this will allow for much easier checking if a particular a,z pair actually exists
315 lines
11 KiB
Python
315 lines
11 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
import argparse
|
|
import os
|
|
|
|
|
|
# Column specifications for the NUBASE2020 data file.
|
|
# These are character positions for fixed-width fields.
|
|
nubase_col_specs = [
|
|
(0, 3), # Mass number (A)
|
|
(4, 8), # ZZZi identifier for isomer level
|
|
(11, 16), # A_El, e.g., "56Fe"
|
|
(69, 78), # Half-life value
|
|
(79, 81), # Half-life unit
|
|
(89, 102), # Spin and parity
|
|
(120, 209) # Decay modes
|
|
]
|
|
nubase_column_names = [
|
|
"a",
|
|
"ZZZi",
|
|
"A_El",
|
|
"halfLife",
|
|
"halfLifeUnit",
|
|
"spinParity",
|
|
"decayModes"
|
|
]
|
|
|
|
# Column specifications for the AME2020 data file.
|
|
ame_col_specs = [
|
|
(0, 1),
|
|
(1, 4),
|
|
(4, 9),
|
|
(9, 14),
|
|
(14, 19),
|
|
(20, 23),
|
|
(23, 27),
|
|
(28, 42),
|
|
(42, 54),
|
|
(54, 67),
|
|
(68, 78),
|
|
(79, 81),
|
|
(81, 94),
|
|
(94, 105),
|
|
(106, 109),
|
|
(110, 123),
|
|
(123, 135)
|
|
]
|
|
ame_column_names = [
|
|
"control",
|
|
"nz",
|
|
"n",
|
|
"z",
|
|
"a",
|
|
"el",
|
|
"o",
|
|
"massExcess",
|
|
"massExcessUnc",
|
|
"bindingEnergy",
|
|
"bindingEnergyUnc",
|
|
"betaCode",
|
|
"betaDecayEnergy",
|
|
"betaDecayEnergyUnc",
|
|
"atomicMassInt",
|
|
"atomicMassFrac",
|
|
"atomicMassUnc"
|
|
]
|
|
|
|
|
|
def combine_atomic_mass(row):
|
|
"""
|
|
Combines the integer and fractional parts of the atomic mass from an AME2020 row.
|
|
|
|
The AME2020 format provides atomic mass as two separate columns: an integer part
|
|
and a fractional part in micro-u. This function merges them into a single
|
|
double-precision float.
|
|
|
|
Args:
|
|
row (pd.Series): A row from the AME DataFrame.
|
|
|
|
Returns:
|
|
float or None: The combined atomic mass, or None if conversion fails.
|
|
"""
|
|
intPart = str(row["atomicMassInt"]).strip()
|
|
fracPart = str(row["atomicMassFrac"]).strip()
|
|
try:
|
|
# The fractional part is in micro-u, so it's divided by 1e6.
|
|
combined = int(intPart) + float(fracPart)/1e6
|
|
return combined
|
|
except ValueError:
|
|
return None
|
|
|
|
def mkInstanceName(row):
|
|
"""
|
|
Creates a valid C++ variable name for a species.
|
|
|
|
Args:
|
|
row (pd.Series): A row from the DataFrame.
|
|
|
|
Returns:
|
|
str: A C++-safe instance name (e.g., "Fe_56").
|
|
"""
|
|
speciesName = f"{row['el'].strip()}-{row['a']}"
|
|
return speciesName.replace("-", "_")
|
|
|
|
def convert_half_life_to_seconds(row):
|
|
"""
|
|
Converts the half-life value and unit from a NUBASE2020 row into seconds.
|
|
|
|
Handles various time units (from yoctoseconds to petayears) and the 'stbl'
|
|
(stable) identifier.
|
|
|
|
Args:
|
|
row (pd.Series): A row from the NUBASE DataFrame.
|
|
|
|
Returns:
|
|
float: The half-life in seconds. Returns np.inf for stable isotopes
|
|
and 0.0 for parsing errors.
|
|
"""
|
|
value_str = str(row['halfLife']).strip()
|
|
unit = str(row['halfLifeUnit']).strip()
|
|
|
|
if value_str == 'stbl':
|
|
return np.inf
|
|
|
|
try:
|
|
# The value string can contain non-numeric characters like '#' for uncertainty.
|
|
value = float(value_str.replace('#', ''))
|
|
except ValueError:
|
|
return 0.0
|
|
|
|
# Conversion factors from various units to seconds.
|
|
factors = {
|
|
'ys': 1e-24, 'zs': 1e-21, 'as': 1e-18, 'fs': 1e-15,
|
|
'ps': 1e-12, 'ns': 1e-9, 'us': 1e-6, 'ms': 1e-3,
|
|
's': 1.0, 'm': 60.0, 'h': 3600.0, 'd': 86400.0,
|
|
'y': 3.15576e7,
|
|
'ky': 3.15576e10, 'My': 3.15576e13, 'Gy': 3.15576e16,
|
|
'Ty': 3.15576e19, 'Py': 3.15576e22, 'Ey': 3.15576e25
|
|
}
|
|
return value * factors.get(unit, 0.0)
|
|
|
|
|
|
def formatSpecies(row):
|
|
"""
|
|
Formats a DataFrame row into a C++ static Species object instantiation string.
