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1 Continuous Variational Form

We start with the strong form of the Lane-Emden equation in three dimensions.

∆θ + θn = 0 (1)

We put this into weak form by multiplying by some scalar test function vθ which lives in the Sobolev space H1(Ω)∫
Ω

vθ∆θdV +

∫
Ω

vθθndV = 0 (2)

Applying Green’s first identity∮
∂Ω

vθ (∇θ · n̂) dA−
∫
Ω

∇vθ · ∇θdV +

∫
Ω

vθθndV = 0 (3)

We let the surface integral go to zero as the value of θ, and therefore vθ, at the surface of the domain is physically
constrained to equal 0.

−
∫
Ω

∇vθ · ∇θdV +

∫
Ω

vθθndV = 0 (4)

Now we define a new variable ϕ ≡ ∇θ so that we can eventually apply essential boundary conditions to both θ
and ∇θ. We must also then find the variational form of this expression. For that we multiply by some vector
test function, v⃗ϕ which will live in some vector space (In MFEM we will eventually use a Raviart-Thomas space,
denoted RT 0(Ω)) ∫

Ω

v⃗ϕ · ϕ⃗dV −
∫
Ω

v⃗ϕ · ∇θ = 0 (5)

So then the final, continuous variational system of equations which we have is

−
∫
Ω

∇vθ · ϕdV +

∫
Ω

vθθndV = 0 (6)∫
Ω

v⃗ϕ · ϕ⃗dV −
∫
Ω

v⃗ϕ · ∇θ = 0 (7)

2 Discritized Variational Form

In order to work with this in FEM we need to discritize this. First, Let θh be some discrete approximation of θ
which lives on vθh ⊂ vθ such that

θh =

Nθ
dof∑

i=1

θiN
θ
i (8)
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Where {Nθ
i }

Nθ
dof

i=1 is a set of basis functions which span vθh and θi are scalar degrees of freedom associated to each
basis function. Similarly we can discritize ϕ by first letting ϕh be a discrete approximation of ϕ which live on
vϕh ⊂ vϕ

ϕh =

Nϕ
dof∑

j=1

ϕjN
ϕ
j (9)

where {Nϕ
j }

Nϕ
dof

j=1 is a set of vector basis functions which span vϕh . Let us further let the column vectors θ̄ and ϕ̄ be

θ̄ ≡
[
θ1, ... , θNθ

dof

]T
(10)

ϕ̄ ≡
[
ϕ1, ... , ϕNϕ

dof

]T
(11)

In order to discritize the weak form we need to adopt a method of selecting test functions for θ and ϕ. In the
Galerkin method the test functions are chosen from the same finite dimensional subspaces which the approximate
solutions are defined on. This is typically done by selecting each basis function to be a test function. This means
then that we approximate

vθh = Nθ
k ∀ k = 1, ... , Nθ

dof (12)

vϕh = Nϕ
ℓ ∀ ℓ = 1, ... , Nϕ

dof (13)

We can now substitute these discritzed expressions for θ, ϕ, vθ, and vϕ back into the weak form...

−
∫
Ω

∇Nθ
k

Nϕ
dof∑

j=1

ϕj
⃗
Nϕ

j

 dV +

∫
Ω

Nθ
k

Nθ
dof∑

i=1

θiN
θ
i

n

dV = 0 (14)

∫
Ω

N⃗ϕ
ℓ ·

Nϕ
dof∑

j=1

ϕj
⃗
Nϕ

j

 dV −
∫
Ω

N⃗ϕ
ℓ · ∇

Nθ
dof∑

i=1

θiN
θ
i

 dV = 0 (15)

I want to pause here and make a note of a point of symbolics which might become confusing latter. We are
going to be substituting the basis function, Na

b , into various places in these equations. However, depending on if
we substitute them in for the test functions, va, or the trial functions, θ and ϕ, the semantic meaning of those basis
functions changes. Any basis function set, Na

b , used to represented a test function will eventually represent the
range of the operator; whereas, any basis function set used to represent a trial function will eventually represent
the domain of the operator. This becomes confusing since we use the same symbolics for them. Therefore, for the
rest of this derivation I will use Na

b to represent the trial function basis set and ψa
b to represent the test function

basis set. Using this new symbology we can rewrite the previous two equations as the equivalent forms

