feat(poly): constraint integrator
The NewtonSolver has been subclassed to try to auto enforce the zero boundary central condition by modifying the residual vector and the gradient matrix. This is a work in progress BREAKING CHANGE:
This commit is contained in:
@@ -5,6 +5,8 @@
|
||||
#include <numbers>
|
||||
#include <csignal>
|
||||
#include <fstream>
|
||||
#include <array>
|
||||
#include <vector>
|
||||
|
||||
#include "polyMFEMUtils.h"
|
||||
#include "probe.h"
|
||||
@@ -371,4 +373,323 @@ namespace polyMFEMUtils {
|
||||
return gaussianIntegral(one_gf);
|
||||
|
||||
}
|
||||
|
||||
ZeroSlopeNewtonSolver::ZeroSlopeNewtonSolver(double alpha_, std::vector<double> zeroSlopeCoordinate_)
|
||||
: alpha(alpha_), zeroSlopeCoordinate(zeroSlopeCoordinate_) {}
|
||||
|
||||
ZeroSlopeNewtonSolver::~ZeroSlopeNewtonSolver() {}
|
||||
|
||||
void ZeroSlopeNewtonSolver::SetOperator(const mfem::Operator &op) {
|
||||
LOG_INFO(logger, "Setting operator for zero slope constraint...");
|
||||
mfem::NewtonSolver::SetOperator(op); // Call the base class method
|
||||
LOG_INFO(logger, "Setting operator for zero slope constraint...done");
|
||||
LOG_INFO(logger, "Building location of zero slope constraint...");
|
||||
|
||||
mfem::NonlinearForm *nlf = dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(&op));
|
||||
if (!nlf) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator is not a NonlinearForm");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator is not a NonlinearForm");
|
||||
}
|
||||
|
||||
mfem::FiniteElementSpace *fes = nlf->FESpace();
|
||||
|
||||
if (!fes) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator does not have a finite element space");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator does not have a finite element space");
|
||||
}
|
||||
u_gf = std::make_unique<mfem::GridFunction>(fes);
|
||||
|
||||
mfem::Mesh *mesh = fes->GetMesh();
|
||||
|
||||
if (!mesh) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator does not have a mesh");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator does not have a mesh");
|
||||
}
|
||||
|
||||
if (mesh->SpaceDimension() != static_cast<int>(zeroSlopeCoordinate.size())) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::SetOperator: input operator mesh dimension does not match the zero slope coordinate dimension");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::SetOperator: input operator mesh dimension does not match the zero slope coordinate dimension");
|
||||
}
|
||||
|
||||
mfem::DenseMatrix zeroSlopeCoordinateMatrix(mesh->SpaceDimension(), 1);
|
||||
for (int dimID = 0; dimID < mesh->SpaceDimension(); dimID++) {
|
||||
zeroSlopeCoordinateMatrix(dimID, 0) = zeroSlopeCoordinate[dimID];
|
||||
}
|
||||
|
||||
mfem::Array<int> elementsIDs;
|
||||
mfem::Array<mfem::IntegrationPoint> ips;
|
||||
mesh->FindPoints(zeroSlopeCoordinateMatrix, elementsIDs, ips);
|
||||
|
||||
zeroSlopeElemID = elementsIDs[0];
|
||||
zeroSlopeIP = ips[0];
|
||||
|
||||
LOG_INFO(logger, "Getting element dofs for zero slope constraint...");
|
||||
fes->GetElementDofs(zeroSlopeElemID, zeroSlopeDofs);
|
||||
LOG_INFO(logger, "Getting element dofs for zero slope constraint...done");
|
||||
LOG_INFO(logger, "Building location of zero slope constraint...done");
|
||||
}
|
||||
|
||||
// void ZeroSlopeNewtonSolver::ProcessNewState(const mfem::Vector &x) const {
|
||||
// LOG_INFO(logger, "Processing new state for zero slope constraint...");
|
||||
// if (zeroSlopeElemID < 0) {
|
||||
// LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: zero slope element ID is not set");
|
||||
// MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: zero slope element ID is not set");
|
||||
// }
|
||||
|
||||
// mfem::NonlinearForm *nlf = dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper));
|
||||
// if (!nlf) {
|
||||
// LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
|
||||
// MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
|
||||
// }
|
||||
|
||||
// mfem::FiniteElementSpace *fes = nlf->FESpace();
|
||||
// if (!fes) {
|
||||
// LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
|
||||
// MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
|
||||
// }
|
||||
|
||||
// mfem::Mesh *mesh = fes->GetMesh();
|
||||
// if (!mesh) {
|
||||
// LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
|
||||
// MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
|
||||
// }
|
||||
|
||||
// mfem::ElementTransformation *T = mesh->GetElementTransformation(zeroSlopeElemID);
|
||||
// if (!T) {
|
||||
// LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
|
||||
// MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
|
||||
// }
|
||||
|
||||
// mfem::Vector grad_u(3);
|
||||
|
||||
// mfem::GridFunction u_gf(fes);
|
||||
// DEPRECATION_WARNING_OFF
|
||||
// u_gf.SetData(x.GetData());
|
||||
// DEPRECATION_WARNING_ON
|
||||
|
||||
// T->SetIntPoint(&zeroSlopeIP);
|
||||
// u_gf.GetGradient(*T, grad_u);
|
||||
|
||||
// int dof;
|
||||
// LOG_DEBUG(logger, "Adjusting the residual to enforce the zero slope constraint by {:0.4E}...", -alpha*grad_u[0]);
|
||||
// double rNorm = r.Norml2();
|
||||
// LOG_INFO(logger, "||r_B|| = {:0.4E}", rNorm);
|
||||
// for (int i = 0; i < zeroSlopeDofs.Size(); i++) {
|
||||
// dof = zeroSlopeDofs[i];
|
||||
// r[dof] -= alpha * grad_u[0];
|
||||
// r[dof] -= alpha * grad_u[1];
|
||||
// r[dof] -= alpha * grad_u[2];
|
||||
// }
|
||||
// rNorm = r.Norml2();
|
||||
// LOG_INFO(logger, "||r_A|| = {:0.4E}", rNorm);
|
||||
// // This still is not working; however, I think I am close. I also need to modify the jacobain.