|
|
|
|
Args:
|
|
row (pd.Series): A row from the merged DataFrame.
|
|
|
|
Returns:
|
|
tuple[str, str]: A tuple containing the full C++ instantiation string
|
|
and the instance name.
|
|
"""
|
|
name = f"{row['el'].strip()}-{row['a']}"
|
|
instanceName = name.replace("-", "_")
|
|
nz = int(row['nz'])
|
|
n = int(row['n'])
|
|
z = int(row['z'])
|
|
a = int(row['a'])
|
|
bindingEnergy = float(row['bindingEnergy'])
|
|
atomicMass = float(row['atomicMass'])
|
|
atomicMassUnc = float(row['atomicMassUnc'])
|
|
NaN = "std::numeric_limits<double>::quiet_NaN()"
|
|
|
|
try:
|
|
# Clean up beta decay energy string before converting to float.
|
|
betaDecayEnergy = float(row['betaDecayEnergy'].replace("#", "").replace("*", ""))
|
|
except (ValueError, AttributeError):
|
|
betaDecayEnergy = NaN
|
|
|
|
### --- Add new NUBASE fields ---
|
|
halfLife_s = row.get('halfLife_s', 'std::numeric_limits<double>::infinity()')
|
|
if halfLife_s == np.inf:
|
|
halfLife_s = 'std::numeric_limits<double>::infinity()'
|
|
|
|
# Escape double quotes in string fields for C++ compatibility.
|
|
spinParity = str(row.get('spinParity', '')).strip().replace('"', '\\"')
|
|
decayModes = str(row.get('decayModes', '')).strip().replace('"', '\\"')
|
|
|
|
instantiation = (
|
|
f"static const Species {instanceName}(\"{name}\", \"{row['el'].strip()}\", {nz}, {n}, {z}, {a}, "
|
|
f"{bindingEnergy}, \"{row['betaCode']}\", {betaDecayEnergy}, "
|
|
f"{halfLife_s}, \"{spinParity}\", \"{decayModes}\", "
|
|
f"{atomicMass}, {atomicMassUnc});"
|
|
)
|
|
return instantiation, instanceName
|
|
|
|
def formatSpeciesDefines(row):
|
|
"""
|
|
Generates C++ preprocessor define guards for a species.
|
|
Note: This function is not currently used in the script's main execution path.
|
|
|
|
Args:
|
|
row (pd.Series): A row from the DataFrame.
|
|
|
|
Returns:
|
|
str: A string containing the #ifndef/#define block.
|
|
"""
|
|
instanceName = f"SERIF_SPECIES_{formatSpecies(row)[1]}"
|
|
define = f"""#ifndef {instanceName.upper()}
|
|
#define {instanceName.upper()}
|
|
#endif // {instanceName.upper()}"""
|
|
return define
|
|
|
|
|
|
def formatHeader(dataFrame):
|
|
"""
|
|
Generates the complete C++ header file content as a string.
|
|
|
|
This function creates all the static Species instantiations and builds an
|
|
unordered_map to provide string-based lookup at runtime.
|
|
|
|
Args:
|
|
dataFrame (pd.DataFrame): The final merged DataFrame containing all species data.
|
|
|
|
Returns:
|
|
str: The content of the C++ header file.
|
|
"""
|
|
header = f"""#pragma once
|
|
#include <unordered_map>
|
|
#include <string_view>
|
|
#include <string>
|
|
#include <limits> // Required for std::numeric_limits
|
|
#include "fourdst/composition/atomicSpecies.h"
|
|
#include "fourdst/composition/elements.h"
|
|
|
|
#include <expected> // For std::expected
|
|
|
|
namespace fourdst::atomic {{
|
|
// Instantiate all species as static const objects.
|
|
{'\n '.join([formatSpecies(row)[0] for index, row in dataFrame.iterrows()])}
|
|
|
|
// Create a map from species name (e.g., "H-1") to a pointer to the species object.
|
|
static const std::unordered_map<std::string, const Species&> species = {{
|
|
{'\n '.join([f'{{"{row["el"].strip()}-{row["a"]}", {mkInstanceName(row)}}},' for index, row in dataFrame.iterrows()])}
|
|
}};
|
|
|
|
// Create an enum to represent possible error types when looking up species.
