Added more documentation, also moved all engine code into gridfire::engine namespace to be more in line with other parts of teh code base
2120 lines
94 KiB
C++
2120 lines
94 KiB
C++
#include "gridfire/engine/views/engine_multiscale.h"
|
|
#include "gridfire/exceptions/error_engine.h"
|
|
#include "gridfire/engine/procedures/priming.h"
|
|
#include "gridfire/utils/sundials.h"
|
|
#include "gridfire/utils/logging.h"
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
#include <ranges>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <fstream>
|
|
|
|
#include <queue>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "fourdst/atomic/species.h"
|
|
#include "quill/LogMacros.h"
|
|
#include "quill/Logger.h"
|
|
|
|
#include "kinsol/kinsol.h"
|
|
#include "sundials/sundials_context.h"
|
|
#include "sunmatrix/sunmatrix_dense.h"
|
|
#include "sunlinsol/sunlinsol_dense.h"
|
|
|
|
#include "xxhash64.h"
|
|
#include "fourdst/composition/utils/composition_hash.h"
|
|
|
|
namespace {
|
|
using namespace fourdst::atomic;
|
|
|
|
|
|
std::vector<std::vector<Species>> findConnectedComponentsBFS(
|
|
const std::unordered_map<Species, std::vector<Species>>& graph,
|
|
const std::vector<Species>& nodes
|
|
) {
|
|
std::vector<std::vector<Species>> components;
|
|
std::unordered_set<Species> visited;
|
|
|
|
for (const Species& start_node : nodes) {
|
|
if (!visited.contains(start_node)) {
|
|
std::vector<Species> current_component;
|
|
std::queue<Species> q;
|
|
|
|
q.push(start_node);
|
|
visited.insert(start_node);
|
|
|
|
while (!q.empty()) {
|
|
Species u = q.front();
|
|
q.pop();
|
|
current_component.push_back(u);
|
|
|
|
if (graph.contains(u)) {
|
|
for (const auto& v : graph.at(u)) {
|
|
if (!visited.contains(v)) {
|
|
visited.insert(v);
|
|
q.push(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
components.push_back(current_component);
|
|
}
|
|
}
|
|
return components;
|
|
}
|
|
|
|
std::vector<std::vector<Species>> findConnectedComponentsBFS(
|
|
const std::unordered_map<Species, std::set<Species>>& graph,
|
|
const std::vector<Species>& nodes
|
|
) {
|
|
std::unordered_map<Species, std::vector<Species>> adjList;
|
|
for (const auto& [u, neighbors] : graph) {
|
|
adjList[u] = std::vector<Species>(neighbors.begin(), neighbors.end());
|
|
}
|
|
return findConnectedComponentsBFS(adjList, nodes);
|
|
}
|
|
|
|
struct SpeciesSetIntersection {
|
|
const Species species;
|
|
std::size_t count;
|
|
};
|
|
|
|
std::expected<SpeciesSetIntersection, std::string> get_intersection_info (
|
|
const std::unordered_set<Species>& setA,
|
|
const std::unordered_set<Species>& setB
|
|
) {
|
|
// Iterate over the smaller of the two
|
|
auto* outerSet = &setA;
|
|
auto* innerSet = &setB;
|
|
if (setA.size() > setB.size()) {
|
|
outerSet = &setB;
|
|
innerSet = &setA;
|
|
}
|
|
|
|
std::size_t matchCount = 0;
|
|
const Species* firstMatch = nullptr;
|
|
|
|
for (const Species& sp : *outerSet) {
|
|
if (innerSet->contains(sp)) {
|
|
if (matchCount == 0) {
|
|
firstMatch = &sp;
|
|
}
|
|
++matchCount;
|
|
if (matchCount > 1) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!firstMatch) {
|
|
// No matches found
|
|
return std::unexpected{"Intersection is empty"};
|
|
}
|
|
if (matchCount == 0) {
|
|
// No matches found
|
|
return std::unexpected{"No intersection found"};
|
|
}
|
|
|
|
// Return the first match and the count of matches
|
|
return SpeciesSetIntersection{*firstMatch, matchCount};
|
|
|
|
}
|
|
|
|
bool has_distinct_reactant_and_product_species (
|
|
const std::unordered_set<Species>& poolSpecies,
|
|
const std::unordered_set<Species>& reactants,
|
|
const std::unordered_set<Species>& products
|
|
) {
|
|
const auto reactant_result = get_intersection_info(poolSpecies, reactants);
|
|
if (!reactant_result) {
|
|
return false; // No reactants found
|
|
}
|
|
const auto [reactantSample, reactantCount] = reactant_result.value();
|
|
|
|
const auto product_result = get_intersection_info(poolSpecies, products);
|
|
if (!product_result) {
|
|
return false; // No products found
|
|
}
|
|
|
|
const auto [productSample, productCount] = product_result.value();
|
|
|
|
// If either side has ≥2 distinct matches, we can always pick
|
|
// one from each that differ.
|
|
if (reactantCount > 1 || productCount > 1) {
|
|
return true;
|
|
}
|
|
|
|
// Exactly one match on each side → they must differ
|
|
return reactantSample != productSample;
|
|
}
|
|
|
|
void QuietErrorRouter(int line, const char *func, const char *file, const char *msg,
|
|
SUNErrCode err_code, void *err_user_data, SUNContext sunctx) {
|
|
|
|
// LIST OF ERRORS TO IGNORE
|
|
if (err_code == KIN_LINESEARCH_NONCONV) {
|
|
return;
|
|
}
|
|
|
|
// For everything else, use the default SUNDIALS logger (or your own)
|
|
SUNLogErrHandlerFn(line, func, file, msg, err_code, err_user_data, sunctx);
|
|
}
|
|
}
|
|
|
|
namespace gridfire::engine {
|
|
using fourdst::atomic::Species;
|
|
|
|
MultiscalePartitioningEngineView::MultiscalePartitioningEngineView(
|
|
DynamicEngine& baseEngine
|
|
) : m_baseEngine(baseEngine) {
|
|
const int flag = SUNContext_Create(SUN_COMM_NULL, &m_sun_ctx);
|
|
if (flag != 0) {
|
|
LOG_CRITICAL(m_logger, "Error while creating SUNContext in MultiscalePartitioningEngineView");
|
|
throw std::runtime_error("Error creating SUNContext in MultiscalePartitioningEngineView");
|
|
}
|
|
SUNContext_PushErrHandler(m_sun_ctx, QuietErrorRouter, nullptr);
|
|
}
|
|
|
|
MultiscalePartitioningEngineView::~MultiscalePartitioningEngineView() {
|
|
LOG_TRACE_L1(m_logger, "Cleaning up MultiscalePartitioningEngineView...");
|
|
m_qse_solvers.clear();
|
|
if (m_sun_ctx) {
|
|
SUNContext_Free(&m_sun_ctx);
|
|
m_sun_ctx = nullptr;
|
|
}
|
|
}
|
|
|
|
const std::vector<Species> & MultiscalePartitioningEngineView::getNetworkSpecies() const {
|
|
return m_baseEngine.getNetworkSpecies();
|
|
}
|
|
|
|
std::expected<StepDerivatives<double>, EngineStatus> MultiscalePartitioningEngineView::calculateRHSAndEnergy(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
LOG_TRACE_L2(m_logger, "Calculating RHS and Energy in MultiscalePartitioningEngineView at T9 = {}, rho = {}.", T9, rho);
|
|
LOG_TRACE_L2(m_logger, "Input composition is {}", [&comp]() -> std::string {
|
|
std::stringstream ss;
|
|
size_t i = 0;
|
|
for (const auto& [species, abundance] : comp) {
|
|
ss << species.name() << ": " << abundance;
|
|
if (i < comp.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
i++;
|
|
}
|
|
return ss.str();
|
|
}());
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
LOG_TRACE_L2(m_logger, "Equilibrated composition prior to calling base engine is {}", [&qseComposition, &comp]() -> std::string {
|
|
std::stringstream ss;
|
|
size_t i = 0;
|
|
for (const auto& [species, abundance] : qseComposition) {
|
|
ss << species.name() << ": " << abundance;
|
|
if (comp.contains(species)) {
|
|
ss << " (input: " << comp.getMolarAbundance(species) << ")";
|
|
}
|
|
if (i < qseComposition.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
i++;
|
|
}
|
|
return ss.str();
|
|
}());
|
|
|
|
const auto result = m_baseEngine.calculateRHSAndEnergy(qseComposition, T9, rho);
|
|
LOG_TRACE_L2(m_logger, "Base engine calculation of RHS and Energy complete.");
|
|
|
|
if (!result) {
|
|
LOG_TRACE_L2(m_logger, "Base engine returned stale error during RHS and Energy calculation.");
|
|
return std::unexpected{result.error()};
|
|
}
|
|
|
|
auto deriv = result.value();
|
|
|
|
LOG_TRACE_L2(m_logger, "Zeroing out algebraic species derivatives.");
|
|
for (const auto& species : m_algebraic_species) {
|
|
deriv.dydt[species] = 0.0; // Fix the algebraic species to the equilibrium abundances we calculate.
|
|
}
|
|
LOG_TRACE_L2(m_logger, "Done Zeroing out algebraic species derivatives.");
|
|
return deriv;
|
|
}
|
|
|
|
EnergyDerivatives MultiscalePartitioningEngineView::calculateEpsDerivatives(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
return m_baseEngine.calculateEpsDerivatives(qseComposition, T9, rho);
|
|
}
|
|
|
|
NetworkJacobian MultiscalePartitioningEngineView::generateJacobianMatrix(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
return m_baseEngine.generateJacobianMatrix(qseComposition, T9, rho, m_dynamic_species);
|
|
}
|
|
|
|
NetworkJacobian MultiscalePartitioningEngineView::generateJacobianMatrix(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho,
|
|
const std::vector<Species> &activeSpecies
|
|
) const {
|
|
bool activeSpeciesIsSubset = true;
|
|
for (const auto& species : activeSpecies) {
|
|
if (!involvesSpecies(species)) activeSpeciesIsSubset = false;
|
|
}
|
|
if (!activeSpeciesIsSubset) {
|
|
std::string msg = std::format(
|
|
"Active species set contains species ({}) not present in network partition. Cannot generate jacobian matrix due to this.",
|
|
[&]() -> std::string {
|
|
std::stringstream ss;
|
|
for (const auto& species : activeSpecies) {
|
|
if (!this->involvesSpecies(species)) {
|
|
ss << species << " ";
|
|
}
|
|
}
|
|
return ss.str();
|
|
}()
|
|
);
|
|
LOG_CRITICAL(m_logger, "{}", msg);
|
|
throw std::runtime_error(msg);
|
|
}
|
|
|
|
std::vector<Species> dynamicActiveSpeciesIntersection;
|
|
for (const auto& species : activeSpecies) {
|
|
if (involvesSpeciesInDynamic(species)) {
|
|
dynamicActiveSpeciesIntersection.push_back(species);
|
|
}
|
|
}
|
|
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
|
|
return m_baseEngine.generateJacobianMatrix(qseComposition, T9, rho, dynamicActiveSpeciesIntersection);
|
|
}
|
|
|
|
NetworkJacobian MultiscalePartitioningEngineView::generateJacobianMatrix(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho,
|
|
const SparsityPattern &sparsityPattern
|
|
) const {
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
return m_baseEngine.generateJacobianMatrix(qseComposition, T9, rho, sparsityPattern);
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::generateStoichiometryMatrix() {
|
|
m_baseEngine.generateStoichiometryMatrix();
|
|
}
|
|
|
|
int MultiscalePartitioningEngineView::getStoichiometryMatrixEntry(
|
|
const Species& species,
|
|
const reaction::Reaction& reaction
|
|
) const {
|
|
return m_baseEngine.getStoichiometryMatrixEntry(species, reaction);
|
|
}
|
|
|
|
double MultiscalePartitioningEngineView::calculateMolarReactionFlow(
|
|
const reaction::Reaction &reaction,
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
|
|
return m_baseEngine.calculateMolarReactionFlow(reaction, qseComposition, T9, rho);
|
|
}
|
|
|
|
const reaction::ReactionSet & MultiscalePartitioningEngineView::getNetworkReactions() const {
|
|
return m_baseEngine.getNetworkReactions();
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::setNetworkReactions(const reaction::ReactionSet &reactions) {
|
|
LOG_CRITICAL(m_logger, "setNetworkReactions is not supported in MultiscalePartitioningEngineView. Did you mean to call this on the base engine?");
|
|
throw exceptions::UnableToSetNetworkReactionsError("setNetworkReactions is not supported in MultiscalePartitioningEngineView. Did you mean to call this on the base engine?");
|
|
}
|
|
|
|
std::expected<std::unordered_map<Species, double>, EngineStatus> MultiscalePartitioningEngineView::getSpeciesTimescales(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
const auto result = m_baseEngine.getSpeciesTimescales(qseComposition, T9, rho);
|
|
if (!result) {
|
|
return std::unexpected{result.error()};
|
|
}
|
|
std::unordered_map<Species, double> speciesTimescales = result.value();
|
|
for (const auto& algebraicSpecies : m_algebraic_species) {
|
|
speciesTimescales[algebraicSpecies] = std::numeric_limits<double>::infinity(); // Algebraic species have infinite timescales.
