we need an autodiff library at some point (or we need to roll our own but I do not think that makes sense). CppAD is well tested and header only and easy to include. It is also Liscene compatible with GPL v3.0. Here we bring it in as a dependency
599 lines
18 KiB
C++
599 lines
18 KiB
C++
# ifndef CPPAD_LOCAL_ERF_OP_HPP
|
|
# define CPPAD_LOCAL_ERF_OP_HPP
|
|
|
|
/* --------------------------------------------------------------------------
|
|
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-20 Bradley M. Bell
|
|
|
|
CppAD is distributed under the terms of the
|
|
Eclipse Public License Version 2.0.
|
|
|
|
This Source Code may also be made available under the following
|
|
Secondary License when the conditions for such availability set forth
|
|
in the Eclipse Public License, Version 2.0 are satisfied:
|
|
GNU General Public License, Version 2.0 or later.
|
|
---------------------------------------------------------------------------- */
|
|
|
|
# include <cppad/local/mul_op.hpp>
|
|
# include <cppad/local/sub_op.hpp>
|
|
# include <cppad/local/exp_op.hpp>
|
|
|
|
|
|
namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE
|
|
/*!
|
|
\file erf_op.hpp
|
|
Forward and reverse mode calculations for z = erf(x) or erfc(x).
|
|
*/
|
|
|
|
/*!
|
|
Forward mode Taylor coefficient for result of op = ErfOp or ErfcOp.
|
|
|
|
The C++ source code corresponding to this operation is one of
|
|
\verbatim
|
|
z = erf(x)
|
|
z = erfc(x)
|
|
\endverbatim
|
|
|
|
\tparam Base
|
|
base type for the operator; i.e., this operation was recorded
|
|
using AD< Base > and computations by this routine are done using type Base.
|
|
|
|
\param op
|
|
must be either ErfOp or ErfcOp and indicates if this is
|
|
z = erf(x) or z = erfc(x).
|
|
|
|
\param p
|
|
lowest order of the Taylor coefficients that we are computing.
|
|
|
|
\param q
|
|
highest order of the Taylor coefficients that we are computing.
|
|
|
|
\param i_z
|
|
variable index corresponding to the last (primary) result for this operation;
|
|
i.e. the row index in taylor corresponding to z.
|
|
The auxillary results are called y_j have index i_z - j.
|
|
|
|
\param arg
|
|
arg[0]: is the variable index corresponding to x.
|
|
\n
|
|
arg[1]: is the parameter index corresponding to the value zero.
|
|
\n
|
|
arg[2]: is the parameter index correspodning to the value 2 / sqrt(pi).
|
|
|
|
\param parameter
|
|
parameter[ arg[1] ] is the value zero,
|
|
and parameter[ arg[2] ] is the value 2 / sqrt(pi).
|
|
|
|
\param cap_order
|
|
maximum number of orders that will fit in the taylor array.
|
|
|
|
\param taylor
|
|
\b Input:
|
|
taylor [ size_t(arg[0]) * cap_order + k ]
|
|
for k = 0 , ... , q,
|
|
is the k-th order Taylor coefficient corresponding to x.
|
|
\n
|
|
\b Input:
|
|
taylor [ i_z * cap_order + k ]
|
|
for k = 0 , ... , p - 1,
|
|
is the k-th order Taylor coefficient corresponding to z.
|
|
\n
|
|
\b Input:
|
|
taylor [ ( i_z - j) * cap_order + k ]
|
|
for k = 0 , ... , p-1,
|
|
and j = 0 , ... , 4,
|
|
is the k-th order Taylor coefficient corresponding to the j-th result for z.
|
|
\n
|
|
\b Output:
|
|
taylor [ (i_z-j) * cap_order + k ],
|
|
for k = p , ... , q,
|
|
and j = 0 , ... , 4,
|
|
is the k-th order Taylor coefficient corresponding to the j-th result for z.
