we need an autodiff library at some point (or we need to roll our own but I do not think that makes sense). CppAD is well tested and header only and easy to include. It is also Liscene compatible with GPL v3.0. Here we bring it in as a dependency
265 lines
7.5 KiB
C++
265 lines
7.5 KiB
C++
# ifndef CPPAD_LOCAL_ACOSH_OP_HPP
|
|
# define CPPAD_LOCAL_ACOSH_OP_HPP
|
|
|
|
/* --------------------------------------------------------------------------
|
|
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-20 Bradley M. Bell
|
|
|
|
CppAD is distributed under the terms of the
|
|
Eclipse Public License Version 2.0.
|
|
|
|
This Source Code may also be made available under the following
|
|
Secondary License when the conditions for such availability set forth
|
|
in the Eclipse Public License, Version 2.0 are satisfied:
|
|
GNU General Public License, Version 2.0 or later.
|
|
---------------------------------------------------------------------------- */
|
|
|
|
|
|
namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE
|
|
/*!
|
|
\file acosh_op.hpp
|
|
Forward and reverse mode calculations for z = acosh(x).
|
|
*/
|
|
|
|
|
|
/*!
|
|
Compute forward mode Taylor coefficient for result of op = AcoshOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = acosh(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = sqrt(x * x - 1)
|
|
\endverbatim
|
|
The value of y, and its derivatives, are computed along with the value
|
|
and derivatives of z.
|
|
|
|
\copydetails CppAD::local::forward_unary2_op
|
|
*/
|
|
template <class Base>
|
|
void forward_acosh_op(
|
|
size_t p ,
|
|
size_t q ,
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AcoshOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AcoshOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( q < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN( p <= q );
|
|
|
|
// Taylor coefficients corresponding to argument and result
|
|
Base* x = taylor + i_x * cap_order;
|
|
Base* z = taylor + i_z * cap_order;
|
|
Base* b = z - cap_order; // called y in documentation
|
|
|
|
size_t k;
|
|
Base uj;
|
|
if( p == 0 )
|
|
{ z[0] = acosh( x[0] );
|
|
uj = x[0] * x[0] - Base(1.0);
|
|
b[0] = sqrt( uj );
|
|
p++;
|
|
}
|
|
for(size_t j = p; j <= q; j++)
|
|
{ uj = Base(0.0);
|
|
for(k = 0; k <= j; k++)
|
|
uj += x[k] * x[j-k];
|
|
b[j] = Base(0.0);
|
|
z[j] = Base(0.0);
|
|
for(k = 1; k < j; k++)
|
|
{ b[j] -= Base(double(k)) * b[k] * b[j-k];
|
|
z[j] -= Base(double(k)) * z[k] * b[j-k];
|
|
}
|
|
b[j] /= Base(double(j));
|
|
z[j] /= Base(double(j));
|
|
//
|
|
b[j] += uj / Base(2.0);
|
|
z[j] += x[j];
|
|
//
|
|
b[j] /= b[0];
|
|
z[j] /= b[0];
|
|
}
|
|
}
|
|
/*!
|
|
Multiple directions forward mode Taylor coefficient for op = AcoshOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = acosh(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = sqrt(x * x - 1)
|
|
\endverbatim
|
|
The value of y, and its derivatives, are computed along with the value
|
|
and derivatives of z.
|
|
|
|
\copydetails CppAD::local::forward_unary2_op_dir
|
|
*/
|
|
template <class Base>
|
|
void forward_acosh_op_dir(
|
|
size_t q ,
|
|
size_t r ,
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AcoshOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AcoshOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( 0 < q );
|
|
CPPAD_ASSERT_UNKNOWN( q < cap_order );
|
|
|
|
// Taylor coefficients corresponding to argument and result
|
|
size_t num_taylor_per_var = (cap_order-1) * r + 1;
|
|
Base* x = taylor + i_x * num_taylor_per_var;
|
|
Base* z = taylor + i_z * num_taylor_per_var;
|
|
Base* b = z - num_taylor_per_var; // called y in documentation
|
|
|
|
size_t k, ell;
|
|
size_t m = (q-1) * r + 1;
|
|
for(ell = 0; ell < r; ell ++)
|
|
{ Base uq = 2.0 * x[m + ell] * x[0];
|
|
for(k = 1; k < q; k++)
|
|
uq += x[(k-1)*r+1+ell] * x[(q-k-1)*r+1+ell];
|
|
b[m+ell] = Base(0.0);
|
|
z[m+ell] = Base(0.0);
|
|
for(k = 1; k < q; k++)
|
|
{ b[m+ell] += Base(double(k)) * b[(k-1)*r+1+ell] * b[(q-k-1)*r+1+ell];
|
|
z[m+ell] += Base(double(k)) * z[(k-1)*r+1+ell] * b[(q-k-1)*r+1+ell];
|
|
}
|
|
b[m+ell] = ( uq / Base(2.0) - b[m+ell] / Base(double(q)) ) / b[0];
|
|
z[m+ell] = ( x[m+ell] - z[m+ell] / Base(double(q)) ) / b[0];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Compute zero order forward mode Taylor coefficient for result of op = AcoshOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = acosh(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = sqrt( x * x - 1 )
|
|
\endverbatim
|
|
The value of y is computed along with the value of z.