|
|
}
|
|
return speciesTimescales;
|
|
}
|
|
|
|
std::expected<std::unordered_map<Species, double>, EngineStatus> MultiscalePartitioningEngineView::getSpeciesDestructionTimescales(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
const auto result = m_baseEngine.getSpeciesDestructionTimescales(qseComposition, T9, rho);
|
|
if (!result) {
|
|
return std::unexpected{result.error()};
|
|
}
|
|
std::unordered_map<Species, double> speciesDestructionTimescales = result.value();
|
|
for (const auto& algebraicSpecies : m_algebraic_species) {
|
|
speciesDestructionTimescales[algebraicSpecies] = std::numeric_limits<double>::infinity(); // Algebraic species have infinite destruction timescales.
|
|
}
|
|
return speciesDestructionTimescales;
|
|
}
|
|
|
|
fourdst::composition::Composition MultiscalePartitioningEngineView::update(const NetIn &netIn) {
|
|
const fourdst::composition::Composition baseUpdatedComposition = m_baseEngine.update(netIn);
|
|
|
|
NetIn baseUpdatedNetIn = netIn;
|
|
baseUpdatedNetIn.composition = baseUpdatedComposition;
|
|
fourdst::composition::Composition equilibratedComposition = partitionNetwork(baseUpdatedNetIn);
|
|
m_composition_cache.clear();
|
|
|
|
return equilibratedComposition;
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::isStale(const NetIn &netIn) {
|
|
return m_baseEngine.isStale(netIn);
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::setScreeningModel(
|
|
const screening::ScreeningType model
|
|
) {
|
|
m_baseEngine.setScreeningModel(model);
|
|
}
|
|
|
|
screening::ScreeningType MultiscalePartitioningEngineView::getScreeningModel() const {
|
|
return m_baseEngine.getScreeningModel();
|
|
}
|
|
|
|
const DynamicEngine & MultiscalePartitioningEngineView::getBaseEngine() const {
|
|
return m_baseEngine;
|
|
}
|
|
|
|
std::vector<std::vector<Species>> MultiscalePartitioningEngineView::analyzeTimescalePoolConnectivity(
|
|
const std::vector<std::vector<Species>> ×cale_pools
|
|
) const {
|
|
std::vector<std::vector<Species>> final_connected_pools;
|
|
|
|
for (const auto& pool : timescale_pools) {
|
|
if (pool.empty()) {
|
|
continue; // Skip empty pools
|
|
}
|
|
|
|
// For each timescale pool, we need to analyze connectivity.
|
|
auto connectivity_graph = buildConnectivityGraph(pool);
|
|
auto components = findConnectedComponentsBFS(connectivity_graph, pool);
|
|
final_connected_pools.insert(final_connected_pools.end(), components.begin(), components.end());
|
|
}
|
|
return final_connected_pools;
|
|
|
|
}
|
|
|
|
std::vector<MultiscalePartitioningEngineView::QSEGroup> MultiscalePartitioningEngineView::pruneValidatedGroups(
|
|
const std::vector<QSEGroup> &groups,
|
|
const std::vector<reaction::ReactionSet> &groupReactions,
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const auto result = m_baseEngine.getSpeciesTimescales(comp, T9, rho);
|
|
if (!result) {
|
|
throw std::runtime_error("Base engine returned stale error during pruneValidatedGroups timescale retrieval.");
|
|
}
|
|
std::unordered_map<Species, double> speciesTimescales = result.value();
|
|
std::vector<QSEGroup> newGroups;
|
|
for (const auto &[group, reactions] : std::views::zip(groups, groupReactions)) {
|
|
if (reactions.size() == 0) { // If a QSE group has gotten here it should have reactions associated with it. If it doesn't that is a serious error.
|
|
LOG_CRITICAL(m_logger, "No reactions specified for QSE group {} during pruning analysis.", group.toString(false));
|
|
throw std::runtime_error("No reactions specified for QSE group " + group.toString(false) + " during pruneValidatedGroups flux analysis.");
|
|
}
|
|
LOG_TRACE_L2(m_logger, "Attempting pruning of QSE Group {:40} (reactions: {}).", group.toString(false), utils::iterable_to_delimited_string(reactions, ", ", [](const auto& r) { return r->id(); }));
|
|
std::unordered_map<size_t, double> reactionFluxes;
|
|
std::unordered_map<size_t, const reaction::Reaction&> reactionLookup;
|
|
reactionFluxes.reserve(reactions.size());
|
|
|
|
double mean_molar_abundance = 0;
|
|
for (const auto& species : group.algebraic_species) {
|
|
mean_molar_abundance += comp.getMolarAbundance(species);
|
|
}
|
|
mean_molar_abundance /= group.algebraic_species.size();
|
|
{ // Safety Valve to ensure valid log scaling
|
|
if (mean_molar_abundance <= 0) {
|
|
LOG_CRITICAL(m_logger, "Non-positive mean molar abundance {} calculated for QSE group during pruning analysis.", mean_molar_abundance);
|
|
throw std::runtime_error("Non-positive mean molar abundance calculated during pruneValidatedGroups flux analysis.");
|
|
}
|
|
}
|
|
|
|
for (const auto& reaction : reactions) {
|
|
const double flux = m_baseEngine.calculateMolarReactionFlow(*reaction, comp, T9, rho);
|
|
size_t hash = reaction->hash(0);
|
|
if (reactionFluxes.contains(hash)) {
|
|
throw std::runtime_error("Duplicate reaction hash found during pruneValidatedGroups flux analysis.");
|
|
}
|
|
|
|
{ // Safety Valve to ensure valid log scaling
|
|
if (flux <= 0) {
|
|
LOG_CRITICAL(m_logger, "Non-positive flux {} calculated for reaction {} during pruning analysis.", flux, reaction->id());
|
|
throw std::runtime_error("Non-positive flux calculated during pruneValidatedGroups flux analysis.");
|
|
}
|
|
}
|
|
double lAbundanceNormalizedFlux = std::log(flux/mean_molar_abundance);
|
|
reactionFluxes.emplace(hash, lAbundanceNormalizedFlux);
|
|
|
|
assert(!std::isnan(lAbundanceNormalizedFlux) && !std::isinf(lAbundanceNormalizedFlux) && "Invalid log abundance normalized flux calculated during pruneValidatedGroups flux analysis.");
|
|
|
|
reactionLookup.emplace(hash, *reaction);
|
|
}
|
|
|
|
std::vector<size_t> sorted_reactions_based_on_flow;
|
|
for (const auto &hash: reactionFluxes | std::views::keys) {
|
|
sorted_reactions_based_on_flow.push_back(hash);
|
|
}
|
|
|
|
std::ranges::sort(sorted_reactions_based_on_flow, [&reactionFluxes](const size_t a, const size_t b) {
|
|
return std::abs(reactionFluxes.at(a)) < std::abs(reactionFluxes.at(b));
|
|
});
|
|
|
|
std::unordered_map<size_t, double> pruned_reaction_fluxes;
|
|
for (const auto& [hash, normalizedFlux] : reactionFluxes) {
|
|
if (normalizedFlux > -30) { // TODO: replace -30 with some more physically motivated value
|
|
pruned_reaction_fluxes.emplace(hash, normalizedFlux);
|
|
LOG_TRACE_L2(m_logger, "Retaining reaction {:15} with log(mean abundance normalized flux) {:10.4E} during pruning.", reactionLookup.at(hash).id(), normalizedFlux);
|
|
} else {
|
|
LOG_TRACE_L2(m_logger, "Pruning reaction {:15} with log(mean abundance normalized flux) {:10.4E} during pruning.", reactionLookup.at(hash).id(), normalizedFlux);
|
|
}
|
|
}
|
|
|
|
std::set<Species> reachableAlgebraicSpecies;
|
|
std::set<Species> reachableSeedSpecies;
|
|
|
|
std::unordered_map<Species, std::set<Species>> connectivity_graph;
|
|
|
|
for (const auto& reactionHash : pruned_reaction_fluxes | std::views::keys) {
|
|
const auto& reaction = reactionLookup.at(reactionHash);
|
|
|
|
for (const auto& reactant : reaction.reactants()) {
|
|
if (group.algebraic_species.contains(reactant)) {
|
|
reachableAlgebraicSpecies.insert(reactant);
|
|
} else if (group.seed_species.contains(reactant)) {
|
|
reachableSeedSpecies.insert(reactant);
|
|
}
|
|
|
|
if (!connectivity_graph.contains(reactant)) {
|
|
connectivity_graph.emplace(reactant, std::set<Species>{});
|
|
}
|
|
for (const auto& product : reaction.products()) {
|
|
connectivity_graph.at(reactant).insert(product);
|
|
}
|
|
}
|
|
|
|
for (const auto& product : reaction.products()) {
|
|
if (group.algebraic_species.contains(product)) {
|
|
reachableAlgebraicSpecies.insert(product);
|
|
} else if (group.seed_species.contains(product)) {
|
|
reachableSeedSpecies.insert(product);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
LOG_TRACE_L2(
|
|
m_logger,
|
|
"{}",
|
|
[&group, &reachableAlgebraicSpecies, &reachableSeedSpecies]() -> std::string {
|
|
std::stringstream ss;
|
|
ss << "Pruned QSE Group. Group Started with Algebraic Species: {";
|
|
int i = 0;
|
|
for (const auto& species : group.algebraic_species) {
|
|
ss << species.name();
|
|
if (i < group.algebraic_species.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
i++;
|
|
}
|
|
ss << "} and Seed Species: {";
|
|
i = 0;
|
|
for (const auto& species : group.seed_species) {
|
|
ss << species.name();
|
|
if (i < group.seed_species.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
i++;
|
|
}
|
|
ss << "}. After pruning, reachable Algebraic Species: {";
|
|
i = 0;
|
|
for (const auto& species : reachableAlgebraicSpecies) {
|
|
ss << species.name();
|
|
if (i < reachableAlgebraicSpecies.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
i++;
|
|
}
|
|
ss << "} and reachable Seed Species: {";
|
|
i = 0;
|
|
for (const auto& species : reachableSeedSpecies) {
|
|
ss << species.name();
|
|
if (i < reachableSeedSpecies.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
i++;
|
|
}
|
|
ss << "}.";
|
|
return ss.str();
|
|
}()
|
|
);
|
|
|
|
std::vector<std::vector<Species>> connected_components = findConnectedComponentsBFS(
|
|
connectivity_graph,
|
|
std::vector<Species>(
|
|
reachableAlgebraicSpecies.begin(),
|
|
reachableAlgebraicSpecies.end()
|
|
)
|
|
);
|
|
|
|
for (const auto& subgraph: connected_components) {
|
|
QSEGroup g;
|
|
for (const auto& species: subgraph) {
|
|
if (reachableAlgebraicSpecies.contains(species)) {
|
|
g.algebraic_species.insert(species);
|
|
} else if (reachableSeedSpecies.contains(species)) {
|
|
g.seed_species.insert(species);
|
|
}
|
|
}
|
|
if (!g.seed_species.empty() && !g.algebraic_species.empty()) {
|
|
double meanTimescale = 0;
|
|
for (const auto &species : g.algebraic_species) {
|
|
meanTimescale += speciesTimescales.at(species);
|
|
}
|
|
meanTimescale /= g.algebraic_species.size();
|
|
g.mean_timescale = meanTimescale;
|
|
newGroups.push_back(g);
|
|
}
|
|
}
|
|
}
|
|
return newGroups;
|
|
}
|
|
|
|
fourdst::composition::Composition MultiscalePartitioningEngineView::partitionNetwork(
|
|
const NetIn &netIn
|
|
) {
|
|
// --- Step 0. Prime the network ---
|
|
