feat(poly): added skeleton of polytrope model
the polytrope module will be used as an initial guess to the solver. A skeleton of this has been imported from https://github.com/tboudreaux/FEMPolytrope This module will need major updates still to handle 3D, proper boundary conditions, and to incorporate it with the rest of our meshing scheme
This commit is contained in:
175
src/poly/utils/private/polyMFEMUtils.cpp
Normal file
175
src/poly/utils/private/polyMFEMUtils.cpp
Normal file
@@ -0,0 +1,175 @@
|
||||
#include "mfem.hpp"
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
|
||||
#include "polyMFEMUtils.h"
|
||||
|
||||
NonlinearPowerIntegrator::NonlinearPowerIntegrator(
|
||||
mfem::FunctionCoefficient &coeff,
|
||||
double n) : coeff_(coeff), polytropicIndex(n) {
|
||||
|
||||
}
|
||||
|
||||
void NonlinearPowerIntegrator::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
|
||||
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
||||
int dof = el.GetDof();
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
|
||||
mfem::Vector shape(dof);
|
||||
|
||||
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
||||
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
|
||||
Trans.SetIntPoint(&ip);
|
||||
double weight = ip.weight * Trans.Weight();
|
||||
|
||||
el.CalcShape(ip, shape);
|
||||
|
||||
double u_val = 0.0;
|
||||
for (int j = 0; j < dof; j++) {
|
||||
u_val += elfun(j) * shape(j);
|
||||
}
|
||||
double u_safe = std::max(u_val, 0.0);
|
||||
double u_nl = std::pow(u_safe, polytropicIndex);
|
||||
|
||||
double coeff_val = coeff_.Eval(Trans, ip);
|
||||
double x2_u_nl = coeff_val * u_nl;
|
||||
|
||||
for (int i = 0; i < dof; i++){
|
||||
elvect(i) += shape(i) * x2_u_nl * weight;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NonlinearPowerIntegrator::AssembleElementGrad (
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
|
||||
const mfem::IntegrationRule *ir = &mfem::IntRules.Get(el.GetGeomType(), 2 * el.GetOrder() + 3);
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof);
|
||||
elmat = 0.0;
|
||||
mfem::Vector shape(dof);
|
||||
|
||||
for (int iqp = 0; iqp < ir->GetNPoints(); iqp++) {
|
||||
mfem::IntegrationPoint ip = ir->IntPoint(iqp);
|
||||
Trans.SetIntPoint(&ip);
|
||||
double weight = ip.weight * Trans.Weight();
|
||||
|
||||
el.CalcShape(ip, shape);
|
||||
|
||||
double u_val = 0.0;
|
||||
|
||||
for (int j = 0; j < dof; j++) {
|
||||
u_val += elfun(j) * shape(j);
|
||||
}
|
||||
double coeff_val = coeff_.Eval(Trans, ip);
|
||||
|
||||
|
||||
// Calculate the Jacobian
|
||||
double u_safe = std::max(u_val, 0.0);
|
||||
double d_u_nl = coeff_val * polytropicIndex * std::pow(u_safe, polytropicIndex - 1);
|
||||
double x2_d_u_nl = d_u_nl;
|
||||
|
||||
for (int i = 0; i < dof; i++) {
|
||||
for (int j = 0; j < dof; j++) {
|
||||
elmat(i, j) += shape(i) * x2_d_u_nl * shape(j) * weight;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
BilinearIntegratorWrapper::BilinearIntegratorWrapper(
|
||||
mfem::BilinearFormIntegrator *integratorInput
|
||||
) : integrator(integratorInput) { }
|
||||
|
||||
BilinearIntegratorWrapper::~BilinearIntegratorWrapper() {
|
||||
delete integrator;
|
||||
}
|
||||
|
||||
void BilinearIntegratorWrapper::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
int dof = el.GetDof();
|
||||
mfem::DenseMatrix elMat(dof);
|
||||
integrator->AssembleElementMatrix(el, Trans, elMat);
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
for (int i = 0; i < dof; i++)
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (int j = 0; j < dof; j++)
|
||||
{
|
||||
sum += elMat(i, j) * elfun(j);
|
||||
}
|
||||
elvect(i) = sum;
|
||||
}
|
||||
}
|
||||
|
||||
void BilinearIntegratorWrapper::AssembleElementGrad(const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof, dof);
|
||||
elmat = 0.0;
|
||||
integrator->AssembleElementMatrix(el, Trans, elmat);
|
||||
}
|
||||
|
||||
CompositeNonlinearIntegrator::CompositeNonlinearIntegrator() { }
|
||||
|
||||
|
||||
CompositeNonlinearIntegrator::~CompositeNonlinearIntegrator() {
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
delete integrators[i];
|
||||
}
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::add_integrator(mfem::NonlinearFormIntegrator *integrator) {
|
||||
integrators.push_back(integrator);
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::AssembleElementVector(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::Vector &elvect) {
|
||||
int dof = el.GetDof();
|
||||
elvect.SetSize(dof);
|
||||
elvect = 0.0;
|
||||
mfem::Vector temp(dof);
|
||||
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
temp= 0.0;
|
||||
integrators[i]->AssembleElementVector(el, Trans, elfun, temp);
|
||||
elvect.Add(1.0, temp);
|
||||
}
|
||||
}
|
||||
|
||||
void CompositeNonlinearIntegrator::AssembleElementGrad(
|
||||
const mfem::FiniteElement &el,
|
||||
mfem::ElementTransformation &Trans,
|
||||
const mfem::Vector &elfun,
|
||||
mfem::DenseMatrix &elmat) {
|
||||
int dof = el.GetDof();
|
||||
elmat.SetSize(dof, dof);
|
||||
elmat = 0.0;
|
||||
mfem::DenseMatrix temp(dof);
|
||||
temp.SetSize(dof, dof);
|
||||
for (size_t i = 0; i < integrators.size(); i++) {
|
||||
temp = 0.0;
|
||||
integrators[i] -> AssembleElementGrad(el, Trans, elfun, temp);
|
||||
elmat.Add(1.0, temp);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user