−
∫
Ω

∇ψθ
k

Nϕ
dof∑

j=1

ϕj
⃗
Nϕ

j

 dV +

∫
Ω

ψθ
k

Nθ
dof∑

i=1

θiN
θ
i

n

dV = 0 (16)

∫
Ω

ψ⃗ϕ
ℓ ·

Nϕ
dof∑

j=1

ϕj
⃗
Nϕ

j

 dV −
∫
Ω

ψ⃗ϕ
ℓ · ∇

Nθ
dof∑

i=1

θiN
θ
i

 dV = 0 (17)

Now we exploit the linearity of summation and integration to move the sums out of the integrals

−
Nϕ

dof∑
j=1

ϕj

∫
Ω

∇ψθ
k · N⃗ϕ

j dV +

∫
Ω

ψθ
k (θh)

n
= 0 (18)

Nϕ
dof∑

j=1

ϕj

∫
Ω

ψ⃗ϕ
ℓ · N⃗ϕ

j dV −
Nθ

dof∑
i=1

θi

∫
Ω

ψ⃗ϕ
ℓ · ∇Nθ

i dV = 0 (19)
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We will now define Mkj , Dℓj , and Qℓi such that

Mkj ≡ −
∫
Ω

∇ψθ
k · N⃗ϕ

j dV (20)

Dℓj ≡
∫
Ω

ψ⃗ϕ
ℓ · N⃗ϕ

j dV (21)

Qℓi ≡
∫
Ω

ψ⃗ϕ
ℓ · ∇Nθ

i dV (22)

Further we will define M, D, and Q such that they are the matrices associated to Mkj , Dℓj , and Qℓj .
Note that we do not define a matrix for the non-linear term. This is because we need to treat it as a separate

term in computational FEM software, so it is useful for us to split it out now. Instead, let us define f(θ) to handle
the non linear term such that

f(θ̄) ≡
∫
Ω

ψθ
k (θh)

n
dV (23)

We can write the variational form of our system of equations as

Nϕ
dof∑

j=1

ϕjMkj + f(θ̄) = 0 (24)

Nϕ
dof∑

j=1

ϕjDℓj −
Nθ

dof∑
i=1

θiQℓi = 0 (25)

Or using the notation we defined

Mϕ̄+ f(θ̄) = 0 (26)

Dϕ̄−Qθ̄ = 0 (27)

We can then set this up as a matrix operation[
0 M

−Q D

] [
θ̄
ϕ̄

]
+

[
f(θ̄)
0

]
=

[
0
0

]
(28)

From this form we can easily see that the residual matrix is

R =

[
f(θ̄) +Mϕ̄
Dϕ̄−Qθ̄

]
(29)

2.1 The Jacobian

We need to define the Jacobian of this system of equations so that we can use it in our Newton-Raphson method.
Generally the Jacobian is the matrix of partial derivitives wrt. the state vector. We will let our state vector, X, be

X =

[
θ̄
ϕ̄

]
(30)

So then the Jacobian is

J =

[
∂
∂θ (f(θ) +Mϕ) ∂

∂ϕ (f(θ) +Mϕ)
∂
∂θ (Dϕ−Qθ) ∂

∂ϕ (Dϕ−Qθ)

]
(31)

J =

[
df
dθ + ϕ∂M

∂θ M + ϕ∂M
∂ϕ

−Q− θ ∂Q
∂θ D + ϕ∂D

∂ϕ − θ ∂Q
∂ϕ

]
(32)
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Finally, we know that the matrices M , D, and Q are constant with respect to θ and ϕ. Therefore, we can drop
the partial derivatives with respect to θ and ϕ from the Jacobian. This gives us

J =

[
df
dθ M
−Q D

]
(33)

In a fully assembled, distritized form this will look like

J =



df
dθ 00

. . . df
dθ 0nθ

M00 . . . M0nϕ

...
. . .

...
. . .

df
dθ nθ0

df
dθ nθnθ

Mnθ0 Mnθnϕ

−Q00 . . . −Q0nθ
D00 . . . D0nϕ

...
. . .

...
. . .