|
||||
// }
|
||||
|
||||
void ZeroSlopeNewtonSolver::Mult(const mfem::Vector &b, mfem::Vector &x) const {
|
||||
using namespace mfem;
|
||||
using namespace std;
|
||||
|
||||
MFEM_VERIFY(oper != NULL, "the Operator is not set (use SetOperator).");
|
||||
MFEM_VERIFY(prec != NULL, "the Solver is not set (use SetSolver).");
|
||||
|
||||
int it;
|
||||
real_t norm0, norm, norm_goal;
|
||||
const bool have_b = (b.Size() == Height());
|
||||
|
||||
if (!iterative_mode)
|
||||
{
|
||||
x = 0.0;
|
||||
}
|
||||
|
||||
ProcessNewState(x);
|
||||
|
||||
oper->Mult(x, r);
|
||||
if (have_b)
|
||||
{
|
||||
r -= b;
|
||||
}
|
||||
// ComputeConstrainedResidual(x, r);
|
||||
|
||||
norm0 = norm = initial_norm = Norm(r);
|
||||
if (print_options.first_and_last && !print_options.iterations)
|
||||
{
|
||||
mfem::out << "Zero slope newton iteration " << setw(2) << 0
|
||||
<< " : ||r|| = " << norm << "...\n";
|
||||
}
|
||||
norm_goal = std::max(rel_tol*norm, abs_tol);
|
||||
|
||||
prec->iterative_mode = false;
|
||||
|
||||
// x_{i+1} = x_i - [DF(x_i)]^{-1} [F(x_i)-b]
|
||||
for (it = 0; true; it++)
|
||||
{
|
||||
MFEM_VERIFY(IsFinite(norm), "norm = " << norm);
|
||||
if (print_options.iterations)
|
||||
{
|
||||
mfem::out << "Zero slope newton iteration " << setw(2) << it
|
||||
<< " : ||r|| = " << norm;
|
||||
if (it > 0)
|
||||
{
|
||||
mfem::out << ", ||r||/||r_0|| = " << norm/norm0;
|
||||
}
|
||||
mfem::out << '\n';
|
||||
}
|
||||
Monitor(it, norm, r, x);
|
||||
|
||||
if (norm <= norm_goal)
|
||||
{
|
||||
converged = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (it >= max_iter)
|
||||
{
|
||||
converged = false;
|
||||
break;
|
||||
}
|
||||
|
||||
grad = dynamic_cast<mfem::SparseMatrix*>(&oper->GetGradient(x));
|
||||
if (!grad)
|
||||
{
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::Mult: Operator does not return a SparseMatrix");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::Mult: Operator does not return a SparseMatrix");
|
||||
}
|
||||
ComputeConstrainedGradient(x);
|
||||
prec->SetOperator(*grad);
|
||||
|
||||
if (lin_rtol_type)
|
||||
{
|
||||
AdaptiveLinRtolPreSolve(x, it, norm);
|
||||
}
|
||||
|
||||
prec->Mult(r, c); // c = [DF(x_i)]^{-1} [F(x_i)-b]
|
||||
|
||||
if (lin_rtol_type)
|
||||
{
|
||||
AdaptiveLinRtolPostSolve(c, r, it, norm);
|
||||
}
|
||||
|
||||
const real_t c_scale = ComputeScalingFactor(x, b);
|
||||
if (c_scale == 0.0)
|
||||
{
|
||||
converged = false;
|
||||
break;
|
||||
}
|
||||
add(x, -c_scale, c, x);
|
||||
|
||||
ProcessNewState(x);
|
||||
|
||||
oper->Mult(x, r);
|
||||
if (have_b)
|
||||
{
|
||||
r -= b;
|
||||
}
|
||||
// ComputeConstrainedResidual(x, r);
|
||||
norm = Norm(r);
|
||||
}
|
||||
|
||||
final_iter = it;
|
||||
final_norm = norm;
|
||||
|
||||
if (print_options.summary || (!converged && print_options.warnings) ||
|
||||
print_options.first_and_last)
|
||||
{
|
||||
mfem::out << "Newton: Number of iterations: " << final_iter << '\n'
|
||||
<< " ||r|| = " << final_norm
|
||||
<< ", ||r||/||r_0|| = " << final_norm/norm0 << '\n';
|
||||
}
|
||||
if (!converged && (print_options.summary || print_options.warnings))
|
||||
{
|
||||
mfem::out << "Newton: No convergence!\n";
|
||||
}
|
||||
}
|
||||
|
||||
