
OPAT File Format Specification
Version 1.0

Emily M. Boudreaux

February 2025

Abstract

The untitled 4DSSE code (herafter “the code” will make use of the OPAT (Opacity Table) file
format for efficient storage and retrieval of opacity tables parameterized in density and temperature.
The format is designed to be extensible, self-contained, and computationally efficient, supporting
fast lookups, structured metadata, and data integrity verification. All radiative opacity tables used
by the code should be stored in OPAT format. Python bindings are provided to allow users to easily
generate OPAT formated files.

1

1 Introduction
The OPAT format provides a structured binary format for storing opacity tables indexed by hydrogen
mass fraction (X) and metal mass fraction (Z). It is designed for high-performance, data-integrity, and
generalizability in mind. OPAT is the format that all radiative opacity tables are stored in for the code.
The format ensures data integrity using SHA-256 checksums. All numeric values are stored as 64 bit
floating point (double) values; this ensures approximately 15 decimals of precision. The file format is
open source and full described in this document. Data are stored in little endian format.
Each OPAT file consists of three main sections:

1. File Header: Contains metadata, format version, and a lookup table offset.

2. Data Tables: Contains gridded opacity data.

3. Table Index: Maps (X,Z) values to byte offsets for direct access.

A few important things to note here are that the table index is stored at the end of the file. Therefore
when reading, the index offset will need to be used in order to move the current position to the end of
the file. This is done for ease of wrigint since the checksums of each table wont be known till the tables
have been read in. Further, each table is intended to store opacity values as a function of log density
(logR) and log temperature (log T). The actual numeric values in there could be anything, however,
the more important takeaway is that each table stores its horizontal and vertical parameters as lists of
length n and m and then its data as a list of length nxm.

2 File Structure
An OPAT file is structured as follows:

Section Size (bytes) Description
File Header 256 (fixed) Metadata, format version, index offset
Data Tables Variable Opacity tables for different compositions
Table Index Variable Maps (X,Z) to byte locations

2.1 File Header
The header provides general metadata and file organization details.

Field Type Size (bytes) Description
Magic Number char[4] 4 "OPAT" identifier
Version uint16 2 Format version (e.g., 1.0 = 0x0001)
Num Tables uint32 4 Number of stored (X,Z) tables
Header Size uint32 4 Byte offset to the Data Tables
Index Offset uint64 8 Byte offset of Table Index
Creation Date char[16] 16 Creation Date (Feb 15, 2025)
Source Info char[64] 64 Description of data source
Comment char[128] 128 Units, notes, etc.
Nun Indices uint16 2 Number of index values per table
Reserved char[24] 24 Future use (zero-filled)

2.2 Table Index
Each entry in the index provides byte offsets for locating the corresponding opacity table. Note that the
table index size is variable OPAT file to OPAT file but within one OPAT t file must always be constant.
This changes if the OPAT files has a different number of indexes. Tables can be indexed by anywhere
between 1 and 255 floats. This might look like a table for each X, Z pair (as in OPAL type I files) or an
vector of X, Z, excess O, and excess C (as in OPAL type II files). This must be specified before adding
any tables. All tables in a single OPAT file must use the same number of indices or reading
will fail. The python opatio module enforces this behavior through the OpatIO.set_numIndex method.

2

Field Type Size (bytes) Description
Index n n float64 8 nth index of file
..... float64 8 (n+ 1)th index
Byte Start uint64 8 Start of data in file
Byte End uint64 8 End of data in file
Checksum char[32] 32 SHA-265 checksum of table

Each entry is 48+8*numIndex bytes long, allowing for efficient binary searching. The minimum
possible size is 56 bytes per index, while the maximum possible size is 2088 bytes per index.

2.3 Data Tables
Each opacity table contains gridded values of opacity as a function of density and temperature.

Binary Storage Format:

struct OpacityTable {
uint32_t N_R; // Number of density points
uint32_t N_T; // Number of temperature points
double* logR; // Log Density grid
double* logT; // Log Temperature grid
double* logK; // Log Opacity values

};

3 Checksum and Data Integrity
Each data table is assigned a SHA-256 checksum stored in the Table Index for validation.

4 Creation
Python scripts are provided to generate both mock data for testing as well as for ingesting various
common opacity formats (OP, OPAL, OPLIB, Ferguson, Aesopus) into OPAT format. The python
module opatio (in utils/opatio) provides a straightforward interface for the creation and reading of opat
formated files. There is a readme in that directory which outlines its use.

3

	Introduction
	File Structure
	File Header
	Table Index
	Data Tables

	Checksum and Data Integrity
	Creation

