Files
GridFire/benchmarks/SingleZoneSolver/main.cpp
Emily Boudreaux dcfd7b60aa perf(multi): Simple parallel multi zone solver
Added a simple parallel multi-zone solver
2025-12-18 12:47:39 -05:00

159 lines
6.7 KiB
C++

// ReSharper disable CppUnusedIncludeDirective
#include <iostream>
#include <fstream>
#include <chrono>
#include <thread>
#include <format>
#include "gridfire/gridfire.h"
#include <cppad/utility/thread_alloc.hpp> // Required for parallel_setup
#include "fourdst/composition/composition.h"
#include "fourdst/logging/logging.h"
#include "fourdst/atomic/species.h"
#include "fourdst/composition/utils.h"
#include "quill/Logger.h"
#include "quill/Backend.h"
#include <clocale>
#include "gridfire/reaction/reaclib.h"
#include "gridfire/utils/gf_omp.h"
gridfire::NetIn init(const double temp, const double rho, const double tMax) {
std::setlocale(LC_ALL, "");
quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log");
logger->set_log_level(quill::LogLevel::TraceL2);
using namespace gridfire;
const std::vector<double> X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4};
const std::vector<std::string> symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"};
const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X);
NetIn netIn;
netIn.composition = composition;
netIn.temperature = temp;
netIn.density = rho;
netIn.energy = 0;
netIn.tMax = tMax;
netIn.dt0 = 1e-12;
return netIn;
}
int main() {
GF_PAR_INIT()
using namespace gridfire;
constexpr size_t breaks = 1;
constexpr double temp = 1.5e7;
constexpr double rho = 1.5e2;
constexpr double tMax = 3.1536e+16/breaks;
const NetIn netIn = init(temp, rho, tMax);
policy::MainSequencePolicy stellarPolicy(netIn.composition);
const policy::ConstructionResults construct = stellarPolicy.construct();
std::println("Sandbox Engine Stack: {}", stellarPolicy);
std::println("Scratch Blob State: {}", *construct.scratch_blob);
constexpr size_t runs = 10;
auto startTime = std::chrono::high_resolution_clock::now();
// arrays to store timings
std::array<std::chrono::duration<double>, runs> setup_times;
std::array<std::chrono::duration<double>, runs> eval_times;
std::array<NetOut, runs> serial_results;
for (size_t i = 0; i < runs; ++i) {
auto start_setup_time = std::chrono::high_resolution_clock::now();
solver::PointSolverContext solverCtx(*construct.scratch_blob);
solverCtx.set_stdout_logging(false);
solver::PointSolver solver(construct.engine);
auto end_setup_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> setup_elapsed = end_setup_time - start_setup_time;
setup_times[i] = setup_elapsed;
auto start_eval_time = std::chrono::high_resolution_clock::now();
const NetOut netOut = solver.evaluate(solverCtx, netIn);
auto end_eval_time = std::chrono::high_resolution_clock::now();
serial_results[i] = netOut;
std::chrono::duration<double> eval_elapsed = end_eval_time - start_eval_time;
eval_times[i] = eval_elapsed;
}
auto endTime = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = endTime - startTime;
std::println("");
// Summarize serial timings
double total_setup_time = 0.0;
double total_eval_time = 0.0;
for (size_t i = 0; i < runs; ++i) {
total_setup_time += setup_times[i].count();
total_eval_time += eval_times[i].count();
}
std::println("Average Setup Time over {} runs: {:.6f} seconds", runs, total_setup_time / runs);
std::println("Average Evaluation Time over {} runs: {:.6f} seconds", runs, total_eval_time / runs);
std::println("Total Time for {} runs: {:.6f} seconds", runs, elapsed.count());
std::array<NetOut, runs> parallelResults;
std::array<std::chrono::duration<double>, runs> setupTimes;
std::array<std::chrono::duration<double>, runs> evalTimes;
std::array<std::unique_ptr<gridfire::engine::scratch::StateBlob>, runs> workspaces;
for (size_t i = 0; i < runs; ++i) {
workspaces[i] = construct.scratch_blob->clone_structure();
}
// Parallel runs
startTime = std::chrono::high_resolution_clock::now();
GF_OMP(parallel for, for (size_t i = 0; i < runs; ++i)) {
auto start_setup_time = std::chrono::high_resolution_clock::now();
solver::PointSolverContext solverCtx(*construct.scratch_blob);
solverCtx.set_stdout_logging(false);
solver::PointSolver solver(construct.engine);
auto end_setup_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> setup_elapsed = end_setup_time - start_setup_time;
setupTimes[i] = setup_elapsed;
auto start_eval_time = std::chrono::high_resolution_clock::now();
parallelResults[i] = solver.evaluate(solverCtx, netIn);
auto end_eval_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> eval_elapsed = end_eval_time - start_eval_time;
evalTimes[i] = eval_elapsed;
}
endTime = std::chrono::high_resolution_clock::now();
elapsed = endTime - startTime;
std::println("");
// Summarize parallel timings
total_setup_time = 0.0;
total_eval_time = 0.0;
for (size_t i = 0; i < runs; ++i) {
total_setup_time += setupTimes[i].count();
total_eval_time += evalTimes[i].count();
}
std::println("Average Parallel Setup Time over {} runs: {:.6f} seconds", runs, total_setup_time / runs);
std::println("Average Parallel Evaluation Time over {} runs: {:.6f} seconds", runs, total_eval_time / runs);
std::println("Total Parallel Time for {} runs: {:.6f} seconds", runs, elapsed.count());
std::println("========== Summary ==========");
std::println("Serial Runs:");
std::println(" Average Setup Time: {:.6f} seconds", total_setup_time / runs);
std::println(" Average Evaluation Time: {:.6f} seconds", total_eval_time / runs);
std::println("Parallel Runs:");
std::println(" Average Setup Time: {:.6f} seconds", total_setup_time / runs);
std::println(" Average Evaluation Time: {:.6f} seconds", total_eval_time / runs);
std::println("Difference:");
std::println(" Setup Time Difference: {:.6f} seconds", (total_setup_time / runs) - (total_setup_time / runs));
std::println(" Evaluation Time Difference: {:.6f} seconds", (total_eval_time / runs) - (total_eval_time / runs));
std::println(" Setup Time Fractional Difference: {:.2f}%", ((total_setup_time / runs) - (total_setup_time / runs)) / (total_setup_time / runs) * 100.0);
std::println(" Evaluation Time Fractional Difference: {:.2f}%", ((total_eval_time / runs) - (total_eval_time / runs)) / (total_eval_time / runs) * 100.0);
}