refactor(serif): refactored entire codebase into serif and sub namespaces

This commit is contained in:
2025-06-11 14:49:11 -04:00
parent f0e1840c91
commit 6e4ff1ece9
56 changed files with 747 additions and 2041 deletions

View File

@@ -0,0 +1,107 @@
/* ***********************************************************************
//
// Copyright (C) 2025 -- The 4D-STAR Collaboration
// File Author: Emily Boudreaux
// Last Modified: April 21, 2025
//
// 4DSSE is free software; you can use it and/or modify
// it under the terms and restrictions the GNU General Library Public
// License version 3 (GPLv3) as published by the Free Software Foundation.
//
// 4DSSE is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with this software; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// *********************************************************************** */
#pragma once
#include "mfem.hpp"
#include <string>
#include "config.h"
#include "probe.h"
/**
* @file integrators.h
* @brief A collection of utilities for working with MFEM and solving the lane-emden equation.
*/
namespace serif {
namespace polytrope {
/**
* @namespace polyMFEMUtils
* @brief A namespace for utilities for working with MFEM and solving the lane-emden equation.
*/
namespace polyMFEMUtils {
/**
* @brief A class for nonlinear power integrator.
*/
class NonlinearPowerIntegrator: public mfem::NonlinearFormIntegrator {
public:
/**
* @brief Constructor for NonlinearPowerIntegrator.
*
* @param coeff The function coefficient.
* @param n The polytropic index.
*/
NonlinearPowerIntegrator(double n);
/**
* @brief Assembles the element vector.
*
* @param el The finite element.
* @param Trans The element transformation.
* @param elfun The element function.
* @param elvect The element vector to be assembled.
*/
virtual void AssembleElementVector(const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::Vector &elvect) override;
/**
* @brief Assembles the element gradient.
*
* @param el The finite element.
* @param Trans The element transformation.
* @param elfun The element function.
* @param elmat The element matrix to be assembled.
*/
virtual void AssembleElementGrad (const mfem::FiniteElement &el, mfem::ElementTransformation &Trans, const mfem::Vector &elfun, mfem::DenseMatrix &elmat) override;
private:
serif::config::Config& m_config = serif::config::Config::getInstance();
serif::probe::LogManager& m_logManager = serif::probe::LogManager::getInstance();
quill::Logger* m_logger = m_logManager.getLogger("log");
double m_polytropicIndex;
double m_epsilon;
static constexpr double m_regularizationRadius = 0.15; ///< Regularization radius for the epsilon function, used to avoid singularities in the power law.
static constexpr double m_regularizationCoeff = 1.0/6.0; ///< Coefficient for the regularization term, used to ensure smoothness in the power law.
};
inline double dfmod(const double epsilon, const double n) {
if (n == 0.0) {
return 0.0;
}
if (n == 1.0) {
return 1.0;
}
return n * std::pow(epsilon, n - 1.0);
}
inline double fmod(const double theta, const double n, const double epsilon) {
if (n == 0.0) {
return 1.0;
}
// For n != 0
const double y_prime_at_epsilon = dfmod(epsilon, n); // Uses the robust dfmod
const double y_at_epsilon = std::pow(epsilon, n); // epsilon^n
// f_mod(theta) = y_at_epsilon + y_prime_at_epsilon * (theta - epsilon)
return y_at_epsilon + y_prime_at_epsilon * (theta - epsilon);
}
} // namespace polyMFEMUtils
} // namespace polytrope
} // namespace serif

View File

@@ -0,0 +1,399 @@
/* ***********************************************************************
//
// Copyright (C) 2025 -- The 4D-STAR Collaboration
// File Author: Emily Boudreaux
// Last Modified: April 21, 2025
//
// 4DSSE is free software; you can use it and/or modify
// it under the terms and restrictions the GNU General Library Public
// License version 3 (GPLv3) as published by the Free Software Foundation.