const PrimingReport primingReport = m_baseEngine.primeEngine(netIn);
|
|
const fourdst::composition::Composition& comp = primingReport.primedComposition;
|
|
const double T9 = netIn.temperature / 1e9;
|
|
const double rho = netIn.density;
|
|
|
|
// --- Step 0.5 Clear previous state ---
|
|
LOG_TRACE_L1(m_logger, "Partitioning network...");
|
|
LOG_TRACE_L1(m_logger, "Clearing previous state...");
|
|
m_qse_groups.clear();
|
|
m_qse_solvers.clear();
|
|
m_dynamic_species.clear();
|
|
m_algebraic_species.clear();
|
|
m_composition_cache.clear(); // We need to clear the cache now cause the same comp, temp, and density may result in a different value
|
|
|
|
// --- Step 1. Identify distinct timescale regions ---
|
|
LOG_TRACE_L1(m_logger, "Identifying fast reactions...");
|
|
const std::vector<std::vector<Species>> timescale_pools = partitionByTimescale(comp, T9, rho);
|
|
LOG_TRACE_L1(m_logger, "Found {} timescale pools.", timescale_pools.size());
|
|
|
|
// --- Step 2. Select the mean slowest pool as the base dynamical group ---
|
|
LOG_TRACE_L1(m_logger, "Identifying mean slowest pool...");
|
|
const size_t mean_slowest_pool_index = identifyMeanSlowestPool(timescale_pools, comp, T9, rho);
|
|
LOG_TRACE_L1(m_logger, "Mean slowest pool index: {}", mean_slowest_pool_index);
|
|
|
|
// --- Step 3. Push the slowest pool into the dynamic species list ---
|
|
for (const auto& slowSpecies : timescale_pools[mean_slowest_pool_index]) {
|
|
m_dynamic_species.push_back(slowSpecies);
|
|
}
|
|
|
|
// --- Step 4. Pack Candidate QSE Groups ---
|
|
std::vector<std::vector<Species>> candidate_pools;
|
|
for (size_t i = 0; i < timescale_pools.size(); ++i) {
|
|
if (i == mean_slowest_pool_index) continue; // Skip the slowest pool
|
|
LOG_TRACE_L1(m_logger, "Group {} with {} species identified for potential QSE.", i, timescale_pools[i].size());
|
|
candidate_pools.push_back(timescale_pools[i]);
|
|
}
|
|
|
|
LOG_TRACE_L1(m_logger, "Preforming connectivity analysis on timescale pools...");
|
|
const std::vector<std::vector<Species>> connected_pools = analyzeTimescalePoolConnectivity(candidate_pools);
|
|
LOG_TRACE_L1(m_logger, "Found {} connected pools (compared to {} timescale pools) for QSE analysis.", connected_pools.size(), timescale_pools.size());
|
|
|
|
|
|
// --- Step 5. Identify potential seed species for each candidate pool ---
|
|
LOG_TRACE_L1(m_logger, "Identifying potential seed species for candidate pools...");
|
|
const std::vector<QSEGroup> candidate_groups = constructCandidateGroups(connected_pools, comp, T9, rho);
|
|
LOG_TRACE_L1(m_logger, "Found {} candidate QSE groups for further analysis ({})", candidate_groups.size(), utils::iterable_to_delimited_string(candidate_groups));
|
|
|
|
LOG_TRACE_L1(m_logger, "Validating candidate groups with flux analysis...");
|
|
const auto [validated_groups, invalidate_groups, validated_group_reactions] = validateGroupsWithFluxAnalysis(candidate_groups, comp, T9, rho);
|
|
LOG_TRACE_L1(m_logger, "Validated {} group(s) QSE groups. {}", validated_groups.size(), utils::iterable_to_delimited_string(validated_groups));
|
|
|
|
LOG_TRACE_L1(m_logger, "Pruning groups based on log abundance-normalized flux analysis...");
|
|
const std::vector<QSEGroup> prunedGroups = pruneValidatedGroups(validated_groups, validated_group_reactions, comp, T9, rho);
|
|
LOG_TRACE_L1(m_logger, "After Pruning remaining groups are: {}", utils::iterable_to_delimited_string(prunedGroups));
|
|
|
|
LOG_TRACE_L1(m_logger, "Re-validating pruned groups with flux analysis...");
|
|
auto [pruned_validated_groups, _, __] = validateGroupsWithFluxAnalysis(prunedGroups, comp, T9, rho);
|
|
LOG_TRACE_L1(m_logger, "After re-validation, {} QSE groups remain. ({})",pruned_validated_groups.size(), utils::iterable_to_delimited_string(pruned_validated_groups));
|
|
|
|
m_qse_groups = pruned_validated_groups;
|
|
|
|
LOG_TRACE_L1(m_logger, "Pushing all identified algebraic species into algebraic set...");
|
|
for (const auto& group : m_qse_groups) {
|
|
// Add algebraic species to the algebraic set
|
|
for (const auto& species : group.algebraic_species) {
|
|
if (std::ranges::find(m_algebraic_species, species) == m_algebraic_species.end()) {
|
|
m_algebraic_species.push_back(species);
|
|
}
|
|
}
|
|
}
|
|
LOG_TRACE_L1(m_logger, "Algebraic species identified: {}", utils::iterable_to_delimited_string(m_algebraic_species));
|
|
|
|
LOG_INFO(
|
|
m_logger,
|
|
"Partitioning complete. Found {} dynamic species, {} algebraic (QSE) species ({}) spread over {} QSE group{}.",
|
|
m_dynamic_species.size(),
|
|
m_algebraic_species.size(),
|
|
utils::iterable_to_delimited_string(m_algebraic_species),
|
|
m_qse_groups.size(),
|
|
m_qse_groups.size() == 1 ? "" : "s"
|
|
);
|
|
|
|
// Sort the QSE groups by mean timescale so that fastest groups get equilibrated first (as these may feed slower groups)
|
|
LOG_TRACE_L1(m_logger, "Sorting algebraic set by mean timescale...");
|
|
std::ranges::sort(m_qse_groups, [](const QSEGroup& a, const QSEGroup& b) {
|
|
return a.mean_timescale < b.mean_timescale;
|
|
});
|
|
|
|
LOG_TRACE_L1(m_logger, "Finalizing dynamic species list...");
|
|
for (const auto& species : m_baseEngine.getNetworkSpecies()) {
|
|
const bool involvesAlgebraic = involvesSpeciesInQSE(species);
|
|
if (std::ranges::find(m_dynamic_species, species) == m_dynamic_species.end() && !involvesAlgebraic) {
|
|
m_dynamic_species.push_back(species);
|
|
}
|
|
}
|
|
LOG_TRACE_L1(m_logger, "Final dynamic species set: {}", utils::iterable_to_delimited_string(m_dynamic_species));
|
|
|
|
LOG_TRACE_L1(m_logger, "Creating QSE solvers for each identified QSE group...");
|
|
for (const auto& group : m_qse_groups) {
|
|
std::vector<Species> groupAlgebraicSpecies;
|
|
for (const auto& species : group.algebraic_species) {
|
|
groupAlgebraicSpecies.push_back(species);
|
|
}
|
|
m_qse_solvers.push_back(std::make_unique<QSESolver>(groupAlgebraicSpecies, m_baseEngine, m_sun_ctx));
|
|
}
|
|
LOG_TRACE_L1(m_logger, "{} QSE solvers created.", m_qse_solvers.size());
|
|
|
|
LOG_TRACE_L1(m_logger, "Calculating final equilibrated composition...");
|
|
fourdst::composition::Composition result = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
LOG_TRACE_L1(m_logger, "Final equilibrated composition calculated...");
|
|
|
|
return result;
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::exportToDot(
|
|
const std::string &filename,
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
std::ofstream dotFile(filename);
|
|
if (!dotFile.is_open()) {
|
|
LOG_ERROR(m_logger, "Failed to open file for writing: {}", filename);
|
|
throw std::runtime_error("Failed to open file for writing: " + filename);
|
|
}
|
|
|
|
const auto& all_species = m_baseEngine.getNetworkSpecies();
|
|
const auto& all_reactions = m_baseEngine.getNetworkReactions();
|
|
|
|
// --- 1. Pre-computation and Categorization ---
|
|
|
|
// Categorize species into algebraic, seed, and core dynamic
|
|
std::unordered_set<Species> algebraic_species;
|
|
std::unordered_set<Species> seed_species;
|
|
for (const auto& group : m_qse_groups) {
|
|
if (group.is_in_equilibrium) {
|
|
algebraic_species.insert(group.algebraic_species.begin(), group.algebraic_species.end());
|
|
seed_species.insert(group.seed_species.begin(), group.seed_species.end());
|
|
}
|
|
}
|
|
|
|
const fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(comp, T9, rho);
|
|
// Calculate reaction flows and find min/max for logarithmic scaling of transparency
|
|
std::vector<double> reaction_flows;
|
|
reaction_flows.reserve(all_reactions.size());
|
|
double min_log_flow = std::numeric_limits<double>::max();
|
|
double max_log_flow = std::numeric_limits<double>::lowest();
|
|
|
|
for (const auto& reaction : all_reactions) {
|
|
double flow = std::abs(m_baseEngine.calculateMolarReactionFlow(*reaction, qseComposition, T9, rho));
|
|
reaction_flows.push_back(flow);
|
|
if (flow > 1e-99) { // Avoid log(0)
|
|
double log_flow = std::log10(flow);
|
|
min_log_flow = std::min(min_log_flow, log_flow);
|
|
max_log_flow = std::max(max_log_flow, log_flow);
|
|
}
|
|
}
|
|
const double log_flow_range = (max_log_flow > min_log_flow) ? (max_log_flow - min_log_flow) : 1.0;
|
|
|
|
// --- 2. Write DOT file content ---
|
|
|
|
dotFile << "digraph PartitionedNetwork {\n";
|
|
dotFile << " graph [rankdir=TB, splines=true, overlap=false, bgcolor=\"#f8fafc\", label=\"Multiscale Partitioned Network View\", fontname=\"Helvetica\", fontsize=16, labeljust=l];\n";
|
|
dotFile << " node [shape=circle, style=filled, fontname=\"Helvetica\", width=0.8, fixedsize=true];\n";
|
|
dotFile << " edge [fontname=\"Helvetica\", fontsize=10];\n\n";
|
|
|
|
// --- Node Definitions ---
|
|
// Define all species nodes first, so they can be referenced by clusters and ranks later.
|
|
dotFile << " // --- Species Nodes Definitions ---\n";
|
|
std::map<int, std::vector<std::string>> species_by_mass;
|
|
for (const auto & species : all_species) {
|
|
std::string fillcolor = "#f1f5f9"; // Default: Other/Uninvolved
|
|
|
|
// Determine color based on category. A species can be a seed and also in the core dynamic group.
|
|
// The more specific category (algebraic, then seed) takes precedence.
|
|
if (algebraic_species.contains(species)) {
|
|
fillcolor = "#e0f2fe"; // Light Blue: Algebraic (in QSE)
|
|
} else if (seed_species.contains(species)) {
|
|
fillcolor = "#a7f3d0"; // Light Green: Seed (Dynamic, feeds a QSE group)
|
|
} else if (std::ranges::contains(m_dynamic_species, species)) {
|
|
fillcolor = "#dcfce7"; // Pale Green: Core Dynamic
|
|
}
|
|
dotFile << " \"" << species.name() << "\" [label=\"" << species.name() << "\", fillcolor=\"" << fillcolor << "\"];\n";
|
|
|
|
// Group species by mass number for ranked layout.
|
|
// If species.a() returns incorrect values (e.g., 0 for many species), they will be grouped together here.
|
|
species_by_mass[species.a()].emplace_back(species.name());
|
|
}
|
|
dotFile << "\n";
|
|
|
|
// --- Layout and Ranking ---
|
|
// Enforce a top-down layout based on mass number.
