
|
{ z[0] = atan( x[0] );
|
|
b[0] = Base(1.0) + x[0] * x[0];
|
|
p++;
|
|
}
|
|
for(size_t j = p; j <= q; j++)
|
|
{
|
|
b[j] = Base(2.0) * x[0] * x[j];
|
|
z[j] = Base(0.0);
|
|
for(k = 1; k < j; k++)
|
|
{ b[j] += x[k] * x[j-k];
|
|
z[j] -= Base(double(k)) * z[k] * b[j-k];
|
|
}
|
|
z[j] /= Base(double(j));
|
|
z[j] += x[j];
|
|
z[j] /= b[0];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Multiple direction Taylor coefficient for op = AtanOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = atan(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = 1 + x * x
|
|
\endverbatim
|
|
The value of y, and its derivatives, are computed along with the value
|
|
and derivatives of z.
|
|
|
|
\copydetails CppAD::local::forward_unary2_op_dir
|
|
*/
|
|
template <class Base>
|
|
void forward_atan_op_dir(
|
|
size_t q ,
|
|
size_t r ,
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AtanOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AtanOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( 0 < q );
|
|
CPPAD_ASSERT_UNKNOWN( q < cap_order );
|
|
|
|
// Taylor coefficients corresponding to argument and result
|
|
size_t num_taylor_per_var = (cap_order-1) * r + 1;
|
|
Base* x = taylor + i_x * num_taylor_per_var;
|
|
Base* z = taylor + i_z * num_taylor_per_var;
|
|
Base* b = z - num_taylor_per_var; // called y in documentation
|
|
|
|
size_t m = (q-1) * r + 1;
|
|
for(size_t ell = 0; ell < r; ell++)
|
|
{ b[m+ell] = Base(2.0) * x[m+ell] * x[0];
|
|
z[m+ell] = Base(double(q)) * x[m+ell];
|
|
for(size_t k = 1; k < q; k++)
|
|
{ b[m+ell] += x[(k-1)*r+1+ell] * x[(q-k-1)*r+1+ell];
|
|
z[m+ell] -= Base(double(k)) * z[(k-1)*r+1+ell] * b[(q-k-1)*r+1+ell];
|
|
}
|
|
z[m+ell] /= ( Base(double(q)) * b[0] );
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Zero order forward mode Taylor coefficient for result of op = AtanOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = atan(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = 1 + x * x
|
|
\endverbatim
|
|
The value of y is computed along with the value of z.
|
|
|
|
\copydetails CppAD::local::forward_unary2_op_0
|
|
*/
|
|
template <class Base>
|
|
void forward_atan_op_0(
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AtanOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AtanOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( 0 < cap_order );
|
|
|
|
// Taylor coefficients corresponding to argument and result
|
|
Base* x = taylor + i_x * cap_order;
|
|
Base* z = taylor + i_z * cap_order;
|
|
Base* b = z - cap_order; // called y in documentation
|
|
|
|
z[0] = atan( x[0] );
|
|
b[0] = Base(1.0) + x[0] * x[0];
|
|
}
|
|
/*!
|
|
Reverse mode partial derivatives for result of op = AtanOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = atan(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = 1 + x * x
|
|
\endverbatim
|
|
The value of y is computed along with the value of z.
|
|
|
|
\copydetails CppAD::local::reverse_unary2_op
|
|
*/
|
|
|
|
template <class Base>
|
|
void reverse_atan_op(
|
|
size_t d ,
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
const Base* taylor ,
|
|
size_t nc_partial ,
|
|
Base* partial )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AtanOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AtanOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( d < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN( d < nc_partial );
|
|
|
|
// Taylor coefficients and partials corresponding to argument
|
|
const Base* x = taylor + i_x * cap_order;
|
|
Base* px = partial + i_x * nc_partial;
|
|
|
|
// Taylor coefficients and partials corresponding to first result
|
|
const Base* z = taylor + i_z * cap_order;
|
|
Base* pz = partial + i_z * nc_partial;
|
|
|
|
// Taylor coefficients and partials corresponding to auxillary result
|
|
const Base* b = z - cap_order; // called y in documentation
|
|
Base* pb = pz - nc_partial;
|
|
|
|
Base inv_b0 = Base(1.0) / b[0];
|
|
|
|
// number of indices to access
|
|
size_t j = d;
|
|
size_t k;
|
|
while(j)
|
|
{ // scale partials w.r.t z[j] and b[j]
|
|
pz[j] = azmul(pz[j], inv_b0);
|
|
pb[j] *= Base(2.0);
|
|
|
|
pb[0] -= azmul(pz[j], z[j]);
|
|
px[j] += pz[j] + azmul(pb[j], x[0]);
|
|
px[0] += azmul(pb[j], x[j]);
|
|
|
|
// more scaling of partials w.r.t z[j]
|
|
pz[j] /= Base(double(j));
|
|
|
|
for(k = 1; k < j; k++)
|
|
{ pb[j-k] -= Base(double(k)) * azmul(pz[j], z[k]);
|
|
pz[k] -= Base(double(k)) * azmul(pz[j], b[j-k]);
|
|
px[k] += azmul(pb[j], x[j-k]);
|
|
}
|
|
--j;
|
|
}
|
|
px[0] += azmul(pz[0], inv_b0) + Base(2.0) * azmul(pb[0], x[0]);
|
|
}
|
|
|
|
} } // END_CPPAD_LOCAL_NAMESPACE
|
|
# endif
|