void ZeroSlopeNewtonSolver::ComputeConstrainedResidual(const mfem::Vector &x, mfem::Vector &residual) const {
|
||||
mfem::NonlinearForm *nlf = dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper));
|
||||
if (!nlf) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
|
||||
}
|
||||
|
||||
mfem::FiniteElementSpace *fes = nlf->FESpace();
|
||||
if (!fes) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
|
||||
}
|
||||
|
||||
mfem::Mesh *mesh = fes->GetMesh();
|
||||
if (!mesh) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
|
||||
}
|
||||
|
||||
mfem::ElementTransformation *T = mesh->GetElementTransformation(zeroSlopeElemID);
|
||||
if (!T) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
|
||||
}
|
||||
|
||||
DEPRECATION_WARNING_OFF
|
||||
u_gf->SetData(x.GetData());
|
||||
DEPRECATION_WARNING_ON
|
||||
|
||||
T->SetIntPoint(&zeroSlopeIP);
|
||||
mfem::Vector grad_u(3); // TODO make this a unique pointer so it can be dimensionally adaptive
|
||||
u_gf->GetGradient(*T, grad_u);
|
||||
|
||||
for (int i = 0; i < zeroSlopeDofs.Size(); i++) {
|
||||
int dof = zeroSlopeDofs[i];
|
||||
residual[dof] -= alpha * grad_u[0];
|
||||
residual[dof] -= alpha * grad_u[1];
|
||||
residual[dof] -= alpha * grad_u[2];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void ZeroSlopeNewtonSolver::ComputeConstrainedGradient(const mfem::Vector &x) const {
|
||||
mfem::NonlinearForm *nlf = dynamic_cast<mfem::NonlinearForm*>(const_cast<mfem::Operator*>(oper));
|
||||
if (!nlf) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator is not a NonlinearForm");
|
||||
}
|
||||
|
||||
mfem::FiniteElementSpace *fes = nlf->FESpace();
|
||||
if (!fes) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a finite element space");
|
||||
}
|
||||
|
||||
mfem::Mesh *mesh = fes->GetMesh();
|
||||
if (!mesh) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: input operator does not have a mesh");
|
||||
}
|
||||
|
||||
mfem::ElementTransformation *T = mesh->GetElementTransformation(zeroSlopeElemID);
|
||||
if (!T) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ProcessNewState: element transformation is not found");
|
||||
}
|
||||
|
||||
const mfem::FiniteElement* fe = fes->GetFE(zeroSlopeElemID); // Get FE *once*.
|
||||
mfem::DenseMatrix dshape; // For shape function derivatives.
|
||||
dshape.SetSize(fe->GetDof(), mesh->Dimension());
|
||||
T->SetIntPoint(&zeroSlopeIP);
|
||||
fe->CalcDShape(zeroSlopeIP, dshape);
|
||||
if (!grad) {
|
||||
LOG_ERROR(logger, "ZeroSlopeNewtonSolver::ComputeConstrainedGradient: Grad is not set");
|
||||
MFEM_ABORT("ZeroSlopeNewtonSolver::ComputeConstrainedGradient: Grad is not set");
|
||||
}
|
||||
// --- Modify Jacobian ---
|
||||
LOG_INFO(logger, "Adjusting the Jacobian to enforce the zero slope constraint...");
|
||||
for (int i = 0; i < zeroSlopeDofs.Size(); i++) {
|
||||
for (int j = 0; j < zeroSlopeDofs.Size(); j++) {
|
||||
grad->Add(zeroSlopeDofs[i], zeroSlopeDofs[j], alpha * dshape(j, 0));
|
||||
grad->Add(zeroSlopeDofs[i], zeroSlopeDofs[j], alpha * dshape(j, 1));
|
||||
grad->Add(zeroSlopeDofs[i], zeroSlopeDofs[j], alpha * dshape(j, 2));
|
||||
}
|
||||
}
|
||||
LOG_INFO(logger, "Adjusting the Jacobian to enforce the zero slope constraint...done");
|
||||
}
|
||||
|
||||
} // namespace polyMFEMUtils
|
||||
Reference in New Issue
Block a user