|
|
dotFile << " // --- Layout using Ranks ---\n";
|
|
for (const auto &species_list: species_by_mass | std::views::values) {
|
|
dotFile << " { rank=same; ";
|
|
for (const auto& name : species_list) {
|
|
dotFile << "\"" << name << "\"; ";
|
|
}
|
|
dotFile << "}\n";
|
|
}
|
|
dotFile << "\n";
|
|
|
|
// Chain by mass to get top down ordering
|
|
dotFile << " // --- Chain by Mass ---\n";
|
|
for (const auto& [mass, species_list] : species_by_mass) {
|
|
// Find the next largest mass in the species list
|
|
int minLargestMass = std::numeric_limits<int>::max();
|
|
for (const auto &next_mass: species_by_mass | std::views::keys) {
|
|
if (next_mass > mass && next_mass < minLargestMass) {
|
|
minLargestMass = next_mass;
|
|
}
|
|
}
|
|
if (minLargestMass != std::numeric_limits<int>::max()) {
|
|
// Connect the current mass to the next largest mass
|
|
dotFile << " \"" << species_list[0] << "\" -> \"" << species_by_mass[minLargestMass][0] << "\" [style=invis];\n";
|
|
}
|
|
}
|
|
|
|
// --- QSE Group Clusters ---
|
|
// Draw a prominent box around the algebraic species of each valid QSE group.
|
|
dotFile << " // --- QSE Group Clusters ---\n";
|
|
int group_counter = 0;
|
|
for (const auto& group : m_qse_groups) {
|
|
if (!group.is_in_equilibrium || group.algebraic_species.empty()) {
|
|
continue;
|
|
}
|
|
dotFile << " subgraph cluster_qse_" << group_counter++ << " {\n";
|
|
dotFile << " label = \"QSE Group " << group_counter << "\";\n";
|
|
dotFile << " style = \"filled,rounded\";\n";
|
|
dotFile << " color = \"#38bdf8\";\n"; // A bright, visible blue for the border
|
|
dotFile << " penwidth = 2.0;\n"; // Thicker border
|
|
dotFile << " bgcolor = \"#f0f9ff80\";\n"; // Light blue fill with transparency
|
|
dotFile << " subgraph cluster_seed_" << group_counter << " {\n";
|
|
dotFile << " label = \"Seed Species\";\n";
|
|
dotFile << " style = \"filled,rounded\";\n";
|
|
dotFile << " color = \"#a7f3d0\";\n"; // Light green for seed species
|
|
dotFile << " penwidth = 1.5;\n"; // Thinner border for seed cluster
|
|
std::vector<std::string> seed_node_ids;
|
|
seed_node_ids.reserve(group.seed_species.size());
|
|
for (const auto& species : group.seed_species) {
|
|
std::stringstream ss;
|
|
ss << "node_" << group_counter << "_seed_" << species.name();
|
|
dotFile << " " << ss.str() << " [label=\"" << species.name() << "\"];\n";
|
|
seed_node_ids.push_back(ss.str());
|
|
}
|
|
for (size_t i = 0; i < seed_node_ids.size() - 1; ++i) {
|
|
dotFile << " " << seed_node_ids[i] << " -> " << seed_node_ids[i + 1] << " [style=invis];\n";
|
|
}
|
|
dotFile << " }\n";
|
|
dotFile << " subgraph cluster_algebraic_" << group_counter << " {\n";
|
|
dotFile << " label = \"Algebraic Species\";\n";
|
|
dotFile << " style = \"filled,rounded\";\n";
|
|
dotFile << " color = \"#e0f2fe\";\n"; // Light blue for algebraic species
|
|
dotFile << " penwidth = 1.5;\n"; // Thinner border for algebraic cluster
|
|
std::vector<std::string> algebraic_node_ids;
|
|
algebraic_node_ids.reserve(group.algebraic_species.size());
|
|
for (const Species& species : group.algebraic_species) {
|
|
std::stringstream ss;
|
|
ss << "node_" << group_counter << "_algebraic_" << species.name();
|
|
dotFile << " " << ss.str() << " [label=\"" << species.name() << "\"];\n";
|
|
algebraic_node_ids.push_back(ss.str());
|
|
}
|
|
// Make invisible edges between algebraic indices to keep them in top-down order
|
|
for (size_t i = 0; i < algebraic_node_ids.size() - 1; ++i) {
|
|
dotFile << " " << algebraic_node_ids[i] << " -> " << algebraic_node_ids[i + 1] << " [style=invis];\n";
|
|
}
|
|
dotFile << " }\n";
|
|
dotFile << " }\n";
|
|
}
|
|
dotFile << "\n";
|
|
|
|
|
|
// --- Legend ---
|
|
// Add a legend to explain colors and conventions.
|
|
dotFile << " // --- Legend ---\n";
|
|
dotFile << " subgraph cluster_legend {\n";
|
|
dotFile << " rank = sink"; // Try to push the legend to the bottom
|
|
dotFile << " label = \"Legend\";\n";
|
|
dotFile << " bgcolor = \"#ffffff\";\n";
|
|
dotFile << " color = \"#e2e8f0\";\n";
|
|
dotFile << " node [shape=box, style=filled, fontname=\"Helvetica\"];\n";
|
|
dotFile << " key_core [label=\"Core Dynamic\", fillcolor=\"#dcfce7\"];\n";
|
|
dotFile << " key_seed [label=\"Seed (Dynamic)\", fillcolor=\"#a7f3d0\"];\n";
|
|
dotFile << " key_qse [label=\"Algebraic (QSE)\", fillcolor=\"#e0f2fe\"];\n";
|
|
dotFile << " key_other [label=\"Other\", fillcolor=\"#f1f5f9\"];\n";
|
|
dotFile << " key_info [label=\"Edge Opacity ~ log(Reaction Flow)\", shape=plaintext];\n";
|
|
dotFile << " ";// Use invisible edges to stack legend items vertically
|
|
dotFile << " key_core -> key_seed -> key_qse -> key_other -> key_info [style=invis];\n";
|
|
dotFile << " }\n\n";
|
|
|
|
// --- Reaction Edges ---
|
|
// Draw edges with transparency scaled by the log of the molar reaction flow.
|
|
dotFile << " // --- Reaction Edges ---\n";
|
|
for (size_t i = 0; i < all_reactions.size(); ++i) {
|
|
const auto& reaction = all_reactions[i];
|
|
const double flow = reaction_flows[i];
|
|
|
|
if (flow < 1e-99) continue; // Don't draw edges for negligible flows
|
|
|
|
double log_flow_val = std::log10(flow);
|
|
double norm_alpha = (log_flow_val - min_log_flow) / log_flow_range;
|
|
int alpha_val = 0x30 + static_cast<int>(norm_alpha * (0xFF - 0x30)); // Scale from ~20% to 100% opacity
|
|
alpha_val = std::clamp(alpha_val, 0x00, 0xFF);
|
|
|
|
std::stringstream alpha_hex;
|
|
alpha_hex << std::setw(2) << std::setfill('0') << std::hex << alpha_val;
|
|
std::string edge_color = "#475569" + alpha_hex.str();
|
|
|
|
std::string reactionNodeId = "reaction_" + std::string(reaction.id());
|
|
dotFile << " \"" << reactionNodeId << "\" [shape=point, fillcolor=black, width=0.05, height=0.05];\n";
|
|
for (const auto& reactant : reaction.reactants()) {
|
|
dotFile << " \"" << reactant.name() << "\" -> \"" << reactionNodeId << "\" [color=\"" << edge_color << "\", arrowhead=none];\n";
|
|
}
|
|
for (const auto& product : reaction.products()) {
|
|
dotFile << " \"" << reactionNodeId << "\" -> \"" << product.name() << "\" [color=\"" << edge_color << "\"];\n";
|
|
}
|
|
dotFile << "\n";
|
|
}
|
|
|
|
dotFile << "}\n";
|
|
dotFile.close();
|
|
}
|
|
|
|
|
|
std::vector<double> MultiscalePartitioningEngineView::mapNetInToMolarAbundanceVector(const NetIn &netIn) const {
|
|
std::vector<double> Y(netIn.composition.size(), 0.0); // Initialize with zeros
|
|
for (const auto& [sp, y] : netIn.composition) {
|
|
Y[getSpeciesIndex(sp)] = y; // Map species to their molar abundance
|
|
}
|
|
return Y; // Return the vector of molar abundances
|
|
}
|
|
|
|
std::vector<Species> MultiscalePartitioningEngineView::getFastSpecies() const {
|
|
const auto& all_species = m_baseEngine.getNetworkSpecies();
|
|
std::vector<Species> fast_species;
|
|
fast_species.reserve(all_species.size() - m_dynamic_species.size());
|
|
for (const auto& species : all_species) {
|
|
auto it = std::ranges::find(m_dynamic_species, species);
|
|
if (it == m_dynamic_species.end()) {
|
|
fast_species.push_back(species);
|
|
}
|
|
}
|
|
return fast_species;
|
|
}
|
|
|
|
const std::vector<Species> & MultiscalePartitioningEngineView::getDynamicSpecies() const {
|
|
return m_dynamic_species;
|
|
}
|
|
|
|
PrimingReport MultiscalePartitioningEngineView::primeEngine(const NetIn &netIn) {
|
|
return m_baseEngine.primeEngine(netIn);
|
|
}
|
|
|
|
|
|
bool MultiscalePartitioningEngineView::involvesSpecies(
|
|
const Species &species
|
|
) const {
|
|
if (involvesSpeciesInQSE(species)) return true; // check this first since the vector is likely to be smaller so short circuit cost is less on average
|
|
if (involvesSpeciesInDynamic(species)) return true;
|
|
return false;
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::involvesSpeciesInQSE(
|
|
const Species &species
|
|
) const {
|
|
return std::ranges::find(m_algebraic_species, species) != m_algebraic_species.end();
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::involvesSpeciesInDynamic(
|
|
const Species &species
|
|
) const {
|
|
return std::ranges::find(m_dynamic_species, species) != m_dynamic_species.end();
|
|
}
|
|
|
|
fourdst::composition::Composition MultiscalePartitioningEngineView::getNormalizedEquilibratedComposition(
|
|
const fourdst::composition::CompositionAbstract& comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
// Caching mechanism to avoid redundant QSE solves
|
|
const std::array<uint64_t, 3> hashes = {
|
|
fourdst::composition::utils::CompositionHash::hash_exact(comp),
|
|
std::hash<double>()(T9),
|
|
std::hash<double>()(rho)
|
|
};
|
|
|
|
const uint64_t composite_hash = XXHash64::hash(hashes.begin(), sizeof(uint64_t) * 3, 0);
|
|
if (m_composition_cache.contains(composite_hash)) {
|
|
LOG_TRACE_L3(m_logger, "Cache Hit in Multiscale Partitioning Engine View for composition at T9 = {}, rho = {}.", T9, rho);
|
|
return m_composition_cache.at(composite_hash);
|
|
}
|
|
LOG_TRACE_L3(m_logger, "Cache Miss in Multiscale Partitioning Engine View for composition at T9 = {}, rho = {}. Solving QSE abundances...", T9, rho);
|
|
|
|
// Only solve if the composition and thermodynamic conditions have not been cached yet
|
|
fourdst::composition::Composition qseComposition = solveQSEAbundances(comp, T9, rho);
|
|
|
|
for (const auto &[sp, y]: qseComposition) {
|
|
if (y < 0.0 && std::abs(y) < 1e-20) {
|
|
qseComposition.setMolarAbundance(sp, 0.0); // normalize small negative abundances to zero
|
|
}
|
|
}
|
|
m_composition_cache[composite_hash] = qseComposition;
|
|
|
|
return qseComposition;
|
|
}
|
|
|
|
fourdst::composition::Composition MultiscalePartitioningEngineView::collectComposition(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const fourdst::composition::Composition result = m_baseEngine.collectComposition(comp, T9, rho);
|
|
|
|
fourdst::composition::Composition qseComposition = getNormalizedEquilibratedComposition(result, T9, rho);
|
|
|
|
return qseComposition;
|
|
}
|
|
|
|
SpeciesStatus MultiscalePartitioningEngineView::getSpeciesStatus(const Species &species) const {
|
|
const SpeciesStatus status = m_baseEngine.getSpeciesStatus(species);
|
|
if (status == SpeciesStatus::ACTIVE && involvesSpeciesInQSE(species)) {
|
|
return SpeciesStatus::EQUILIBRIUM;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
size_t MultiscalePartitioningEngineView::getSpeciesIndex(const Species &species) const {
|
|
return m_baseEngine.getSpeciesIndex(species);
|
|
}
|
|
|
|
|
|
std::vector<std::vector<Species>> MultiscalePartitioningEngineView::partitionByTimescale(
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
LOG_TRACE_L1(m_logger, "Partitioning by timescale...");
|
|
const auto destructionTimescale= m_baseEngine.getSpeciesDestructionTimescales(comp, T9, rho);
|
|
const auto netTimescale = m_baseEngine.getSpeciesTimescales(comp, T9, rho);
|
|
|
|
if (!destructionTimescale || !netTimescale) {
|
|
LOG_CRITICAL(m_logger, "Failed to compute species timescales for partitioning due to base engine error.");