//
// 4DSSE is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with this software; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// *********************************************************************** */
#pragma once
#include "mfem.hpp"
#include "4DSTARTypes.h"
#include <memory>
#include "probe.h"
namespace serif {
namespace polytrope {
/**
* @brief Represents the Schur complement operator used in the solution process.
*
* This class computes S = D - Q * GradInv * M.
*/
class SchurCompliment final : public mfem::Operator {
public:
/**
* @brief Constructs a SchurCompliment operator.
* @param QOp The Q matrix operator.
* @param DOp The D matrix operator.
* @param MOp The M matrix operator.
* @param GradInvOp The inverse of the gradient operator.
*/
SchurCompliment(
const mfem::SparseMatrix &QOp,
const mfem::SparseMatrix &DOp,
const mfem::SparseMatrix &MOp,
const mfem::Solver &GradInvOp
);
/**
* @brief Constructs a SchurCompliment operator without the inverse gradient initially.
* The inverse gradient must be set later using updateInverseNonlinearJacobian.
* @param QOp The Q matrix operator.
* @param DOp The D matrix operator.
* @param MOp The M matrix operator.
*/
SchurCompliment(
const mfem::SparseMatrix &QOp,
const mfem::SparseMatrix &DOp,
const mfem::SparseMatrix &MOp
);
/**
* @brief Destructor.
*/
~SchurCompliment() override = default;
/**
* @brief Applies the Schur complement operator: y = (D - Q * GradInv * M) * x.
* @param x The input vector.
* @param y The output vector.
*/
void Mult(const mfem::Vector &x, mfem::Vector &y) const override;
/**
* @brief Sets all operators for the Schur complement.
* @param QOp The Q matrix operator.
* @param DOp The D matrix operator.
* @param MOp The M matrix operator.
* @param GradInvOp The inverse of the gradient operator.
*/
void SetOperator(const mfem::SparseMatrix &QOp, const mfem::SparseMatrix &DOp, const mfem::SparseMatrix &MOp, const mfem::Solver &GradInvOp);
/**
* @brief Updates the inverse of the nonlinear Jacobian (GradInv).
* @param gradInv The new inverse gradient solver.
*/
void updateInverseNonlinearJacobian(const mfem::Solver &gradInv);
private:
/**
* @brief Updates the constant matrix terms (Q, D, M).
* @param QOp The Q matrix operator.
* @param DOp The D matrix operator.
* @param MOp The M matrix operator.
*/
void updateConstantTerms(const mfem::SparseMatrix &QOp, const mfem::SparseMatrix &DOp, const mfem::SparseMatrix &MOp);
private:
// Pointers to external operators (not owned by this class)
const mfem::SparseMatrix* m_QOp = nullptr; ///< Pointer to the Q matrix operator.
const mfem::SparseMatrix* m_DOp = nullptr; ///< Pointer to the D matrix operator.
const mfem::SparseMatrix* m_MOp = nullptr; ///< Pointer to the M matrix operator.
const mfem::Solver* m_GradInvOp = nullptr; ///< Pointer to the inverse of the gradient operator.
// Dimensions
int m_nPhi = 0; ///< Dimension related to the phi variable (typically number of rows/cols of D).
int m_nTheta = 0; ///< Dimension related to the theta variable (typically number of rows of M).
// Owned resources
mutable std::unique_ptr<mfem::SparseMatrix> m_matrixForm; ///< Optional: if a matrix representation is ever explicitly formed.
};
/**
* @brief Provides an approximate inverse of the SchurCompliment operator using GMRES.
*/
class GMRESInverter final : public mfem::Operator {
public:
/**
* @brief Constructs a GMRESInverter.
* @param op The SchurCompliment operator to invert.
*/
explicit GMRESInverter(const SchurCompliment& op);
/**
* @brief Destructor.
*/
~GMRESInverter() override = default;
/**
* @brief Applies the GMRES solver to approximate op^-1 * x.
