141 lines
4.6 KiB
C++
141 lines
4.6 KiB
C++
/* ***********************************************************************
|
|
//
|
|
// Copyright (C) 2025 -- The 4D-STAR Collaboration
|
|
// File Author: Emily Boudreaux
|
|
// Last Modified: April 21, 2025
|
|
//
|
|
// 4DSSE is free software; you can use it and/or modify
|
|
// it under the terms and restrictions the GNU General Library Public
|
|
// License version 3 (GPLv3) as published by the Free Software Foundation.
|
|
//
|
|
// 4DSSE is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU Library General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Library General Public License
|
|
// along with this software; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// *********************************************************************** */
|
|
#include "mfem.hpp"
|
|
#include <cmath>
|
|
|
|
#include "integrators.h"
|
|
#include "config.h"
|
|
#include <string>
|
|
|
|
namespace polyMFEMUtils {
|
|
NonlinearPowerIntegrator::NonlinearPowerIntegrator(const double n) :
|
|
m_polytropicIndex(n),
|
|
m_epsilon(Config::getInstance().get<double>("Poly:Solver:Epsilon", 1.0e-8)) {
|
|
if (m_polytropicIndex < 0.0) {
|
|
throw std::invalid_argument("Polytropic index must be non-negative.");
|
|
}
|
|
if (m_polytropicIndex > 5.0) {
|
|
throw std::invalid_argument("Polytropic index must be less than 5.0.");
|
|
}
|
|
if (m_epsilon <= 0.0) {
|
|
throw std::invalid_argument("Epsilon (Poly:Solver:Epsilon) must be positive non-zero.");
|
|
}
|
|
}
|
|
|
|
void NonlinearPowerIntegrator::AssembleElementVector(
|
|
const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::Vector &elvect) {
|
|
|
|
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
|
int dof = el.GetDof();
|
|
elvect.SetSize(dof);
|
|
elvect = 0.0;
|
|
|
|
mfem::Vector shape(dof);
|
|
mfem::Vector physCoord;
|
|
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
|
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
|
|
Trans.SetIntPoint(&ip);
|
|
const double weight = ip.weight * Trans.Weight();
|
|
|
|
el.CalcShape(ip, shape);
|
|
|
|
double u_val = 0.0;
|
|
for (int j = 0; j < dof; j++) {
|
|
u_val += elfun(j) * shape(j);
|
|
}
|
|
|
|
double u_nl;
|
|
Trans.Transform(ip, physCoord);
|
|
const double r = physCoord.Norml2();
|
|
std::ofstream outFile("r.dat", std::ios::app);
|
|
outFile << r << '\n';
|
|
outFile.close();
|
|
if (r > m_regularizationRadius) {
|
|
if (u_val < m_epsilon) {
|
|
u_nl = fmod(u_val, m_polytropicIndex, m_epsilon);
|
|
} else {
|
|
u_nl = std::pow(u_val, m_polytropicIndex);
|
|
}
|
|
} else {
|
|
u_nl = 1.0 - m_polytropicIndex * m_regularizationCoeff * std::pow(r, 2);
|
|
}
|
|
|
|
for (int i = 0; i < dof; i++){
|
|
elvect(i) += shape(i) * u_nl * weight;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void NonlinearPowerIntegrator::AssembleElementGrad (
|
|
const mfem::FiniteElement &el,
|
|
mfem::ElementTransformation &Trans,
|
|
const mfem::Vector &elfun,
|
|
mfem::DenseMatrix &elmat) {
|
|
|
|
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
|
const int dof = el.GetDof();
|
|
elmat.SetSize(dof);
|
|
elmat = 0.0;
|
|
mfem::Vector shape(dof);
|
|
mfem::DenseMatrix dshape(dof, 3);
|
|
mfem::DenseMatrix invJ(3, 3);
|
|
mfem::Vector physCoord;
|
|
|
|
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
|
const mfem::IntegrationPoint &ip = ir->IntPoint(iqp);
|
|
Trans.SetIntPoint(&ip);
|
|
const double weight = ip.weight * Trans.Weight();
|
|
Trans.Transform(ip, physCoord);
|
|
double r = physCoord.Norml2();
|
|
|
|
el.CalcShape(ip, shape);
|
|
|
|
double u_val = 0.0;
|
|
|
|
for (int j = 0; j < dof; j++) {
|
|
u_val += elfun(j) * shape(j);
|
|
}
|
|
|
|
double d_u_nl;
|
|
if (r > m_regularizationRadius) {
|
|
if (u_val < m_epsilon) {
|
|
d_u_nl = dfmod(m_epsilon, m_polytropicIndex);
|
|
} else {
|
|
d_u_nl = m_polytropicIndex * std::pow(u_val, m_polytropicIndex - 1.0);
|
|
}
|
|
} else {
|
|
d_u_nl = 0.0;
|
|
}
|
|
|
|
for (int i = 0; i < dof; i++) {
|
|
for (int j = 0; j < dof; j++) {
|
|
elmat(i, j) += shape(i) * d_u_nl * shape(j) * weight;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
} // namespace polyMFEMUtils
|