|
|
m_logger -> flush_log();
|
|
throw exceptions::EngineError("Failed to compute species timescales for partitioning in MultiscalePartitioningEngineView due to base engine error.");
|
|
}
|
|
const std::unordered_map<Species, double>& destruction_timescales = destructionTimescale.value();
|
|
[[maybe_unused]] const std::unordered_map<Species, double>& net_timescales = netTimescale.value();
|
|
|
|
LOG_TRACE_L3(
|
|
m_logger,
|
|
"{}",
|
|
[&]() -> std::string {
|
|
std::stringstream ss;
|
|
for (const auto& [species, destruction_timescale] : destruction_timescales) {
|
|
ss << std::format("For {:6} destruction timescale is {:10.4E}s\n", species.name(), destruction_timescale);
|
|
}
|
|
return ss.str();
|
|
}()
|
|
);
|
|
|
|
const auto& all_species = m_baseEngine.getNetworkSpecies();
|
|
|
|
std::vector<std::pair<double, Species>> sorted_destruction_timescales;
|
|
for (const auto & species : all_species) {
|
|
double destruction_timescale = destruction_timescales.at(species);
|
|
if (std::isfinite(destruction_timescale) && destruction_timescale > 0) {
|
|
LOG_TRACE_L2(m_logger, "Species {:6} has finite destruction timescale: destruction: {:10.4E} s, net: {:10.4E} s", species.name(), destruction_timescale, net_timescales.at(species));
|
|
sorted_destruction_timescales.emplace_back(destruction_timescale, species);
|
|
} else {
|
|
LOG_TRACE_L2(m_logger, "Species {:6} has infinite or negative destruction timescale: destruction: {:10.4E} s, net: {:10.4E} s", species.name(), destruction_timescale, net_timescales.at(species));
|
|
}
|
|
}
|
|
|
|
std::ranges::sort(
|
|
sorted_destruction_timescales,
|
|
[](const auto& a, const auto& b)
|
|
{
|
|
return a.first > b.first;
|
|
}
|
|
);
|
|
|
|
std::vector<std::vector<Species>> final_pools;
|
|
if (sorted_destruction_timescales.empty()) {
|
|
return final_pools;
|
|
}
|
|
|
|
constexpr double ABSOLUTE_QSE_TIMESCALE_THRESHOLD = 3.156e7; // Absolute threshold for QSE timescale (1 yr)
|
|
constexpr double MIN_GAP_THRESHOLD = 2.0; // Require a 2 order of magnitude gap
|
|
constexpr double MAX_MOLAR_ABUNDANCE_THRESHOLD = 1e-10; // Maximum molar abundance which a fast species is allowed to have (anything more abundant is always considered dynamic)
|
|
constexpr double MIN_MOLAR_ABUNDANCE_THRESHOLD = 1e-50; // Minimum molar abundance to consider a species at all (anything less abundance will be classed as dynamic but with the intent that some latter view will deal with it)
|
|
|
|
LOG_TRACE_L2(m_logger, "Found {:5} species with finite timescales.", sorted_destruction_timescales.size());
|
|
LOG_TRACE_L2(m_logger, "Absolute QSE timescale threshold: {:7.3E} seconds ({:7.2E} years).",
|
|
ABSOLUTE_QSE_TIMESCALE_THRESHOLD, ABSOLUTE_QSE_TIMESCALE_THRESHOLD / 3.156e7);
|
|
LOG_TRACE_L2(m_logger, "Minimum gap threshold: {:3} orders of magnitude.", MIN_GAP_THRESHOLD);
|
|
LOG_TRACE_L2(m_logger, "Maximum molar abundance threshold for fast species consideration : {:3}.", MAX_MOLAR_ABUNDANCE_THRESHOLD);
|
|
LOG_TRACE_L2(m_logger, "Minimum molar abundance threshold for species consideration : {:3}.", MIN_MOLAR_ABUNDANCE_THRESHOLD);
|
|
|
|
std::vector<Species> dynamic_pool_species;
|
|
std::vector<std::pair<double, Species>> fast_candidates;
|
|
|
|
// 1. First Pass: Absolute Timescale Cutoff
|
|
for (const auto& [destruction_timescale, species] : sorted_destruction_timescales) {
|
|
if (destruction_timescale > ABSOLUTE_QSE_TIMESCALE_THRESHOLD) {
|
|
LOG_TRACE_L2(m_logger, "Species {:5} with timescale {:10.4E} is considered dynamic (slower than qse timescale threshold).",
|
|
species.name(), destruction_timescale);
|
|
dynamic_pool_species.push_back(species);
|
|
} else {
|
|
const double Yi = comp.getMolarAbundance(species);
|
|
if (Yi > MAX_MOLAR_ABUNDANCE_THRESHOLD) {
|
|
LOG_TRACE_L2(m_logger, "Species {:5} with abundance {:10.4E} is considered dynamic (above minimum abundance threshold of {}).",
|
|
species.name(), Yi, MAX_MOLAR_ABUNDANCE_THRESHOLD);
|
|
dynamic_pool_species.push_back(species);
|
|
continue;
|
|
}
|
|
if (Yi < MIN_MOLAR_ABUNDANCE_THRESHOLD) {
|
|
LOG_TRACE_L2(m_logger, "Species {:5} with abundance {:10.4E} is considered dynamic (below minimum abundance threshold of {:10.4E}). Likely another network view (such as adaptive engine view) will be needed to deal with this species",
|
|
species.name(), Yi, MIN_MOLAR_ABUNDANCE_THRESHOLD);
|
|
dynamic_pool_species.push_back(species);
|
|
continue;
|
|
}
|
|
LOG_TRACE_L2(m_logger, "Species {:5} with timescale {:10.4E} and molar abundance {:10.4E} is a candidate fast species (faster than qse timescale threshold and less than the molar abundance threshold).",
|
|
species.name(), destruction_timescale, Yi);
|
|
fast_candidates.emplace_back(destruction_timescale, species);
|
|
}
|
|
}
|
|
|
|
if (!dynamic_pool_species.empty()) {
|
|
LOG_TRACE_L2(m_logger, "Found {:5} dynamic species (slower than QSE timescale threshold).", dynamic_pool_species.size());
|
|
final_pools.push_back(dynamic_pool_species);
|
|
}
|
|
|
|
if (fast_candidates.empty()) {
|
|
LOG_TRACE_L2(m_logger, "No fast candidates found.");
|
|
return final_pools;
|
|
}
|
|
|
|
// 2. Second Pass: Gap Detection on the remaining "fast" candidates
|
|
std::vector<size_t> split_points;
|
|
for (size_t i = 0; i < fast_candidates.size() - 1; ++i) {
|
|
const double t1 = fast_candidates[i].first;
|
|
const double t2 = fast_candidates[i+1].first;
|
|
if (std::log10(t1) - std::log10(t2) > MIN_GAP_THRESHOLD) {
|
|
LOG_TRACE_L2(m_logger, "Detected gap between species {:5} (timescale {:8.2E}) and {:5} (timescale {:10.2E}).",
|
|
fast_candidates[i].second.name(), t1,
|
|
fast_candidates[i+1].second.name(), t2);
|
|
split_points.push_back(i + 1);
|
|
}
|
|
}
|
|
|
|
size_t last_split = 0;
|
|
for (const size_t split : split_points) {
|
|
std::vector<Species> pool;
|
|
for (size_t i = last_split; i < split; ++i) {
|
|
pool.push_back(fast_candidates[i].second);
|
|
}
|
|
final_pools.push_back(pool);
|
|
last_split = split;
|
|
}
|
|
|
|
std::vector<Species> final_fast_pool;
|
|
for (size_t i = last_split; i < fast_candidates.size(); ++i) {
|
|
final_fast_pool.push_back(fast_candidates[i].second);
|
|
}
|
|
final_pools.push_back(final_fast_pool);
|
|
|
|
LOG_TRACE_L2(m_logger, "Final partitioned pools: {}",
|
|
[&]() -> std::string {
|
|
std::stringstream ss;
|
|
int oc = 0;
|
|
for (const auto& pool : final_pools) {
|
|
ss << "[";
|
|
int ic = 0;
|
|
for (const auto& species : pool) {
|
|
ss << species.name();
|
|
if (ic < pool.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
ic++;
|
|
}
|
|
ss << "]";
|
|
if (oc < final_pools.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
oc++;
|
|
}
|
|
return ss.str();
|
|
}());
|
|
|
|
LOG_TRACE_L2(
|
|
m_logger,
|
|
"Species Timescales: {}",
|
|
[&]() -> std::string {
|
|
std::stringstream ss;
|
|
size_t poolID = 0;
|
|
for (const auto& pool : final_pools) {
|
|
ss << "Pool #" << poolID << " [";
|
|
int ic = 0;
|
|
for (const auto& species : pool) {
|
|
ss << species << ": " << destruction_timescales.at(species);
|
|
if (ic < pool.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
ic++;
|
|
}
|
|
ss << "]";
|
|
poolID++;
|
|
}
|
|
return ss.str();
|
|
}()
|
|
);
|
|
return final_pools;
|
|
|
|
}
|
|
|
|
std::pair<bool, reaction::ReactionSet> MultiscalePartitioningEngineView::group_is_a_qse_cluster(
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho,
|
|
const QSEGroup &group
|
|
) const {
|
|
constexpr double FLUX_RATIO_THRESHOLD = 5;
|
|
|
|
const std::unordered_set<Species> algebraic_group_members(
|
|
group.algebraic_species.begin(),
|
|
group.algebraic_species.end()
|
|
);
|
|
|
|
const std::unordered_set<Species> seed_group_members(
|
|
group.seed_species.begin(),
|
|
group.seed_species.end()
|
|
);
|
|
|
|
reaction::ReactionSet group_reaction_set;
|
|
double coupling_flux = 0.0;
|
|
double leakage_flux = 0.0;
|
|
|
|
for (const auto& reaction: m_baseEngine.getNetworkReactions()) {
|
|
const double flow = std::abs(m_baseEngine.calculateMolarReactionFlow(*reaction, comp, T9, rho));
|
|
if (flow == 0.0) {
|
|
continue; // Skip reactions with zero flow
|
|
}
|
|
bool has_internal_algebraic_reactant = false;
|
|
|
|
for (const auto& reactant : reaction->reactants()) {
|
|
if (algebraic_group_members.contains(reactant)) {
|
|
has_internal_algebraic_reactant = true;
|
|
LOG_TRACE_L3(m_logger, "Adjusting destruction flux (+= {} mol g^-1 s^-1) for QSEGroup due to reactant {} from reaction {}",
|
|
flow, reactant.name(), reaction->id());
|
|
}
|
|
|
|
}
|
|
|
|
bool has_internal_algebraic_product = false;
|
|
|
|
for (const auto& product : reaction->products()) {
|
|
if (algebraic_group_members.contains(product)) {
|
|
has_internal_algebraic_product = true;
|
|
LOG_TRACE_L3(m_logger, "Adjusting creation flux (+= {} mol g^-1 s^-1) for QSEGroup due to product {} from reaction {}",
|
|
flow, product.name(), reaction->id());
|
|
}
|
|
}
|
|
|
|
if (!has_internal_algebraic_product && !has_internal_algebraic_reactant) {
|
|
LOG_TRACE_L3(m_logger, "{}: Skipping reaction {} as it has no internal algebraic species in reactants or products.", group.toString(false), reaction->id());
|
|
continue;
|
|
}
|
|
|
|
group_reaction_set.add_reaction(reaction->clone());
|
|
|
|
LOG_TRACE_L3(
|
|
m_logger,
|
|
"Reaction {:20} has flow {:15.4E} mol g^-1 s^-1 contributing to QSEGroup {:40}",
|
|
reaction->id(),
|
|
flow,
|
|
group.toString(false)
|
|
);
|
|
|
|
double algebraic_participants = 0;
|
|
double seed_participants = 0;
|
|
double external_participants = 0;
|
|
|
|
std::unordered_set<Species> participants;
|
|
for(const auto& p : reaction->reactants()) participants.insert(p);
|
|
for(const auto& p : reaction->products()) participants.insert(p);
|
|
|
|
for (const auto& species : participants) {
|
|
if (algebraic_group_members.contains(species)) {
|
|
LOG_TRACE_L3(m_logger, "{}: Species {} is an algebraic participant in reaction {}.", group.toString(true), species.name(), reaction->id());
|
|
algebraic_participants++;
|
|
} else if (seed_group_members.contains(species)) {
|
|
LOG_TRACE_L3(m_logger, "{}: Species {} is a seed participant in reaction {}.", group.toString(true), species.name(), reaction->id());
|
|
seed_participants++;
|
|
} else {
|
|
LOG_TRACE_L3(m_logger, "{}: Species {} is an external participant in reaction {}.", group.toString(true), species.name(), reaction->id());
|
|
external_participants++;
|
|
}
|
|
}
|
|
|
|
const double total_participants = algebraic_participants + seed_participants + external_participants;
|
|
|
|
if (total_participants == 0) {
|
|
LOG_CRITICAL(m_logger, "Some catastrophic error has occurred. Reaction {} has no participants.", reaction->id());
|
|
throw std::runtime_error("Some catastrophic error has occurred. Reaction " + std::string(reaction->id()) + " has no participants.");
|
|
}
|
|
|
|
const double leakage_fraction = external_participants / total_participants;