* @param x The input vector.
* @param y The output vector (approximation of op^-1 * x).
*/
void Mult(const mfem::Vector &x, mfem::Vector &y) const override;
private:
const SchurCompliment& m_op; ///< Reference to the SchurCompliment operator to be inverted.
mfem::GMRESSolver m_solver; ///< GMRES solver instance.
};
/**
* @brief Represents the coupled nonlinear operator for the polytropic system.
*
* This operator defines the system F(X) = 0, where X = [θ, φ]^T,
* and F(X) = [ f(θ) + Mφ ]
* [ Dφ - Qθ ].
* It handles essential boundary conditions and the construction of the Jacobian.
*/
class PolytropeOperator final : public mfem::Operator {
public:
/**
* @brief Constructs the PolytropeOperator.
* @param M The M bilinear form (coupling θ and φ).
* @param Q The Q bilinear form (coupling φ and θ).
* @param D The D bilinear form (acting on φ).
* @param f The nonlinear form f(θ).
* @param blockOffsets Offsets defining the blocks for θ and φ variables.
*/
PolytropeOperator(
std::unique_ptr<mfem::MixedBilinearForm> M,
std::unique_ptr<mfem::MixedBilinearForm> Q,
std::unique_ptr<mfem::BilinearForm> D,
std::unique_ptr<mfem::BilinearForm> S,
std::unique_ptr<mfem::NonlinearForm> f,
const mfem::Array<int> &blockOffsets);
/**
* @brief Destructor.
*/
~PolytropeOperator() override = default;
/**
* @brief Applies the PolytropeOperator: y = F(x).
* This computes the residual of the nonlinear system.
* @param xFree The vector of free (non-essential) degrees of freedom.
* @param yFree The resulting residual vector corresponding to free DOFs.
*/
void Mult(const mfem::Vector &xFree, mfem::Vector &yFree) const override;
/**
* @brief Computes the Jacobian of the PolytropeOperator at a given state xFree.
* The Jacobian is of the form:
* J = [ G M ]
* [ -Q D ]
* where G is the gradient of f(θ).
* @param xFree The vector of free DOFs at which to evaluate the gradient.
* @return A reference to the Jacobian operator.
*/
mfem::Operator& GetGradient(const mfem::Vector &xFree) const override;
/**
* @brief Finalizes the operator setup.
* This must be called after setting essential true DOFs and before using Mult or GetGradient.
* It constructs reduced matrices, block offsets, and populates free DOFs.
* @param initTheta Initial guess for θ, used to evaluate the nonlinear form if necessary during setup.
*/
void finalize(const mfem::Vector &initTheta);
/**
* @brief Checks if the operator has been finalized.
* @return True if finalize() has been successfully called, false otherwise.
*/
bool isFinalized() const { return m_isFinalized; }
/**
* @brief Sets the essential true degrees of freedom for both θ and φ variables.
* Marks the operator as not finalized.
* @param theta_ess_tdofs Pair of arrays: (indices of essential DOFs for θ, values at these DOFs).
* @param phi_ess_tdofs Pair of arrays: (indices of essential DOFs for φ, values at these DOFs).
*/
void set_essential_true_dofs(const serif::types::MFEMArrayPair& theta_ess_tdofs, const serif::types::MFEMArrayPair& phi_ess_tdofs);
/**
* @brief Sets the essential true degrees of freedom using a pair of pairs.
* Marks the operator as not finalized.
* @param ess_tdof_pair_set A pair containing the essential TDOF pairs for theta and phi.
*/
void set_essential_true_dofs(const serif::types::MFEMArrayPairSet& ess_tdof_pair_set);
/**
* @brief Reconstructs the full state vector (including essential DOFs) from a reduced state vector (free DOFs).
* @param reducedState The vector containing only the free degrees of freedom.
* @return Constant reference to the internal full state vector, updated with the reducedState.
