Files
SERiF/src/poly/utils/private/integrators.cpp
Emily Boudreaux 56f596500c feat(poly): added NonlinearPowerIntegrator and PolytropeOperator
A custom integrator is required to handle the theta^n term in the lane emden equation, that is written as NonlinearPowerIntegrator which is a mfem::NonlinearFormIntegrator and defines methods to assemble its element vector (function value) and element gradient matrix (jacobian). This is then, along with built in mfem vectors for M Q and D, incorporated into the PolytropeOperator which defines methods for Mult (calculate the residuals of the variational form) and GetGradient (find the jacobian of the system)
2025-04-25 11:41:08 -04:00

135 lines
4.5 KiB
C++

/* ***********************************************************************
//
// Copyright (C) 2025 -- The 4D-STAR Collaboration
// File Author: Emily Boudreaux
// Last Modified: April 21, 2025
//
// 4DSSE is free software; you can use it and/or modify
// it under the terms and restrictions the GNU General Library Public
// License version 3 (GPLv3) as published by the Free Software Foundation.
//
// 4DSSE is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with this software; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// *********************************************************************** */
#include "mfem.hpp"
#include <cmath>
#include "integrators.h"
#include <string>
// static std::ofstream debugOut("gradient.csv", std::ios::trunc);
namespace polyMFEMUtils {
NonlinearPowerIntegrator::NonlinearPowerIntegrator(const double n) :
m_polytropicIndex(n) {}
void NonlinearPowerIntegrator::AssembleElementVector(
const mfem::FiniteElement &el,
mfem::ElementTransformation &Trans,
const mfem::Vector &elfun,
mfem::Vector &elvect) {
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
int dof = el.GetDof();
elvect.SetSize(dof);
elvect = 0.0;
mfem::Vector shape(dof);
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
Trans.SetIntPoint(&ip);
const double weight = ip.weight * Trans.Weight();
el.CalcShape(ip, shape);
double u_val = 0.0;
for (int j = 0; j < dof; j++) {
u_val += elfun(j) * shape(j);
}
const double u_safe = std::max(u_val, 0.0);
const double u_nl = std::pow(u_safe, m_polytropicIndex);
const double x2_u_nl = u_nl;
for (int i = 0; i < dof; i++){
elvect(i) += shape(i) * x2_u_nl * weight;
}
}
}
void NonlinearPowerIntegrator::AssembleElementGrad (
const mfem::FiniteElement &el,
mfem::ElementTransformation &Trans,
const mfem::Vector &elfun,
mfem::DenseMatrix &elmat) {
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
const int dof = el.GetDof();
elmat.SetSize(dof);
elmat = 0.0;
mfem::Vector shape(dof);
mfem::DenseMatrix dshape(dof, 3);
mfem::DenseMatrix invJ(3, 3);
mfem::Vector gradPhys(3);
mfem::Vector physCoord(3);
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
const mfem::IntegrationPoint &ip = ir->IntPoint(iqp);
Trans.SetIntPoint(&ip);
const double weight = ip.weight * Trans.Weight();
el.CalcShape(ip, shape);
double u_val = 0.0;
for (int j = 0; j < dof; j++) {
u_val += elfun(j) * shape(j);
}
// Calculate the Jacobian
// TODO: Check for when theta ~ 0?
const double u_safe = std::max(u_val, 0.0);
const double d_u_nl = m_polytropicIndex * std::pow(u_safe, m_polytropicIndex - 1);
const double x2_d_u_nl = d_u_nl;
for (int i = 0; i < dof; i++) {
for (int j = 0; j < dof; j++) {
elmat(i, j) += shape(i) * x2_d_u_nl * shape(j) * weight;
}
}
// // --- Debug Code to write out gradient ---
// Trans.Transform(ip,physCoord);
// el.CalcDShape(ip, dshape);
//
// mfem::CalcInverse(Trans.Jacobian(), invJ);
//
// mfem::DenseMatrix dshapePhys;
// dshapePhys.SetSize(dof, physCoord.Size());
// mfem::Mult(dshape, invJ, dshapePhys);
//
// gradPhys = 0.0;
// for (int j = 0; j < dof; j++) {
// for (int d = 0; d < gradPhys.Size(); d++) {
// gradPhys(d) += elfun(j)*dshapePhys(j, d);
// }
// }
//
// debugOut
// << physCoord(0) << ", " << physCoord(1) << ", " << physCoord(2)
// << ", " << gradPhys(0) << ", " << gradPhys(1) << ", " << gradPhys(2) << '\n';
}
// debugOut.flush();
}
} // namespace polyMFEMUtils