|
|
const double coupling_fraction = (algebraic_participants + seed_participants) / total_participants;
|
|
|
|
leakage_flux += flow * leakage_fraction;
|
|
coupling_flux += flow * coupling_fraction;
|
|
|
|
LOG_TRACE_L2(m_logger, "Reaction {:20} contributes coupling flux {:15.4E} and leakage flux {:15.4E} to QSEGroup {}.",
|
|
reaction->id(),
|
|
flow * coupling_fraction,
|
|
flow * leakage_fraction,
|
|
group.toString(false)
|
|
);
|
|
|
|
|
|
}
|
|
|
|
bool leakage_coupled = (coupling_flux / leakage_flux > FLUX_RATIO_THRESHOLD);
|
|
return std::make_pair(leakage_coupled, group_reaction_set);
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::group_is_a_qse_pipeline(
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho,
|
|
const QSEGroup &group
|
|
) const {
|
|
// Total fluxes (Standard check)
|
|
double total_prod = 0.0;
|
|
double total_dest = 0.0;
|
|
|
|
// Charged-particle only fluxes (Heuristic for fast-neutron regimes)
|
|
double charged_prod = 0.0;
|
|
double charged_dest = 0.0;
|
|
|
|
for (const auto& reaction : m_baseEngine.getNetworkReactions()) {
|
|
const double flow = m_baseEngine.calculateMolarReactionFlow(*reaction, comp, T9, rho);
|
|
if (std::abs(flow) < 1.0e-99) continue;
|
|
|
|
int groupNetStoichiometry = 0;
|
|
for (const auto& species : group.algebraic_species) {
|
|
groupNetStoichiometry += reaction->stoichiometry(species);
|
|
}
|
|
if (groupNetStoichiometry == 0) continue;
|
|
|
|
const double flux = flow * groupNetStoichiometry;
|
|
const bool is_neutron_reaction = reaction->contains(n_1);
|
|
|
|
if (flux > 0.0) {
|
|
total_prod += flux;
|
|
if (!is_neutron_reaction) charged_prod += flux;
|
|
} else {
|
|
total_dest += -flux;
|
|
if (!is_neutron_reaction) charged_dest += -flux;
|
|
}
|
|
}
|
|
|
|
// Check 1: Total Balance
|
|
const double mean_total = (total_prod + total_dest) / 2.0;
|
|
const double diff_total = std::abs(total_prod - total_dest);
|
|
bool total_balanced = (mean_total > 0) && ((diff_total / mean_total) < 0.05);
|
|
|
|
// Check 2: Charged-Particle Balance (The "Neutron-Exclusion" Check)
|
|
// Only valid if there IS charged flow (avoid 0/0 success)
|
|
const double mean_charged = (charged_prod + charged_dest) / 2.0;
|
|
const double diff_charged = std::abs(charged_prod - charged_dest);
|
|
bool charged_balanced = (mean_charged > 0) && ((diff_charged / mean_charged) < 0.05);
|
|
|
|
LOG_TRACE_L2(m_logger, "{} Pipeline Check | Total Pass: {} | Charged Pass: {}",
|
|
group.toString(false), total_balanced, charged_balanced);
|
|
|
|
return total_balanced || charged_balanced;
|
|
}
|
|
|
|
|
|
MultiscalePartitioningEngineView::FluxValidationResult MultiscalePartitioningEngineView::validateGroupsWithFluxAnalysis(
|
|
const std::vector<QSEGroup> &candidate_groups,
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9, const double rho
|
|
) const {
|
|
std::vector<QSEGroup> validated_groups;
|
|
std::vector<reaction::ReactionSet> group_reactions;
|
|
std::vector<QSEGroup> invalidated_groups;
|
|
validated_groups.reserve(candidate_groups.size());
|
|
group_reactions.reserve(candidate_groups.size());
|
|
for (auto& group : candidate_groups) {
|
|
// Values for measuring the flux coupling vs leakage
|
|
auto [leakage_coupled, group_reaction_set] = group_is_a_qse_cluster(comp, T9, rho, group);
|
|
|
|
|
|
bool is_flow_balanced = group_is_a_qse_pipeline(comp, T9, rho, group);
|
|
|
|
if (leakage_coupled) {
|
|
LOG_TRACE_L1(m_logger, "{} is in equilibrium due to high coupling flux", group.toString(false));
|
|
validated_groups.emplace_back(group);
|
|
validated_groups.back().is_in_equilibrium = true;
|
|
group_reactions.emplace_back(group_reaction_set);
|
|
}
|
|
else if (is_flow_balanced) {
|
|
LOG_TRACE_L1(m_logger, "{} is in equilibrium due to balanced production and destruction fluxes.", group.toString(false));
|
|
validated_groups.emplace_back(group);
|
|
validated_groups.back().is_in_equilibrium = true;
|
|
group_reactions.emplace_back(group_reaction_set);
|
|
}
|
|
else {
|
|
LOG_TRACE_L1(m_logger, "{} is NOT in equilibrium due to high leakage flux and lack of pipeline detection.", group.toString(false));
|
|
invalidated_groups.emplace_back(group);
|
|
invalidated_groups.back().is_in_equilibrium = false;
|
|
}
|
|
}
|
|
|
|
LOG_TRACE_L1(m_logger, "Validated {} QSE groups and invalidated {} QSE groups after flux analysis.", validated_groups.size(), invalidated_groups.size());
|
|
return {validated_groups, invalidated_groups, group_reactions};
|
|
}
|
|
|
|
fourdst::composition::Composition MultiscalePartitioningEngineView::solveQSEAbundances(
|
|
const fourdst::composition::CompositionAbstract &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
LOG_TRACE_L2(m_logger, "Solving for QSE abundances...");
|
|
|
|
fourdst::composition::Composition outputComposition(comp);
|
|
|
|
for (const auto& [group, solver]: std::views::zip(m_qse_groups, m_qse_solvers)) {
|
|
const fourdst::composition::Composition groupResult = solver->solve(outputComposition, T9, rho);
|
|
for (const auto& [sp, y] : groupResult) {
|
|
if (!std::isfinite(y)) {
|
|
LOG_CRITICAL(m_logger, "Non-finite abundance {} computed for species {} in QSE group solve at T9 = {}, rho = {}.",
|
|
y, sp.name(), T9, rho);
|
|
m_logger->flush_log();
|
|
throw exceptions::EngineError("Non-finite abundance computed for species " + std::string(sp.name()) + " in QSE group solve.");
|
|
}
|
|
outputComposition.setMolarAbundance(sp, y);
|
|
}
|
|
solver->log_diagnostics(group, outputComposition);
|
|
}
|
|
LOG_TRACE_L2(m_logger, "Done solving for QSE abundances!");
|
|
return outputComposition;
|
|
}
|
|
|
|
size_t MultiscalePartitioningEngineView::identifyMeanSlowestPool(
|
|
const std::vector<std::vector<Species>> &pools,
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const auto& result = m_baseEngine.getSpeciesDestructionTimescales(comp, T9, rho);
|
|
if (!result) {
|
|
LOG_CRITICAL(m_logger, "Failed to get species destruction timescales due base engine failure");
|
|
m_logger->flush_log();
|
|
throw exceptions::EngineError("Failed to get species destruction timescales due base engine failure");
|
|
}
|
|
const std::unordered_map<Species, double> all_timescales = result.value();
|
|
|
|
size_t slowest_pool_index = 0; // Default to the first pool if no valid pool is found
|
|
double slowest_mean_timescale = std::numeric_limits<double>::min();
|
|
size_t count = 0;
|
|
for (const auto& pool : pools) {
|
|
double mean_timescale = 0.0;
|
|
for (const auto& species : pool) {
|
|
const double timescale = all_timescales.at(species);
|
|
mean_timescale += timescale;
|
|
}
|
|
mean_timescale = mean_timescale / static_cast<double>(pool.size());
|
|
if (std::isinf(mean_timescale)) {
|
|
LOG_CRITICAL(m_logger, "Encountered infinite mean timescale for pool {} with species: {}",
|
|
count, [&]() -> std::string {
|
|
std::stringstream ss;
|
|
size_t iCount = 0;
|
|
for (const auto& species : pool) {
|
|
ss << species.name() << ": " << all_timescales.at(species);
|
|
if (iCount < pool.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
iCount++;
|
|
}
|
|
return ss.str();
|
|
}()
|
|
);
|
|
m_logger->flush_log();
|
|
throw std::logic_error("Encountered infinite mean destruction timescale for a pool while identifying the mean slowest pool set, indicating a potential issue with species timescales. Check log file for more details on specific pool composition...");
|
|
}
|
|
if (mean_timescale > slowest_mean_timescale) {
|
|
slowest_mean_timescale = mean_timescale;
|
|
slowest_pool_index = &pool - &pools[0]; // Get the index of the pool
|
|
}
|
|
}
|
|
return slowest_pool_index;
|
|
}
|
|
|
|
std::unordered_map<Species, std::vector<Species>> MultiscalePartitioningEngineView::buildConnectivityGraph(
|
|
const std::vector<Species> &species_pool
|
|
) const {
|
|
std::unordered_map<Species, std::vector<Species>> connectivity_graph;
|
|
const std::set<Species> pool_set(species_pool.begin(), species_pool.end());
|
|
|
|
const std::unordered_set<Species> pool_species = [&]() -> std::unordered_set<Species> {
|
|
std::unordered_set<Species> result;
|
|
for (const auto& species : species_pool) {
|
|
result.insert(species);
|
|
}
|
|
return result;
|
|
}();
|
|
|
|
std::map<size_t, std::vector<reaction::LogicalReaclibReaction*>> speciesReactionMap;
|
|
std::vector<const reaction::LogicalReaclibReaction*> candidate_reactions;
|
|
|
|
for (const auto& reaction : m_baseEngine.getNetworkReactions()) {
|
|
const std::vector<Species> &reactants = reaction->reactants();
|
|
const std::vector<Species> &products = reaction->products();
|
|
|
|
std::unordered_set<Species> reactant_set(reactants.begin(), reactants.end());
|
|
std::unordered_set<Species> product_set(products.begin(), products.end());
|
|
|
|
// Only consider reactions where at least one distinct reactant and product are in the pool
|
|
if (has_distinct_reactant_and_product_species(pool_species, reactant_set, product_set)) {
|
|
std::set<Species> involvedSet;
|
|
involvedSet.insert(reactants.begin(), reactants.end());
|
|
involvedSet.insert(products.begin(), products.end());
|
|
|
|
std::vector<Species> intersection;
|
|
intersection.reserve(involvedSet.size());
|
|
|
|
for (const auto& s : pool_species) { // Find intersection with pool species
|
|
if (involvedSet.contains(s)) {
|
|
intersection.push_back(s);
|
|
}
|
|
}
|
|
|
|
// Add clique
|
|
for (const auto& u : intersection) {
|
|
for (const auto& v : intersection) {
|
|
if (u != v) { // Avoid self-loops
|
|
connectivity_graph[u].push_back(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return connectivity_graph;
|
|
}
|
|
|
|
std::vector<MultiscalePartitioningEngineView::QSEGroup> MultiscalePartitioningEngineView::constructCandidateGroups(
|
|
const std::vector<std::vector<Species>> &candidate_pools,
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
const auto& all_reactions = m_baseEngine.getNetworkReactions();
|
|
const auto& result = m_baseEngine.getSpeciesDestructionTimescales(comp, T9, rho);
|
|
if (!result) {
|
|
LOG_ERROR(m_logger, "Failed to get species destruction timescales due base engine failure");
|
|
m_logger->flush_log();
|
|
throw exceptions::EngineError("Failed to get species destruction timescales due base engine failure");
|
|
}
|
|
const std::unordered_map<Species, double> destruction_timescales = result.value();
|
|
|
|
std::vector<QSEGroup> candidate_groups;
|
|
for (const auto& pool : candidate_pools) {
|
|
if (pool.empty()) continue; // Skip empty pools
|
|
|
|
// For each pool first identify all topological bridge connections
|
|
std::vector<std::pair<const reaction::Reaction*, double>> bridge_reactions;
|
|
for (const auto& ash: pool) {
|
|
for (const auto& reaction : all_reactions) {
|
|
if (reaction->contains(ash)) {
|
|
// Check to make sure there is at least one reactant that is not in the pool
|
|
// This lets seed nuclei bring mass into the QSE group.