*/
[[nodiscard]] const mfem::Vector &reconstruct_full_state_vector(const mfem::Vector &reducedState) const;
/**
* @breif Reconstruct the full state vector (including essential DOFs) from a reduced state vector (free DOFs) as well as the block offsets.
* @param reducedState The vector containing only the free degrees of freedom.
* @return Constant reference to the internal full state vector, updated with the reducedState as a block vector.
*/
[[nodiscard]] const mfem::BlockVector reconstruct_full_block_state_vector(const mfem::Vector &reducedState) const;
/**
* @brief Populates the internal array of free (non-essential) degree of freedom indices.
* This is called during finalize().
*/
void populate_free_dof_array();
/// --- Getters for key internal state and operators ---
/**
* @brief Gets the Jacobian operator.
* Asserts that the operator is finalized and the Jacobian has been computed.
* @return Constant reference to the block Jacobian operator.
*/
const mfem::BlockOperator &get_jacobian_operator() const;
/**
* @brief Gets the block diagonal preconditioner for the Schur complement system.
* Asserts that the operator is finalized and the preconditioner has been computed.
* @return Reference to the block diagonal preconditioner.
*/
mfem::BlockDiagonalPreconditioner &get_preconditioner() const;
/// --- Getters for information on internal state ---
/**
* @brief Gets the full state vector, including essential DOFs.
* @return Constant reference to the internal state vector.
*/
const mfem::Array<int>& get_free_dofs() const { return m_freeDofs; } ///< Getter for the free DOFs array.
/**
* @brief Gets the size of the reduced system (number of free DOFs).
* Asserts that the operator is finalized.
* @return The total number of free degrees of freedom.
*/
int get_reduced_system_size() const;
/**
* @brief Gets the currently set essential true degrees of freedom.
* @return A pair containing the essential TDOF pairs for theta and phi.
*/
serif::types::MFEMArrayPairSet get_essential_true_dofs() const;
/**
* @brief Gets the block offsets for the full (unreduced) system.
* @return Constant reference to the array of block offsets.
*/
const mfem::Array<int>& get_block_offsets() const { return m_blockOffsets; }
/**
* @brief Gets the block offsets for the reduced system (after eliminating essential DOFs).
* @return Constant reference to the array of reduced block offsets.
*/
const mfem::Array<int>& get_reduced_block_offsets() const {return m_reducedBlockOffsets; }
private:
// --- Logging ---
serif::probe::LogManager& m_logManager = serif::probe::LogManager::getInstance(); ///< Reference to the global log manager.
quill::Logger* m_logger = m_logManager.getLogger("log"); ///< Pointer to the specific logger instance.
// --- Input Bilinear/Nonlinear Forms (owned) ---
std::unique_ptr<mfem::MixedBilinearForm> m_M; ///< Bilinear form M, coupling θ and φ.
std::unique_ptr<mfem::MixedBilinearForm> m_Q; ///< Bilinear form Q, coupling φ and θ.
std::unique_ptr<mfem::BilinearForm> m_D; ///< Bilinear form D, acting on φ.
std::unique_ptr<mfem::BilinearForm> m_S;
std::unique_ptr<mfem::NonlinearForm> m_f; ///< Nonlinear form f, acting on θ.
// --- Full Matrix Representations (owned, derived from forms) ---
std::unique_ptr<mfem::SparseMatrix> m_Mmat; ///< Sparse matrix representation of M.
std::unique_ptr<mfem::SparseMatrix> m_Qmat; ///< Sparse matrix representation of Q.
std::unique_ptr<mfem::SparseMatrix> m_Dmat; ///< Sparse matrix representation of D.
std::unique_ptr<mfem::SparseMatrix> m_Smat;
// --- Reduced Matrix Representations (owned, after eliminating essential DOFs) ---
std::unique_ptr<mfem::SparseMatrix> m_MReduced; ///< Reduced M matrix (free DOFs only).