|
|
|
|
\copydetails CppAD::local::forward_unary2_op_0
|
|
*/
|
|
template <class Base>
|
|
void forward_acosh_op_0(
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AcoshOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AcoshOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( 0 < cap_order );
|
|
|
|
// Taylor coefficients corresponding to argument and result
|
|
Base* x = taylor + i_x * cap_order;
|
|
Base* z = taylor + i_z * cap_order;
|
|
Base* b = z - cap_order; // called y in documentation
|
|
|
|
z[0] = acosh( x[0] );
|
|
b[0] = sqrt( x[0] * x[0] - Base(1.0) );
|
|
}
|
|
/*!
|
|
Compute reverse mode partial derivatives for result of op = AcoshOp.
|
|
|
|
The C++ source code corresponding to this operation is
|
|
\verbatim
|
|
z = acosh(x)
|
|
\endverbatim
|
|
The auxillary result is
|
|
\verbatim
|
|
y = sqrt( x * x - 1 )
|
|
\endverbatim
|
|
The value of y is computed along with the value of z.
|
|
|
|
\copydetails CppAD::local::reverse_unary2_op
|
|
*/
|
|
|
|
template <class Base>
|
|
void reverse_acosh_op(
|
|
size_t d ,
|
|
size_t i_z ,
|
|
size_t i_x ,
|
|
size_t cap_order ,
|
|
const Base* taylor ,
|
|
size_t nc_partial ,
|
|
Base* partial )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(AcoshOp) == 1 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(AcoshOp) == 2 );
|
|
CPPAD_ASSERT_UNKNOWN( d < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN( d < nc_partial );
|
|
|
|
// Taylor coefficients and partials corresponding to argument
|
|
const Base* x = taylor + i_x * cap_order;
|
|
Base* px = partial + i_x * nc_partial;
|
|
|
|
// Taylor coefficients and partials corresponding to first result
|
|
const Base* z = taylor + i_z * cap_order;
|
|
Base* pz = partial + i_z * nc_partial;
|
|
|
|
// Taylor coefficients and partials corresponding to auxillary result
|
|
const Base* b = z - cap_order; // called y in documentation
|
|
Base* pb = pz - nc_partial;
|
|
|
|
Base inv_b0 = Base(1.0) / b[0];
|
|
|
|
// number of indices to access
|
|
size_t j = d;
|
|
size_t k;
|
|
while(j)
|
|
{
|
|
// scale partials w.r.t b[j] by 1 / b[0]
|
|
pb[j] = azmul(pb[j], inv_b0);
|
|
|
|
// scale partials w.r.t z[j] by 1 / b[0]
|
|
pz[j] = azmul(pz[j], inv_b0);
|
|
|
|
// update partials w.r.t b^0
|
|
pb[0] -= azmul(pz[j], z[j]) + azmul(pb[j], b[j]);
|
|
|
|
// update partial w.r.t. x^0
|
|
px[0] += azmul(pb[j], x[j]);
|
|
|
|
// update partial w.r.t. x^j
|
|
px[j] += pz[j] + azmul(pb[j], x[0]);
|
|
|
|
// further scale partial w.r.t. z[j] by 1 / j
|
|
pz[j] /= Base(double(j));
|
|
|
|
for(k = 1; k < j; k++)
|
|
{ // update partials w.r.t b^(j-k)
|
|
pb[j-k] -= Base(double(k)) * azmul(pz[j], z[k]) + azmul(pb[j], b[k]);
|
|
|
|
// update partials w.r.t. x^k
|
|
px[k] += azmul(pb[j], x[j-k]);
|
|
|
|
// update partials w.r.t. z^k
|
|
pz[k] -= Base(double(k)) * azmul(pz[j], b[j-k]);
|
|
}
|
|
--j;
|
|
}
|
|
|
|
// j == 0 case
|
|
px[0] += azmul(pz[0] + azmul(pb[0], x[0]), inv_b0);
|
|
}
|
|
|
|
} } // END_CPPAD_LOCAL_NAMESPACE
|
|
# endif
|