|
|
bool has_external_reactant = false;
|
|
for (const auto& reactant : reaction->reactants()) {
|
|
if (std::ranges::find(pool, reactant) == pool.end()) {
|
|
has_external_reactant = true;
|
|
LOG_TRACE_L3(m_logger, "Found external reactant {} in reaction {} for species {}.", reactant.name(), reaction->id(), ash.name());
|
|
break; // Found an external reactant, no need to check further
|
|
}
|
|
}
|
|
if (has_external_reactant) {
|
|
double flow = std::abs(m_baseEngine.calculateMolarReactionFlow(*reaction, comp, T9, rho));
|
|
LOG_TRACE_L3(m_logger, "Found bridge reaction {} with flow {} for species {}.", reaction->id(), flow, ash.name());
|
|
bridge_reactions.emplace_back(reaction.get(), flow);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
std::ranges::sort(
|
|
bridge_reactions,
|
|
[](const auto& a, const auto& b) {
|
|
return a.second > b.second; // Sort by flow in descending order
|
|
});
|
|
|
|
constexpr double MIN_GAP_THRESHOLD = 1; // Minimum logarithmic molar flow gap threshold for bridge reactions
|
|
std::vector<size_t> split_points;
|
|
for (size_t i = 0; i < bridge_reactions.size() - 1; ++i) {
|
|
const double f1 = bridge_reactions[i].second;
|
|
const double f2 = bridge_reactions[i + 1].second;
|
|
if (std::log10(f1) - std::log10(f2) > MIN_GAP_THRESHOLD) {
|
|
LOG_TRACE_L3(m_logger, "Detected gap between bridge reactions with flows {} and {}.", f1, f2);
|
|
split_points.push_back(i + 1);
|
|
}
|
|
}
|
|
|
|
if (split_points.empty()) { // If no split points were found, we consider the whole set of bridge reactions as one group.
|
|
split_points.push_back(bridge_reactions.size() - 1);
|
|
}
|
|
|
|
std::vector<Species> seed_species;
|
|
for (auto &reaction: bridge_reactions | std::views::keys) {
|
|
for (const auto& fuel : reaction->reactants()) {
|
|
// Only add the fuel if it is not already in the pool
|
|
if (std::ranges::find(pool, fuel) == pool.end()) {
|
|
seed_species.push_back(fuel);
|
|
}
|
|
}
|
|
}
|
|
std::set<Species> pool_species(pool.begin(), pool.end());
|
|
for (const auto& species : seed_species) {
|
|
pool_species.insert(species);
|
|
}
|
|
const std::set<Species> poolSet(pool.begin(), pool.end());
|
|
const std::set<Species> seedSet(seed_species.begin(), seed_species.end());
|
|
|
|
double mean_timescale = 0.0;
|
|
for (const auto& species : poolSet) {
|
|
if (destruction_timescales.contains(species)) {
|
|
mean_timescale += std::min(destruction_timescales.at(species), species.halfLife()); // Use the minimum of destruction timescale and half-life
|
|
} else {
|
|
mean_timescale += species.halfLife();
|
|
}
|
|
}
|
|
mean_timescale /= static_cast<double>(poolSet.size());
|
|
QSEGroup qse_group(false, poolSet, seedSet, mean_timescale);
|
|
candidate_groups.push_back(qse_group);
|
|
}
|
|
return candidate_groups;
|
|
}
|
|
|
|
//////////////////////////////////
|
|
/// QSESolver Member Functions ///
|
|
//////////////////////////////////
|
|
|
|
|
|
bool MultiscalePartitioningEngineView::QSEGroup::contains(const fourdst::atomic::Species &species) const {
|
|
return algebraic_species.contains(species) || seed_species.contains(species);
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::QSEGroup::containsAlgebraic(const Species &species) const {
|
|
return algebraic_species.contains(species);
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::QSEGroup::containsSeed(const Species &species) const {
|
|
return seed_species.contains(species);
|
|
}
|
|
|
|
MultiscalePartitioningEngineView::QSESolver::QSESolver(
|
|
const std::vector<fourdst::atomic::Species>& species,
|
|
const DynamicEngine& engine,
|
|
const SUNContext sun_ctx
|
|
) :
|
|
m_N(species.size()),
|
|
m_engine(engine),
|
|
m_species(species),
|
|
m_sun_ctx(sun_ctx) {
|
|
LOG_TRACE_L1(getLogger(), "Initializing QSE Solver with {} species ({})", m_N,
|
|
[&]() -> std::string {
|
|
std::stringstream ss;
|
|
int count = 0;
|
|
for (const auto& sp : species) {
|
|
ss << sp.name();
|
|
if (count < species.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
count++;
|
|
}
|
|
return ss.str();
|
|
}()
|
|
);
|
|
m_Y = utils::init_sun_vector(m_N, m_sun_ctx);
|
|
m_scale = N_VClone(m_Y);
|
|
m_f_scale = N_VClone(m_Y);
|
|
m_constraints = N_VClone(m_Y);
|
|
m_func_tmpl = N_VClone(m_Y);
|
|
|
|
if (!m_Y || !m_scale || !m_constraints || !m_func_tmpl) {
|
|
LOG_CRITICAL(getLogger(), "Failed to allocate SUNVectors for QSE solver.");
|
|
throw std::runtime_error("Failed to allocate SUNVectors for QSE solver.");
|
|
}
|
|
|
|
for (size_t i = 0; i < m_N; ++i) {
|
|
m_speciesMap[m_species[i]] = i;
|
|
}
|
|
|
|
N_VConst(1.0, m_constraints);
|
|
m_kinsol_mem = KINCreate(m_sun_ctx);
|
|
|
|
utils::check_cvode_flag(m_kinsol_mem ? 0 : -1, "KINCreate");
|
|
utils::check_cvode_flag(KINInit(m_kinsol_mem, sys_func, m_func_tmpl), "KINInit");
|
|
utils::check_cvode_flag(KINSetConstraints(m_kinsol_mem, m_constraints), "KINSetConstraints");
|
|
|
|
m_J = SUNDenseMatrix(static_cast<sunindextype>(m_N), static_cast<sunindextype>(m_N), m_sun_ctx);
|
|
utils::check_cvode_flag(m_J ? 0 : -1, "SUNDenseMatrix");
|
|
|
|
m_LS = SUNLinSol_Dense(m_Y, m_J, m_sun_ctx);
|
|
utils::check_cvode_flag(m_LS ? 0 : -1, "SUNLinSol_Dense");
|
|
|
|
utils::check_cvode_flag(KINSetLinearSolver(m_kinsol_mem, m_LS, m_J), "KINSetLinearSolver");
|
|
utils::check_cvode_flag(KINSetJacFn(m_kinsol_mem, sys_jac), "KINSetJacFn");
|
|
|
|
utils::check_cvode_flag(KINSetMaxSetupCalls(m_kinsol_mem, 20), "KINSetMaxSetupCalls");
|
|
|
|
utils::check_cvode_flag(KINSetFuncNormTol(m_kinsol_mem, 1e-6), "KINSetFuncNormTol");
|
|
utils::check_cvode_flag(KINSetNumMaxIters(m_kinsol_mem, 200), "KINSetNumMaxIters");
|
|
|
|
// We want to effectively disable this since enormous changes in order of magnitude are realistic for this problem.