std::unique_ptr<mfem::SparseMatrix> m_QReduced; ///< Reduced Q matrix (free DOFs only).
std::unique_ptr<mfem::SparseMatrix> m_DReduced; ///< Reduced D matrix (free DOFs only).
std::unique_ptr<mfem::SparseMatrix> m_SReduced; ///< Reduced S matrix (free DOFs only, used for least squares stabilization).
mutable std::unique_ptr<mfem::SparseMatrix> m_gradReduced; ///< Reduced gradient operator (G) for the nonlinear part f(θ).
// --- Scaled Reduced Matrix Representations (owned, after eliminating essential DOFs and scaling by stabilization coefficients) ---
std::unique_ptr<mfem::SparseMatrix> m_MScaledReduced; ///< Scaled M matrix (free DOFs only, scaled by stabilization coefficient).
std::unique_ptr<mfem::SparseMatrix> m_QScaledReduced; ///< Scaled Q matrix (free DOFs only, scaled by stabilization coefficient).
std::unique_ptr<mfem::SparseMatrix> m_DScaledReduced; ///< Scaled D matrix (free DOFs only, scaled by stabilization coefficient).
std::unique_ptr<mfem::SparseMatrix> m_ScaledSReduced; ///< Scaled S matrix (free DOFs only, scaled by stabilization coefficient).
// --- Stabilization Coefficient --- (Perhapses this should be a user parameter...) // TODO: Sort out why this is negative (sign error?)
static constexpr double m_stabilizationCoefficient = -2.0; ///< Stabilization coefficient for the system, used to more tightly couple ∇θ and φ.
static constexpr double m_IncrementedStabilizationCoefficient = 1.0 + m_stabilizationCoefficient; ///< 1 + Stabilization coefficient for the system, used to more tightly couple ∇θ and φ.
// --- State Vectors and DOF Management ---
mutable mfem::Vector m_state; ///< Full state vector [θ, φ]^T, including essential DOFs.
mfem::Array<int> m_freeDofs; ///< Array of indices for free (non-essential) DOFs.
// --- Block Offsets ---
const mfem::Array<int> m_blockOffsets; ///< Block offsets for the full system [0, size(θ), size(θ)+size(φ)].
mfem::Array<int> m_reducedBlockOffsets; ///< Block offsets for the reduced system (free DOFs).
// --- Essential Boundary Conditions ---
serif::types::MFEMArrayPair m_theta_ess_tdofs; ///< Essential true DOFs for θ (indices and values).
serif::types::MFEMArrayPair m_phi_ess_tdofs; ///< Essential true DOFs for φ (indices and values).
// --- Jacobian and Preconditioner Components (owned, mutable) ---
std::unique_ptr<mfem::ScaledOperator> m_negQ_mat; ///< Scaled operator for -Q_reduced.
mutable std::unique_ptr<mfem::BlockOperator> m_jacobian; ///< Jacobian operator J = [G M; -Q D]_reduced.
mutable std::unique_ptr<SchurCompliment> m_schurCompliment; ///< Schur complement S = D_reduced - Q_reduced * G_inv_reduced * M_reduced.
mutable std::unique_ptr<GMRESInverter> m_invSchurCompliment; ///< Approximate inverse of the Schur complement.
mutable std::unique_ptr<mfem::Solver> m_invNonlinearJacobian; ///< Solver for the inverse of the G block (gradient of f(θ)_reduced).
mutable std::unique_ptr<mfem::BlockDiagonalPreconditioner> m_schurPreconditioner; ///< Block diagonal preconditioner for the system.
// --- State Flags ---
bool m_isFinalized = false; ///< Flag indicating if finalize() has been called.
private:
/**
* @brief Constructs the sparse matrix representations of M, Q, and D, and their reduced forms.
* Called during finalize().
*/
void construct_matrix_representations();
/**
* @brief Constructs the block offsets for the reduced system.
