feat(poly): moved to a block form for poly

essential dofs can be applied to both theta and phi (grad theta) if we move to a block form. I have done this derivation and made that change so that we can properly apply the central boundary condition to the slope
This commit is contained in:
2025-04-02 14:57:37 -04:00
parent 407eef4e48
commit e3afe90f37
12 changed files with 640 additions and 731 deletions

View File

@@ -0,0 +1,122 @@
#include "operator.h"
#include "mfem.hpp"
#include "linalg/vector.hpp"
#include <memory>
PolytropeOperator::PolytropeOperator(
std::unique_ptr<mfem::MixedBilinearForm> M,
std::unique_ptr<mfem::MixedBilinearForm> Q,
std::unique_ptr<mfem::BilinearForm> D,
std::unique_ptr<mfem::NonlinearForm> f,
const mfem::Array<int> &blockOffsets) :
mfem::Operator(blockOffsets.Last()), // Initialize the base class with the total size of the block offset vector
m_blockOffsets(blockOffsets),
m_jacobian(nullptr) {
m_M = std::move(M);
m_Q = std::move(Q);
m_D = std::move(D);
m_f = std::move(f);
m_Mmat = std::make_unique<mfem::SparseMatrix>(m_M->SpMat());
m_Qmat = std::make_unique<mfem::SparseMatrix>(m_Q->SpMat());
m_Dmat = std::make_unique<mfem::SparseMatrix>(m_D->SpMat());
m_negM_op = std::make_unique<mfem::ScaledOperator>(m_Mmat.get(), -1.0);
m_negQ_op = std::make_unique<mfem::ScaledOperator>(m_Qmat.get(), -1.0);
MFEM_ASSERT(m_Mmat.get() != nullptr, "Matrix m_Mmat is null in PolytropeOperator constructor");
MFEM_ASSERT(m_Qmat.get() != nullptr, "Matrix m_Qmat is null in PolytropeOperator constructor");
MFEM_ASSERT(m_Dmat.get() != nullptr, "Matrix m_Dmat is null in PolytropeOperator constructor");
MFEM_ASSERT(m_f.get() != nullptr, "NonlinearForm m_f is null in PolytropeOperator constructor");
}
void PolytropeOperator::Mult(const mfem::Vector &x, mfem::Vector &y) const {
// -- Create BlockVector views for input x and output y
mfem::BlockVector x_block(const_cast<mfem::Vector&>(x), m_blockOffsets);
mfem::BlockVector y_block(y, m_blockOffsets);
// -- Get Vector views for individual blocks
const mfem::Vector &x_theta = x_block.GetBlock(0);
const mfem::Vector &x_phi = x_block.GetBlock(1);
mfem::Vector &y_R0 = y_block.GetBlock(0); // Residual Block 0 (theta)
mfem::Vector &y_R1 = y_block.GetBlock(1); // Residual Block 1 (phi)
int theta_size = m_blockOffsets[1] - m_blockOffsets[0];
int phi_size = m_blockOffsets[2] - m_blockOffsets[1];
mfem::Vector f_term(theta_size);
mfem::Vector Mphi_term(theta_size);
mfem::Vector Dphi_term(phi_size);
mfem::Vector Qtheta_term(phi_size);
// Caucluate R0 and R1 terms
// R0 = f(θ) - Mɸ
// R1 = Dɸ - Qθ
MFEM_ASSERT(m_f.get() != nullptr, "NonlinearForm m_f is null in PolytropeOperator::Mult");
MFEM_ASSERT(m_Mmat.get() != nullptr, "SparseMatrix m_Mmat is null in PolytropeOperator::Mult");
MFEM_ASSERT(m_Dmat.get() != nullptr, "SparseMatrix m_Dmat is null in PolytropeOperator::Mult");
MFEM_ASSERT(m_Qmat.get() != nullptr, "SparseMatrix m_Qmat is null in PolytropeOperator::Mult");
m_f->Mult(x_theta, f_term);
m_Mmat->Mult(x_phi, Mphi_term);
m_Dmat->Mult(x_phi, Dphi_term);
m_Qmat->Mult(x_theta, Qtheta_term);
subtract(f_term, Mphi_term, y_R0);
subtract(Dphi_term, Qtheta_term, y_R1);
// -- Apply essential boundary conditions --
for (int i = 0; i < m_theta_ess_tofs.Size(); i++) {
int idx = m_theta_ess_tofs[i];
if (idx >= 0 && idx < y_R0.Size()) {
y_block.GetBlock(0)[idx] = 0.0; // Zero out the essential theta dofs in the bilinear form
}
}
for (int i = 0; i < m_phi_ess_tofs.Size(); i++) {
int idx = m_phi_ess_tofs[i];
if (idx >= 0 && idx < y_R1.Size()) {
y_block.GetBlock(1)[idx] = 0.0; // Zero out the essential phi dofs in the bilinear form
}
}
}
mfem::Operator& PolytropeOperator::GetGradient(const mfem::Vector &x) const {
// -- Get the gradient of f --
mfem::BlockVector x_block(const_cast<mfem::Vector&>(x), m_blockOffsets);
const mfem::Vector& x_theta = x_block.GetBlock(0);
mfem::Operator& J00 = m_f->GetGradient(x_theta);
if (m_jacobian == nullptr) {
m_jacobian = std::make_unique<mfem::BlockOperator>(m_blockOffsets);
m_jacobian->SetBlock(0, 0, &J00); // df/dθ (state-dependent)
m_jacobian->SetBlock(0, 1, m_negM_op.get()); // -M (constant)
m_jacobian->SetBlock(1, 0, m_negQ_op.get()); // -Q (constant)
m_jacobian->SetBlock(1, 1, m_Dmat.get()); // D (constant)
} else {
// The Jacobian already exists, we only need to update the first block
// since the other blocks have a constant derivitive (they are linear)
m_jacobian->SetBlock(0, 0, &J00);
}
return *m_jacobian;
}
void PolytropeOperator::SetEssentialTrueDofs(const mfem::Array<int> &theta_ess_tofs,
const mfem::Array<int> &phi_ess_tofs) {
m_theta_ess_tofs = theta_ess_tofs;
m_phi_ess_tofs = phi_ess_tofs;
if (m_f) {
m_f->SetEssentialTrueDofs(theta_ess_tofs);
} else {
MFEM_ABORT("m_f is null in PolytropeOperator::SetEssentialTrueDofs");
}
}