|
|
utils::check_cvode_flag(KINSetMaxNewtonStep(m_kinsol_mem, std::numeric_limits<double>::infinity()), "KINSetMaxNewtonStep");
|
|
LOG_TRACE_L1(getLogger(), "Finished initializing QSE Solver.");
|
|
}
|
|
|
|
MultiscalePartitioningEngineView::QSESolver::~QSESolver() {
|
|
if (m_Y) {
|
|
N_VDestroy(m_Y);
|
|
m_Y = nullptr;
|
|
}
|
|
if (m_scale) {
|
|
N_VDestroy(m_scale);
|
|
m_scale = nullptr;
|
|
}
|
|
if (m_f_scale) {
|
|
N_VDestroy(m_f_scale);
|
|
m_f_scale = nullptr;
|
|
}
|
|
if (m_constraints) {
|
|
N_VDestroy(m_constraints);
|
|
m_constraints = nullptr;
|
|
}
|
|
if (m_func_tmpl) {
|
|
N_VDestroy(m_func_tmpl);
|
|
m_func_tmpl = nullptr;
|
|
}
|
|
if (m_kinsol_mem) {
|
|
KINFree(&m_kinsol_mem);
|
|
m_kinsol_mem = nullptr;
|
|
}
|
|
if (m_J) {
|
|
SUNMatDestroy(m_J);
|
|
m_J = nullptr;
|
|
}
|
|
if (m_LS) {
|
|
SUNLinSolFree(m_LS);
|
|
m_LS = nullptr;
|
|
}
|
|
}
|
|
|
|
fourdst::composition::Composition MultiscalePartitioningEngineView::QSESolver::solve(
|
|
const fourdst::composition::Composition &comp,
|
|
const double T9,
|
|
const double rho
|
|
) const {
|
|
|
|
fourdst::composition::Composition result = comp;
|
|
UserData data {
|
|
m_engine,
|
|
T9,
|
|
rho,
|
|
result,
|
|
m_speciesMap,
|
|
m_species,
|
|
*this
|
|
};
|
|
|
|
utils::check_cvode_flag(KINSetUserData(m_kinsol_mem, &data), "KINSetUserData");
|
|
|
|
sunrealtype* y_data = N_VGetArrayPointer(m_Y);
|
|
sunrealtype* scale_data = N_VGetArrayPointer(m_scale);
|
|
|
|
// It is more cache optimized to do a standard as opposed to range based for-loop here
|
|
for (size_t i = 0; i < m_N; ++i) {
|
|
const auto& species = m_species[i];
|
|
double Y = result.getMolarAbundance(species);
|
|
|
|
constexpr double abundance_floor = 1.0e-100;
|
|
Y = std::max(abundance_floor, Y);
|
|
y_data[i] = Y;
|
|
scale_data[i] = 1.0 / Y;
|
|
}
|
|
|
|
auto initial_rhs = m_engine.calculateRHSAndEnergy(result, T9, rho);
|
|
if (!initial_rhs) {
|
|
throw std::runtime_error("In QSE solver failed to calculate initial RHS");
|
|
}
|
|
|
|
sunrealtype* f_scale_data = N_VGetArrayPointer(m_f_scale);
|
|
for (size_t i = 0; i < m_N; ++i) {
|
|
const auto& species = m_species[i];
|
|
double dydt = std::abs(initial_rhs.value().dydt.at(species));
|
|
f_scale_data[i] = 1.0 / (dydt + 1e-15);
|
|
}
|
|
|
|
if (m_solves > 0 && m_has_jacobian) {
|
|
// After the initial solution we want to allow kinsol to reuse its state
|
|
utils::check_cvode_flag(KINSetNoInitSetup(m_kinsol_mem, SUNTRUE), "KINSetNoInitSetup");
|
|
} else {
|
|
utils::check_cvode_flag(KINSetNoInitSetup(m_kinsol_mem, SUNFALSE), "KINSetNoInitSetup");
|
|
}
|
|
|
|
LOG_TRACE_L2(
|
|
getLogger(),
|
|
"Starting KINSol QSE solver with initial state: {}",
|
|
[&comp, &initial_rhs, &data]() -> std::string {
|
|
std::ostringstream oss;
|
|
oss << "Solve species: <";
|
|
size_t count = 0;
|
|
for (const auto& species : data.qse_solve_species) {
|
|
oss << species.name();
|
|
if (count < data.qse_solve_species.size() - 1) {
|
|
oss << ", ";
|
|
}
|
|
count++;
|
|
}
|
|
oss << "> | Initial abundances and rates: ";
|
|
count = 0;
|
|
for (const auto& [species, abundance] : comp) {
|
|
oss << species.name() << ": Y = " << abundance << ", dY/dt = " << initial_rhs.value().dydt.at(species);
|
|
if (count < comp.size() - 1) {
|
|
oss << ", ";
|
|
}
|
|
count++;
|
|
}
|
|
return oss.str();
|
|
}()
|
|
);
|
|
LOG_TRACE_L2(
|
|
getLogger(),
|
|
"Jacobian Prior to KINSol is: {}",
|
|
[&]() -> std::string {
|
|
std::ostringstream oss;
|
|
sunrealtype* J_data = SUNDenseMatrix_Data(m_J);
|
|
const sunindextype N = SUNDenseMatrix_Columns(m_J);
|
|
oss << "[";
|
|
for (size_t i = 0; i < m_N; ++i) {
|
|
oss << "[";
|
|
for (size_t j = 0; j < m_N; ++j) {
|
|
oss << J_data[i * N + j];
|
|
if (j < m_N - 1) {
|
|
oss << ", ";
|
|
}
|
|
}
|
|
oss << "]";
|
|
}
|
|
oss << "]";
|
|
return oss.str();
|
|
}()
|
|
);
|
|
|
|
const int flag = KINSol(m_kinsol_mem, m_Y, KIN_LINESEARCH, m_scale, m_f_scale);
|
|
if (flag < 0) {
|
|
LOG_WARNING(getLogger(), "KINSol failed to converge while solving QSE abundances with flag {}.", utils::cvode_ret_code_map.at(flag));
|
|
throw exceptions::InvalidQSESolutionError("KINSol failed to converge while solving QSE abundances. Check the log file for more details regarding the specific failure mode.");
|
|
}
|
|
|
|
for (size_t i = 0; i < m_N; ++i) {
|
|
const auto& species = m_species[i];
|
|
result.setMolarAbundance(species, y_data[i]);
|
|
}
|
|
|
|
m_solves++;
|
|
return result;
|
|
}
|
|
|
|
size_t MultiscalePartitioningEngineView::QSESolver::solves() const {
|
|
return m_solves;
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::QSESolver::log_diagnostics(const QSEGroup &group, const fourdst::composition::Composition &comp) const {
|
|
long int nni, nfe, nje;
|
|
|
|
utils::check_cvode_flag(KINGetNumNonlinSolvIters(m_kinsol_mem, &nni), "KINGetNumNonlinSolvIters");
|
|
|
|
utils::check_cvode_flag(KINGetNumFuncEvals(m_kinsol_mem, &nfe), "KINGetNumFuncEvals");
|
|
|
|
utils::check_cvode_flag(KINGetNumJacEvals(m_kinsol_mem, &nje), "KINGetNumJacEvals");
|
|
|
|
LOG_TRACE_L1(getLogger(),
|
|
"QSE Stats | Iters: {} | RHS Evals: {} | Jac Evals: {} | Ratio (J/I): {:.2f} | Algebraic Species: {}",
|
|
nni,
|
|
nfe,
|
|
nje,
|
|
static_cast<double>(nje) / static_cast<double>(nni),
|
|
[&group, &comp]() -> std::string {
|
|
std::ostringstream oss;
|
|
size_t count = 0;
|
|
oss << "[";
|
|
for (const auto& species : group.algebraic_species) {
|
|
oss << species.name() << "(Y = " << comp.getMolarAbundance(species) << ")";
|
|
if (count < group.algebraic_species.size() - 1) {
|
|
oss << ", ";
|
|
}
|
|
count++;
|
|
}
|
|
oss << "]";
|
|
return oss.str();
|
|
}()
|
|
);
|
|
LOG_TRACE_L2(getLogger(),
|
|
"Jacobian After KINSol is: {}",
|
|
[&]() -> std::string {
|
|
std::ostringstream oss;
|
|
sunrealtype* J_data = SUNDenseMatrix_Data(m_J);
|
|
const sunindextype N = SUNDenseMatrix_Columns(m_J);
|
|
oss << "[";
|
|
for (size_t i = 0; i < m_N; ++i) {
|
|
oss << "[";
|
|
for (size_t j = 0; j < m_N; ++j) {
|
|
oss << J_data[i * N + j];
|
|
if (j < m_N - 1) {
|
|
oss << ", ";
|
|
}
|
|
}
|
|
oss << "]";
|
|
}
|
|
oss << "]";
|
|
return oss.str();
|
|
}()
|
|
);
|
|
getLogger()->flush_log(true);
|
|
}
|
|
|
|
|
|
int MultiscalePartitioningEngineView::QSESolver::sys_func(
|
|
const N_Vector y,
|
|
const N_Vector f,
|
|
void *user_data
|
|
) {
|
|
const auto* data = static_cast<UserData*>(user_data);
|
|
|
|
const sunrealtype* y_data = N_VGetArrayPointer(y);
|
|
sunrealtype* f_data = N_VGetArrayPointer(f);
|
|
|
|
const auto& map = data->qse_solve_species_index_map;
|
|
for (size_t index = 0; index < data->qse_solve_species.size(); ++index) {
|
|
const auto& species = data->qse_solve_species[index];
|
|
if (!std::isfinite(y_data[index])) {
|
|
std::string msg = std::format("Non-finite abundance {} encountered for species {} in QSE solver sys_func. Attempting recovery...",
|
|
y_data[index], species.name());
|
|
LOG_ERROR(getLogger(), "{}", msg);
|
|
return 1; // Potentially recoverable error
|
|
}
|
|
data->comp.setMolarAbundance(species, y_data[index]);
|
|
}
|
|
|
|
const auto result = data->engine.calculateRHSAndEnergy(data->comp, data->T9, data->rho);
|
|
|
|
if (!result) {
|
|
return 1; // Potentially recoverable error
|
|
}
|
|
|
|
const auto& dydt = result.value().dydt;
|
|
#ifndef NDEBUG
|
|
// In debug mode check that all dydt values are finite and not NaN
|
|
for (const auto &species: map | std::views::keys) {
|
|
const double value = dydt.at(species);
|
|
if (!std::isfinite(value)) {
|
|
std::vector<std::pair<Species, double>> invalid_species;
|
|
for (const auto &s: map | std::views::keys) {
|
|
const double v = dydt.at(s);
|
|
if (!std::isfinite(v)) {
|
|
invalid_species.push_back(std::make_pair(s, v));
|
|
}
|
|
}
|
|
std::string msg = std::format("Non-finite dydt values encountered for species: {}",
|
|
[&invalid_species]() -> std::string {
|
|
std::ostringstream ss;
|
|
size_t count = 0;
|
|
for (const auto& [sp, val] : invalid_species) {
|
|
ss << sp.name() << ": " << val;
|
|
if (count < invalid_species.size() - 1) {
|
|
ss << ", ";
|
|
}
|
|
count++;
|
|
}
|
|
return ss.str();
|
|
}());
|
|
LOG_CRITICAL(getLogger(), "{}", msg);
|
|
throw exceptions::InvalidQSESolutionError(msg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (const auto& [species, index] : map) {
|
|
f_data[index] = dydt.at(species);
|
|
}
|
|
|
|
return 0; // Success
|
|
}
|
|
|
|
|
|
int MultiscalePartitioningEngineView::QSESolver::sys_jac(
|
|
const N_Vector y,
|
|
N_Vector fy,
|
|
SUNMatrix J,
|
|
void *user_data,
|
|
N_Vector tmp1,
|
|
N_Vector tmp2
|
|
) {
|
|
const auto* data = static_cast<UserData*>(user_data);
|
|
|
|
const sunrealtype* y_data = N_VGetArrayPointer(y);
|
|
const auto& map = data->qse_solve_species_index_map;
|
|
for (const auto& [species, index] : map) {
|
|
data->comp.setMolarAbundance(species, y_data[index]);
|
|
}
|
|
|
|
const NetworkJacobian jac = data->engine.generateJacobianMatrix(
|
|
data->comp,
|
|
data->T9,
|
|
data->rho,
|
|
data->qse_solve_species
|
|
);
|
|
|
|
sunrealtype* J_data = SUNDenseMatrix_Data(J);
|
|
const sunindextype N = SUNDenseMatrix_Columns(J);
|
|
|
|
for (const auto& [col_species, col_idx] : map) {
|
|
for (const auto& [row_species, row_idx] : map) {
|
|
J_data[col_idx * N + row_idx] = jac(row_species, col_species);
|
|
}
|
|
}
|
|
|
|
data->instance.m_has_jacobian = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/////////////////////////////////
|
|
/// QSEGroup Member Functions ///
|
|
////////////////////////////////
|
|
|
|
|
|
|
|
bool MultiscalePartitioningEngineView::QSEGroup::operator==(const QSEGroup &other) const {
|
|
return mean_timescale == other.mean_timescale;
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::QSEGroup::removeSpecies(const Species &species) {
|
|
if (algebraic_species.contains(species)) {
|
|
algebraic_species.erase(species);
|
|
}
|
|
if (seed_species.contains(species)) {
|
|
seed_species.erase(species);
|
|
}
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::QSEGroup::addSpeciesToAlgebraic(const Species &species) {
|
|
if (seed_species.contains(species)) {
|
|
const std::string msg = std::format("Cannot add species {:8} to algebraic set as it is already in the seed set.", species.name());
|
|
throw std::invalid_argument(msg);
|
|
}
|
|
if (!algebraic_species.contains(species)) {
|
|
algebraic_species.insert(species);
|
|
}
|
|
}
|
|
|
|
void MultiscalePartitioningEngineView::QSEGroup::addSpeciesToSeed(const Species &species) {
|
|
if (algebraic_species.contains(species)) {
|
|
const std::string msg = std::format("Cannot add species {:8} to seed set as it is already in the algebraic set.", species.name());
|
|
throw std::invalid_argument(msg);
|
|
}
|
|
if (!seed_species.contains(species)) {
|
|
seed_species.insert(species);
|
|
}
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::QSEGroup::operator<(const QSEGroup &other) const {
|
|
return mean_timescale < other.mean_timescale;
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::QSEGroup::operator>(const QSEGroup &other) const {
|
|
return mean_timescale > other.mean_timescale;
|
|
}
|
|
|
|
bool MultiscalePartitioningEngineView::QSEGroup::operator!=(const QSEGroup &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
std::string MultiscalePartitioningEngineView::QSEGroup::toString(const bool verbose) const {
|
|
if (verbose) {
|
|
return std::format(
|
|
"QSEGroup(Algebraic: [{:40}], Seed [{:40}], Mean Timescale: {:10.4E}, Is in Equilibrium: {:6}",
|
|
utils::iterable_to_delimited_string(algebraic_species),
|
|
utils::iterable_to_delimited_string(seed_species),
|
|
mean_timescale,
|
|
is_in_equilibrium ? "True" : "False"
|
|
);
|
|
}
|
|
return std::format("QSEGroup({})", utils::iterable_to_delimited_string(algebraic_species));
|
|
}
|
|
|
|
}
|