−Qnϕ0 −Qnϕnθ
Dnϕ0 Dnϕnϕ


(34)

Where Nθ
dof = nθ is the number of degrees of freedom on θ, and Nϕ

dof = nϕ is the number of degrees of freedom on

ϕ. Note how the Jacobian is a matrix of size
(
Nθ

dof +Nϕ
dof ×Nθ

dof +Nϕ
dof

)
2.2 Preconditioner

Due to the eventual size of these matrices we would like to be able to solve each step in this using a memory
efficiet approach. Krylov solvers, such as GMRES, allow for matrix free iterative solutions (as long the concept of
multiplication is defined). However, for these systems to be well formed for such solvers it is useful for us to use
a preconditioner. However, this is a somewhat strongly coupled system where we cannot simply use the inverse
diagonals of the matrix as a preconditioner. Instead, to encode the coupling we will use Schur’s Compliment. Each
Newton iteration we solve the equation

J∆x⃗ = b⃗ (35)

If we expand this out [
ḟ −M

−Q D

] [
θ
ϕ

]
=

[
b0
b1

]
(36)

We can pull out the first equation from this system

ḟθ −Mϕ = b0 (37)

θ = ḟ−1b0 + ḟ−1Mϕ (38)

Then if we pull out the second equation from the system

−Qθ +Dϕ = b1 (39)

−Q
(
ḟ−1b0 + ḟ−1Mϕ

)
+Dϕ = b1 (40)

rearanging terms a bit

−Qḟ−1b0 −Qḟ−1Mϕ+Dϕ = b1 (41)(
D−Qḟ−1M

)
ϕ = b1 +Qḟ−1b0 (42)

The term D−Qḟ−1M is Schur’s Compliment for this system, and we will represent this by the symbol S̃. We can
use Schur’s Compilment to precondition our equation if we let the preconditioner be of the form

P =

[
ḟ−1 0

0 S̃−1

]
(43)
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So then the preconditioned equation which can be more easily solved by some Krylov solver (such as GMRES) is

PJ∆x⃗ = Pb⃗ (44)

It is easy to see here that for this system to be solvable / well defined both S̃ and ḟ need to be invertable matrices.

They are both easily shown to be square (with S̃ having a size
(
Nϕ

dof ×Nϕ
dof

)
and ḟ having a size

(
Nθ

dof ×Nθ
dof

)
).

2.3 A Few Quick Notes

A few notes on the dimensions of M, Q, D, and f(θ̄).

• M is a matrix of size
(
Nθ

dof × Nϕ
dof

)
.

• Q is a matrix of size
(
Nϕ

dof × Nθ
dof

)
.

• D is a matrix of size
(
Nϕ

dof × Nϕ
dof

)
.

• f(θ̄) is a vector of size Nθ
dof .

3 Representation in FEM

We will make use of the MFEM library1 to encode this system of equations. This document is not intended to be
a comprehensive guide to using MFEM; rather, here we will provide an explanation for how to translate M, D,
and Q into pre-existing MFEM integrators. The non linear term must be written as a custom integrator and an
explanation of this process is outside the scope of this document.

3.1 MFEM Integrators

MFEM provides an extensive set of integrators. Of interest here are the BilinearFormIntegrators and MixedBi-
linearFormIntegrators. We will explain how to use these by following the process of deciding how M should be
represented. Recall that

M = [Mkj ] (45)

Mkj =

∫
Ω

∇ψθ
k · N⃗ϕ

j dV (46)

Also recall that ψ denotes the test space while N denotes the trial space. MFEM provides a robust set of integrators.
Because M is composed of terms from the θ and ψ spaces it is what is called a Mixed form. Therefore, we will look
at the mixed form integrators provided by MFEM.

There is a lot of information in this table so we will break it down. First we need to identify what spaces the
domain and range of our operator exist in. The range of the operator is that which contains the test function while
the domain is the space containing the trial function. For M the test function is in the θ space, or H1, while the
trial function is in the ϕ space, or RT.

