Files
SERiF/src/network/public/approx8.h

314 lines
8.7 KiB
C++

#ifndef APPROX8_H
#define APPROX8_H
#include <array>
#include <boost/numeric/odeint.hpp>
#include "network.h"
/**
* @file approx8.h
* @brief Header file for the Approx8 nuclear reaction network.
*
* This file contains the definitions and declarations for the Approx8 nuclear reaction network.
* The network is based on Frank Timmes' "aprox8" and includes 8 isotopes and various nuclear reactions.
* The rates are evaluated using a fitting function with coefficients from reaclib.jinaweb.org.
*/
/**
* @typedef vector_type
* @brief Alias for a vector of doubles using Boost uBLAS.
*/
typedef boost::numeric::ublas::vector< double > vector_type;
/**
* @typedef matrix_type
* @brief Alias for a matrix of doubles using Boost uBLAS.
*/
typedef boost::numeric::ublas::matrix< double > matrix_type;
/**
* @typedef vec7
* @brief Alias for a std::array of 7 doubles.
*/
typedef std::array<double,7> vec7;
namespace nnApprox8{
using namespace boost::numeric::odeint;
/**
* @struct Net
* @brief Contains constants and arrays related to the nuclear network.
*/
struct Net{
const static int ih1=0;
const static int ihe3=1;
const static int ihe4=2;
const static int ic12=3;
const static int in14=4;
const static int io16=5;
const static int ine20=6;
const static int img24=7;
const static int itemp=img24+1;
const static int iden =itemp+1;
const static int iener=iden+1;
const static int niso=img24+1; // number of isotopes
const static int nvar=iener+1; // number of variables
static constexpr std::array<int,niso> aion = {
1,
3,
4,
12,
14,
16,
20,
24
};
static constexpr std::array<double,niso> mion = {
1.67262164e-24,
5.00641157e-24,
6.64465545e-24,
1.99209977e-23,
2.32462686e-23,
2.65528858e-23,
3.31891077e-23,
3.98171594e-23
};
};
/**
* @brief Multiplies two arrays and sums the resulting elements.
* @param a First array.
* @param b Second array.
* @return Sum of the product of the arrays.
* @example
* @code
* vec7 a = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
* vec7 b = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
* double result = sum_product(a, b);
* @endcode
*/
double sum_product( const vec7 &a, const vec7 &b);
/**
* @brief Returns an array of T9 terms for the nuclear reaction rate fit.
* @param T Temperature in GigaKelvin.
* @return Array of T9 terms.
* @example
* @code
* double T = 1.5;
* vec7 T9_array = get_T9_array(T);
* @endcode
*/
vec7 get_T9_array(const double &T);
/**
* @brief Evaluates the nuclear reaction rate given the T9 array and coefficients.
* @param T9 Array of T9 terms.
* @param coef Array of coefficients.
* @return Evaluated rate.
* @example
* @code
* vec7 T9 = get_T9_array(1.5);
* vec7 coef = {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001};
* double rate = rate_fit(T9, coef);
* @endcode
*/
double rate_fit(const vec7 &T9, const vec7 &coef);
/**
* @brief Calculates the rate for the reaction p + p -> d.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double pp_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction p + d -> he3.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double dp_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction he3 + he3 -> he4 + 2p.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double he3he3_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction he3(he3,2p)he4.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double he3he4_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction he4 + he4 + he4 -> c12.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double triple_alpha_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction c12 + p -> n13.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double c12p_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction c12 + he4 -> o16.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double c12a_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction n14(p,g)o15 - o15 + p -> c12 + he4.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double n14p_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction n14(a,g)f18 assumed to go on to ne20.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double n14a_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction n15(p,a)c12 (CNO I).
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double n15pa_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction n15(p,g)o16 (CNO II).
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double n15pg_rate(const vec7 &T9);
/**
* @brief Calculates the fraction for the reaction n15(p,g)o16.
* @param T9 Array of T9 terms.
* @return Fraction of the reaction.
*/
double n15pg_frac(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction o16(p,g)f17 then f17 -> o17(p,a)n14.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double o16p_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction o16(a,g)ne20.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double o16a_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction ne20(a,g)mg24.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double ne20a_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction c12(c12,a)ne20.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double c12c12_rate(const vec7 &T9);
/**
* @brief Calculates the rate for the reaction c12(o16,a)mg24.
* @param T9 Array of T9 terms.
* @return Rate of the reaction.
*/
double c12o16_rate(const vec7 &T9);
/**
* @struct Jacobian
* @brief Functor to calculate the Jacobian matrix for implicit solvers.
*/
struct Jacobian {
/**
* @brief Calculates the Jacobian matrix.
* @param y State vector.
* @param J Jacobian matrix.
* @param t Time.
* @param dfdt Derivative of the state vector.
*/
void operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt );
};
/**
* @struct ODE
* @brief Functor to calculate the derivatives for the ODE solver.
*/
struct ODE {
/**
* @brief Calculates the derivatives of the state vector.
* @param y State vector.
* @param dydt Derivative of the state vector.
* @param t Time.
*/
void operator() ( const vector_type &y, vector_type &dydt, double /* t */);
};
/**
* @class Approx8Network
* @brief Class for the Approx8 nuclear reaction network.
*/
class Approx8Network : public nuclearNetwork::Network {
public:
/**
* @brief Evaluates the nuclear network.
* @param netIn Input parameters for the network.
* @return Output results from the network.
*/
virtual nuclearNetwork::NetOut evaluate(const nuclearNetwork::NetIn &netIn);
/**
* @brief Sets whether the solver should use a stiff method.
* @param stiff Boolean indicating if a stiff method should be used.
*/
void setStiff(bool stiff);
/**
* @brief Checks if the solver is using a stiff method.
* @return Boolean indicating if a stiff method is being used.
*/
bool isStiff() { return m_stiff; }
private:
vector_type m_y;
double m_tmax;
double m_dt0;
bool m_stiff = false;
/**
* @brief Converts the input parameters to the internal state vector.
* @param netIn Input parameters for the network.
* @return Internal state vector.
*/
vector_type convert_netIn(const nuclearNetwork::NetIn &netIn);
};
} // namespace nnApprox8
#endif