docs(docs): updated docs and readme

This commit is contained in:
2025-11-08 10:00:16 -05:00
parent e4e7387c01
commit acff543b2d
155 changed files with 4846 additions and 4419 deletions

260
readme.md
View File

@@ -1,23 +1,261 @@
# libcomposition
![logo](assets/logo/logo.png)
[documentation](https://4d-star.github.io/libcomposition/html/)
libcomposition is the chemistry tracking tool used by SERiF and related products.
# Introduction
This has been broken out of the main serif project to allow for more modularity
`libcomposition` is a modern, C++23 library, for the creation, manipulation, and analysis of astrophysical chemical
compositions. It provides a robust and typesafe interface for assembling a set of isotopes together with their molar
abundances and for deriving commonly used bulk properties (mass fractions, number fractions, canonical X/Y/Z, mean
particle mass, and electron abundance). `libcomposition` is designed to be tighly integrated into SERiF and related
projects such as GridFire.
## Building
In order to build libconstants you need `meson>=1.5.0`. This can be installed with `pip`
### Key Features
- **TypeSafe Species Representation**: Strongly typed isotopes (`fourdst::atomic::Species`) generated from evaluated nuclear data (AME2020 / NUBASE2020).
- **Molar Abundance Core**: Stores absolute molar abundances and derives all secondary quantities (mass / number fractions, mean particle mass, electron abundance) on demand, with internal caching.
- **Canonical Composition Support**: Direct computation of canonical (X: Hydrogen, Y: Helium, Z: Metals) mass fractions via `getCanonicalComposition()`.
- **Convenience Construction**: Helper utilities for constructing compositions from a vector or set of mass fractions (`buildCompositionFromMassFractions`).
- **Deterministic Ordering**: Species are always stored and iterated lightest→heaviest (ordering defined by atomic mass) enabling uniform vector interfaces.
- **Clear Exception Hierarchy**: Explicit error signaling for invalid symbols, unregistered species, and inconsistent input data.
- **Meson + pkg-config Integration**: Simple build, install, and consumption in external projects.
---
# Installation
libcomposition can be installed either from source or as part of the `fourdst` project.
`libcomposition` uses the Meson build system. A C++23 compatible compiler is required.
### Build Steps
**Setup the build directory:**
The first step is to use meson to set up an out of source build. Note that this means that you can have multiple builds configured and cleanly separated!
```bash
pip install "meson>=1.5.0"
meson setup builddir
```
Then from the root libcomposition directory it is as simple as
**Compile the library:**
meson by default uses ninja to compile so it should be very fast; however, gcc is very slow when compiling the species database so that might take some time (clang tends to be very fast for this).
```bash
meson setup build --buildtype=release
meson compile -C build
meson test -C build
meson compile -C builddir
```
this will auto generate a pkg-config file for you so that linking other libraries to libcomposition is easy.
**Install the library:**
This will also install a pkg-config file!
```bash
sudo meson install -C builddir
```
### Build Options
You can enable the generation of a `pkg-config` file during the setup step, which simplifies linking the library in other projects. By default this is true; it can be useful to disable this when using some build system orchestrator (such as meson-python).
```bash
# Enable pkg-config file generation
meson setup builddir -Dpkg-config=true
```
---
# Usage
Below are focused examples illustrating the current API. All examples assume headers are available via pkg-config or your include path.
#### 1. Constructing a Composition from Symbols
```cpp
#include <iostream>
#include "fourdst/composition/composition.h"
int main() {
using namespace fourdst::composition;
// Register symbols upon construction (no molar abundances yet -> default 0.0)
Composition comp({"H-1", "He-4", "C-12"});
// Set molar abundances (absolute counts; they need not sum to 1.0)
comp.setMolarAbundance("H-1", 10.0);
comp.setMolarAbundance("He-4", 3.0);
comp.setMolarAbundance("C-12", 0.25);
// Query derived properties
double x_h1 = comp.getMassFraction("H-1");
double y_he4 = comp.getNumberFraction("He-4");
auto canon = comp.getCanonicalComposition(); // X, Y, Z mass fractions
std::cout << "H-1 mass fraction: " << x_h1 << "\n";
std::cout << "He-4 number fraction: " << y_he4 << "\n";
std::cout << canon << "\n"; // <CanonicalComposition: X=..., Y=..., Z=...>
}
```
#### 2. Constructing from Strongly Typed Species
```cpp
#include <iostream>
#include "fourdst/composition/composition.h"
#include "fourdst/atomic/species.h"
int main() {