|
|
enum class SpeciesErrorType {{
|
|
ELEMENT_SYMBOL_NOT_FOUND,
|
|
SPECIES_SYMBOL_NOT_FOUND
|
|
}};
|
|
|
|
// Function to look up a species by its atomic number (Z) and mass number (A).
|
|
inline std::expected<Species, SpeciesErrorType> az_to_species(const int a, const int z) {{
|
|
if (!element_symbol_map.contains(static_cast<uint8_t>(z))) {{
|
|
return std::unexpected(SpeciesErrorType::ELEMENT_SYMBOL_NOT_FOUND);
|
|
}}
|
|
const std::string element_symbol = element_symbol_map.at(static_cast<uint8_t>(z));
|
|
const std::string species_symbol = element_symbol + "-" + std::to_string(a);
|
|
if (!species.contains(species_symbol)) {{
|
|
return std::unexpected(SpeciesErrorType::SPECIES_SYMBOL_NOT_FOUND);
|
|
}}
|
|
return species.at(species_symbol);
|
|
}};
|
|
|
|
}}; // namespace fourdst::atomic
|
|
"""
|
|
return header
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Convert AME2020 and NUBASE2020 data to a C++ header file.")
|
|
parser.add_argument("ame_input", help="Input file path for AME2020 (mass.mas20).")
|
|
parser.add_argument("nubase_input", help="Input file path for NUBASE2020.")
|
|
parser.add_argument("-o", "--output", help="Output file path.", default="species.h")
|
|
args = parser.parse_args()
|
|
|
|
for path in [args.ame_input, args.nubase_input]:
|
|
if not os.path.exists(path):
|
|
raise FileNotFoundError(f"File not found: {path}")
|
|
|
|
# Read the AME2020 mass data, skipping the header.
|
|
ame_df = pd.read_fwf(args.ame_input, colspecs=ame_col_specs, names=ame_column_names, skiprows=36, keep_default_na=False)
|
|
ame_df["atomicMass"] = ame_df.apply(combine_atomic_mass, axis=1)
|
|
ame_df.drop(columns=["atomicMassInt", "atomicMassFrac"], inplace=True)
|
|
ame_df['el'] = ame_df['el'].str.strip()
|
|
|
|
# Read the NUBASE2020 nuclear properties data, skipping the header.
|
|
nubase_df = pd.read_fwf(args.nubase_input, colspecs=nubase_col_specs, names=nubase_column_names, skiprows=1, keep_default_na=False)
|
|
nubase_df['a'] = pd.to_numeric(nubase_df['a'], errors='coerce')
|
|
nubase_df.dropna(subset=['a'], inplace=True)
|
|
nubase_df['a'] = nubase_df['a'].astype(int)
|
|
# Extract the element symbol (e.g., 'Fe' from '56Fe').
|
|
nubase_df['el'] = nubase_df['A_El'].str.extract(r'([a-zA-Z]+)')[0].str.strip()
|
|
# Filter for ground states only. The 4th char in ZZZi is ' ' or '0' for ground states.
|
|
nubase_df = nubase_df[nubase_df['ZZZi'].str[3:4].isin([' ', '0'])]
|
|
# In case of multiple entries for the same isotope (e.g., different isomers), keep the first one.
|
|
nubase_df.drop_duplicates(subset=['a', 'el'], keep='first', inplace=True)
|
|
nubase_df['halfLife_s'] = nubase_df.apply(convert_half_life_to_seconds, axis=1)
|
|
|
|
|
|
print("--- AME DataFrame ---")
|
|
print(ame_df[['a', 'el']].head())
|
|
print("\n--- NUBASE DataFrame ---")
|
|
print(nubase_df[['a', 'el', 'halfLife_s']].head())
|
|
print("\n")
|
|
|
|
# Merge the AME (mass) and NUBASE (properties) data.
|
|
# A left merge keeps all isotopes from AME and adds properties from NUBASE where available.
|
|
merged_df = pd.merge(ame_df, nubase_df[['a', 'el', 'halfLife_s', 'spinParity', 'decayModes']], on=['a', 'el'], how='left')
|
|
|
|
print("--- Merged DataFrame ---")
|
|
print(merged_df[['a', 'el', 'halfLife_s']].head(10))
|
|
print("\n--- Merge Stats ---")
|
|
print(f"Total rows in final data: {len(merged_df)}")
|
|
print(f"Number of rows with a valid half-life after merge: {merged_df['halfLife_s'].notna().sum()}")
|
|
print("-" * 20)
|
|
|
|
# Generate the C++ header content from the merged data.
|
|
header = formatHeader(merged_df)
|
|
with open(args.output, "w") as f:
|
|
f.write(header)
|
|
|
|
print(f"Successfully generated C++ header at {args.output}")
|