Next we look at the Operator column. These define the operation within the integral where (a, b) is the inner
product of a and b. More specifically, the MFEM documentation provides that u is the trial function and v is
the test function. So then we are looking for an integrator which has the operator of the inner product of the
trial function and the gradient of the test function while also satisfying the domain and range constraints. Upon
investigation of this table we can see that the MixedVectorWeakDivegenceIntegrator has a range defined on H1
and domain defined on RT, just like we need. Further, its operator is given as (−λu⃗,∇v). This is the same form

as we have.
(
−λu⃗→ 1× N⃗ϕ

j ,∇v → ∇ψθ
k

)
. Therefore, MixedVectorWeakDivergenceIntegrator will compute the

matrix M over our domain without any modifications (as long as we are careful about the sign on the coefficient
λ).

1https://mfem.org/
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Table 1: Selection of MFEM Mixed Bilinear Form Integrators
Class Name Domain Range Coef. Operator Continuous Op. Dimension

MixedDotProductIntegrator ND, RT H1, L2 V (λ⃗ · u⃗, v) λ⃗ · u⃗ 2D, 3D

MixedScalarCrossProductIntegrator ND, RT H1, L2 V (λ⃗ × u⃗, v) λ⃗ × u⃗ 2D
MixedVectorWeakDivergenceIntegrator ND, RT H1 S, D, M (−λu⃗,∇v) ∇ · (λu⃗) 2D, 3D

MixedWeakDivCrossIntegrator ND, RT H1 V (−λ⃗ × u⃗,∇v) ∇ · (λ⃗ × u⃗) 3D
MixedVectorMassIntegrator ND, RT ND, RT S, D, M (λu⃗, v⃗) λu⃗ 2D, 3D

MixedCrossProductIntegrator ND, RT ND, RT V (λ⃗ × u⃗, v⃗) λ⃗ × u⃗ 3D
MixedVectorWeakCurlIntegrator ND, RT ND S, D, M (λu⃗,∇ × v⃗) ∇ × (λu⃗) 3D

MixedWeakCurlCrossIntegrator ND, RT ND V (λ⃗ × u⃗,∇ × v⃗) ∇ × (λ⃗ × u⃗) 3D

MixedScalarWeakCurlCrossIntegrator ND, RT ND V (λ⃗ × u⃗,∇ × v⃗) ∇ × (λ⃗ × u⃗) 2D

MixedWeakGradDotIntegrator ND, RT RT V (−λ⃗ · u⃗,∇ · v⃗) ∇(λ⃗ · u⃗) 2D, 3D
MixedScalarCurlIntegrator ND H1, L2 S (λ∇ × u⃗, v) λ∇ × u⃗ 2D

MixedCrossCurlGradIntegrator ND H1 V (λ⃗ × (∇ × u⃗),∇v) −∇ · (λ⃗ × (∇ × u⃗)) 3D
MixedVectorCurlIntegrator ND ND, RT S, D, M (λ∇ × u⃗, v⃗) λ∇ × u⃗ 3D

MixedCrossCurlIntegrator ND ND, RT V (λ⃗ × (∇ × u⃗), v⃗) λ⃗ × (∇ × u⃗) 3D

MixedScalarCrossCurlIntegrator ND ND, RT V (λ⃗ × ẑ(∇ × u⃗), v⃗) λ⃗ × ẑ(∇ × u⃗) 2D
MixedCurlCurlIntegrator ND ND S, D, M (λ∇ × u⃗,∇ × v⃗) ∇ × (λ∇ × u⃗) 3D

MixedCrossCurlCurlIntegrator ND ND V (λ⃗ × (∇ × u⃗),∇ × v⃗) ∇ × (λ⃗ × (∇ × u⃗)) 3D
MixedScalarDivergenceIntegrator RT H1, L2 S (λ∇ · u⃗, v) λ∇ · u⃗ 2D, 3D

MixedDivGradIntegrator RT H1 V (λ⃗(∇ · u⃗),∇v) −∇ · (λ⃗(∇ · u⃗)) 2D, 3D

MixedVectorDivergenceIntegrator RT ND, RT V (λ⃗(∇ · u⃗), v⃗) λ⃗(∇ · u⃗) 2D, 3D

The other integrators map to VectorFEMassIntegrator and MixedVectorGradientIntegrator for D and Q
respectively. From here one would assemble these, along with the non-linear term into a block form; however, that
is beyond the scope of this document.
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