using namespace fourdst::composition;
using namespace fourdst::atomic;
// Build directly from species constants
Composition comp(std::vector<Species>{H_1, He_4, O_16});
comp.setMolarAbundance(H_1, 5.0);
comp.setMolarAbundance(He_4, 2.5);
comp.setMolarAbundance(O_16, 0.1);
std::cout << "Mean particle mass: " << comp.getMeanParticleMass() << " g/mol\n";
std::cout << "Electron abundance (Ye): " << comp.getElectronAbundance() << "\n";
}
```
#### 3. Building from Mass Fractions (Helper Utility)
```cpp
#include <iostream>
#include "fourdst/composition/utils.h"
int main() {
using namespace fourdst::composition;
std::vector<std::string> symbols = {"H-1", "He-4", "C-12"};
std::vector<double> mf = {0.70, 0.28, 0.02}; // Must sum to ~1 within tolerance
Composition comp = buildCompositionFromMassFractions(symbols, mf);
auto canon = comp.getCanonicalComposition();
std::cout << canon << "\n";
}
```
#### 4. Iterating and Sorted Vector Interfaces
```cpp
#include <iostream>
#include "fourdst/composition/composition.h"
int main() {
using namespace fourdst::composition;
Composition comp({"H-1", "C-12", "He-4"}); // Internally sorted by mass (H < He < C)
comp.setMolarAbundance({"H-1", "He-4", "C-12"}, {10.0, 3.0, 0.25});
// Ordered iteration (lightest -> heaviest)
for (const auto &[sp, y] : comp) {
std::cout << sp << ": molar = " << y << "\n";
}
// Vector access (index corresponds to ordering by atomic mass)
auto molarVec = comp.getMolarAbundanceVector();
auto massVec = comp.getMassFractionVector();
size_t idx_he4 = comp.getSpeciesIndex("He-4");
std::cout << "He-4 index: " << idx_he4 << ", molar abundance at index: " << molarVec[idx_he4] << "\n";
}
```
#### 5. Accessing Specific Derived Quantities
```cpp
// Assume 'comp' is already populated.
double mf_c12 = comp.getMassFraction("C-12");
double nf_c12 = comp.getNumberFraction("C-12");
double mol_c12 = comp.getMolarAbundance("C-12");
double meanA = comp.getMeanParticleMass();
double Ye = comp.getElectronAbundance();
auto canon = comp.getCanonicalComposition();
```
#### 6. Exception Handling Examples
```cpp
#include <iostream>
#include "fourdst/composition/composition.h"
#include "fourdst/composition/exceptions/exceptions_composition.h"
int main() {
using namespace fourdst::composition;
using namespace fourdst::composition::exceptions;
Composition comp;
try {
// Unknown symbol (not in species database)
comp.registerSymbol("Xx-999");
} catch (const UnknownSymbolError &e) {
std::cerr << "Caught UnknownSymbolError: " << e.what() << "\n";
}
comp.registerSymbol("H-1");
try {
// Unregistered symbol used in a setter
comp.setMolarAbundance("He-4", 1.0); // He-4 not registered yet
} catch (const UnregisteredSymbolError &e) {
std::cerr << "Caught UnregisteredSymbolError: " << e.what() << "\n";
}
comp.registerSymbol("He-4");
try {
comp.setMolarAbundance("H-1", -3.0);
} catch (const InvalidCompositionError &e) {
std::cerr << "Caught InvalidCompositionError: " << e.what() << "\n";
}
// Mass fraction construction validation
try {
Composition bad = buildCompositionFromMassFractions({"H-1", "He-4"}, {0.6, 0.5}); // sums to 1.1
} catch (const InvalidCompositionError &e) {
std::cerr << "Caught InvalidCompositionError: " << e.what() << "\n";
}
}
```
---
@section exceptions_sec Possible Exception States
The library surfaces errors through a focused hierarchy in `fourdst::composition::exceptions`:
| Exception Type | When It Occurs |
|----------------|----------------|
| `UnknownSymbolError` | A string symbol does not correspond to any known isotope in the compiled species database. |
| `UnregisteredSymbolError` | A valid species/symbol is used before being registered with a Composition instance. |
| `InvalidCompositionError` | Construction from mass fractions fails validation (sum deviates from unity beyond tolerance) or canonical (X+Y+Z) check fails. |
| `CompositionError` | Base class; may be thrown for generic composition-level issues (e.g. negative abundances via the documented `InvalidAbundanceError` contract). |
Recommended patterns:
- Validate externally provided symbol lists before calling bulk registration.
- Use speciesbased overloads (strongly typed) where possible for slightly lower overhead (no symbol resolution).
- Wrap construction from mass fractions in a try/catch to surface normalization issues early.
---
# Linking and Integration
### Linking with pkg-config
If you installed `libcomposition` with the `pkg-config` option enabled, you can get the necessary compiler and linker flags easily:
```bash
# Get compiler flags (include paths)
pkg-config --cflags fourdst_composition
# Get linker flags (library paths and names)
pkg-config --libs fourdst_composition
```
**Example compilation command:**
```bash
g++ my_app.cpp $(pkg-config --cflags --libs fourdst_composition) -o my_app
```