* Called during finalize().
*/
void construct_reduced_block_offsets();
/**
* @brief Constructs the constant terms of the Jacobian operator (M, -Q, D).
* The (0,0) block (gradient of f) is set in GetGradient.
* Called during finalize().
*/
void construct_jacobian_constant_terms();
/**
* @brief Scatters the values of essential boundary conditions into the full state vector.
* Called during finalize().
*/
void scatter_boundary_conditions();
/**
* @brief Updates the solver for the inverse of the nonlinear Jacobian block (G_00).
* @param grad The gradient operator (G_00) of the nonlinear part f(θ).
*/
void update_inverse_nonlinear_jacobian(const mfem::Operator &grad) const;
/**
* @brief Updates the inverse Schur complement operator and its components.
* This is typically called after the nonlinear Jacobian part has been updated.
*/
void update_inverse_schur_compliment() const;
/**
* @brief Updates the preconditioner components.
* This involves updating the inverse nonlinear Jacobian and then the inverse Schur complement.
* @param grad The gradient operator (G_00) of the nonlinear part f(θ).
*/
void update_preconditioner(const mfem::Operator &grad) const;
};
} // namespace polytrope
} // namespace serif

View File

@@ -0,0 +1,62 @@
#pragma once
#include "mfem.hpp"
namespace serif::utilities {
[[nodiscard]] mfem::SparseMatrix build_reduced_matrix(
const mfem::SparseMatrix& matrix,
const mfem::Array<int>& trialEssentialDofs,
const mfem::Array<int>& testEssentialDofs
);
/**
* @brief Generate a vector of 1s and 0s where 1 elemetns cooresponds to queried dofs. Useful for degugging
* @param allDofs array, counding from 0, of all dofs in the system
* @param highlightDofs the dofs that you want to identify
* @return
*
* *Example Usage:*
* One could use this to identify, for example, which dofs are being identified as the central dofs
* @code
* ...
* mfem::Array<int> phiDofs, thetaDofs;
* phiDofs.SetSize(m_fePhi->GetNDofs());
* thetaDofs.SetSize(m_feTheta->GetNDofs());
* const mfem::Vector phiHighlightVector = serif::utilities::build_dof_identification_vector(phiDofs, phiCenterDofs);
* const mfem::Vector thetaHighlightVector = serif::utilities::build_dof_identification_vector(thetaDofs, thetaCenterDofs);
* Probe::glVisView(
* const_cast<mfem::Vector&>(phiHighlightVector),
* *m_fePhi,
* "Phi Center Dofs"
* );
* Probe::glVisView(
* const_cast<mfem::Vector&>(thetaHighlightVector),
* *m_feTheta,
* "Theta Center Dofs"
* );
* @endcode
*/
mfem::Vector build_dof_identification_vector(
const mfem::Array<int>& allDofs,
const::mfem::Array<int>& highlightDofs
);
/**
* @brief Computes the curl of a given H(div) grid function (e.g., from an RT space).
*
* This function is crucial for diagnosing spurious, non-physical modes in mixed FEM
* formulations where the curl of a gradient field is expected to be zero.
*
* @param phi_gf The GridFunction representing the vector field (e.g., φ). It is expected
* to be in an H(div)-conforming space like Raviart-Thomas (RT).
* @return A std::pair containing two new grid functions:
* - pair.first: A unique_ptr to the vector curl field (∇ × φ). This field will
* be in an H(curl)-conforming Nedelec (ND) space.
* - pair.second: A unique_ptr to the scalar magnitude of the curl (||∇ × φ||).
* This field will be in an L2 space.
*
* @note The returned unique_ptrs manage the lifetime of the new GridFunctions and their
* associated FiniteElementSpaces and FECollections, preventing memory leaks.
*/
mfem::GridFunction compute_curl(mfem::GridFunction& phi_gf);
}