|
|
|
|
*/
|
|
template <class Base>
|
|
void forward_erf_op(
|
|
OpCode op ,
|
|
size_t p ,
|
|
size_t q ,
|
|
size_t i_z ,
|
|
const addr_t* arg ,
|
|
const Base* parameter ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( op == ErfOp || op == ErfcOp );
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 3 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(op) == 5 );
|
|
CPPAD_ASSERT_UNKNOWN( q < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN( p <= q );
|
|
CPPAD_ASSERT_UNKNOWN(
|
|
size_t( std::numeric_limits<addr_t>::max() ) >= i_z + 2
|
|
);
|
|
|
|
// array used to pass parameter values for sub-operations
|
|
addr_t addr[2];
|
|
|
|
// convert from final result to first result
|
|
i_z -= 4; // 4 = NumRes(ErfOp) - 1;
|
|
|
|
// z_0 = x * x
|
|
addr[0] = arg[0]; // x
|
|
addr[1] = arg[0]; // x
|
|
forward_mulvv_op(p, q, i_z+0, addr, parameter, cap_order, taylor);
|
|
|
|
// z_1 = - x * x
|
|
addr[0] = arg[1]; // zero
|
|
addr[1] = addr_t( i_z ); // z_0
|
|
forward_subpv_op(p, q, i_z+1, addr, parameter, cap_order, taylor);
|
|
|
|
// z_2 = exp( - x * x )
|
|
forward_exp_op(p, q, i_z+2, i_z+1, cap_order, taylor);
|
|
|
|
// z_3 = (2 / sqrt(pi)) * exp( - x * x )
|
|
addr[0] = arg[2]; // 2 / sqrt(pi)
|
|
addr[1] = addr_t( i_z + 2 ); // z_2
|
|
forward_mulpv_op(p, q, i_z+3, addr, parameter, cap_order, taylor);
|
|
|
|
// pointers to taylor coefficients for x , z_3, and z_4
|
|
Base* x = taylor + size_t(arg[0]) * cap_order;
|
|
Base* z_3 = taylor + (i_z+3) * cap_order;
|
|
Base* z_4 = taylor + (i_z+4) * cap_order;
|
|
|
|
// calculte z_4 coefficients
|
|
if( p == 0 )
|
|
{ // z4 (t) = erf[x(t)]
|
|
if( op == ErfOp )
|
|
z_4[0] = erf(x[0]);
|
|
else
|
|
z_4[0] = erfc(x[0]);
|
|
p++;
|
|
}
|
|
// sign
|
|
Base sign(1.0);
|
|
if( op == ErfcOp )
|
|
sign = Base(-1.0);
|
|
//
|
|
for(size_t j = p; j <= q; j++)
|
|
{ // erf: z_4' (t) = erf'[x(t)] * x'(t) = z3(t) * x'(t)
|
|
// erfc: z_4' (t) = - erf'[x(t)] * x'(t) = - z3(t) * x'(t)
|
|
// z_4[1] + 2 * z_4[2] * t + ... =
|
|
// sign * (z_3[0] + z_3[1] * t + ...) * (x[1] + 2 * x[2] * t + ...)
|
|
Base base_j = static_cast<Base>(double(j));
|
|
z_4[j] = static_cast<Base>(0);
|
|
for(size_t k = 1; k <= j; k++)
|
|
z_4[j] += sign * (Base(double(k)) / base_j) * x[k] * z_3[j-k];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Zero order Forward mode Taylor coefficient for result of op = ErfOp or ErfcOp.
|
|
|
|
The C++ source code corresponding to this operation one of
|
|
\verbatim
|
|
z = erf(x)
|
|
z = erfc(x)
|
|
\endverbatim
|
|
|
|
\tparam Base
|
|
base type for the operator; i.e., this operation was recorded
|
|
using AD< Base > and computations by this routine are done using type Base.
|
|
|
|
\param op
|
|
must be either ErfOp or ErfcOp and indicates if this is
|
|
z = erf(x) or z = erfc(x).
|
|
|
|
\param i_z
|
|
variable index corresponding to the last (primary) result for this operation;
|
|
i.e. the row index in taylor corresponding to z.
|
|
The auxillary results are called y_j have index i_z - j.
|
|
|
|
\param arg
|
|
arg[0]: is the variable index corresponding to x.
|
|
\n
|
|
arg[1]: is the parameter index corresponding to the value zero.
|
|
\n
|
|
arg[2]: is the parameter index correspodning to the value 2 / sqrt(pi).
|
|
|
|
\param parameter
|
|
parameter[ arg[1] ] is the value zero,
|
|
and parameter[ arg[2] ] is the value 2 / sqrt(pi).
|
|
|
|
\param cap_order
|
|
maximum number of orders that will fit in the taylor array.
|
|
|
|
\param taylor
|
|
\b Input:
|
|
taylor [ size_t(arg[0]) * cap_order + 0 ]
|
|
is the zero order Taylor coefficient corresponding to x.
|
|
\n
|
|
\b Input:
|
|
taylor [ i_z * cap_order + 0 ]
|
|
is the zero order Taylor coefficient corresponding to z.
|
|
\n
|
|
\b Output:
|
|
taylor [ (i_z-j) * cap_order + 0 ],
|
|
for j = 0 , ... , 4,
|
|
is the zero order Taylor coefficient for j-th result corresponding to z.
|
|
|
|
*/
|
|
template <class Base>
|
|
void forward_erf_op_0(
|
|
OpCode op ,
|
|
size_t i_z ,
|
|
const addr_t* arg ,
|
|
const Base* parameter ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( op == ErfOp || op == ErfcOp );
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 3 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(op) == 5 );
|
|
CPPAD_ASSERT_UNKNOWN( 0 < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN(
|
|
size_t( std::numeric_limits<addr_t>::max() ) >= i_z + 2
|
|
);
|
|
|
|
// array used to pass parameter values for sub-operations
|
|
addr_t addr[2];
|
|
|
|
// convert from final result to first result
|
|
i_z -= 4; // 4 = NumRes(ErfOp) - 1;
|
|
|
|
// z_0 = x * x
|
|
addr[0] = arg[0]; // x
|
|
addr[1] = arg[0]; // x
|
|
forward_mulvv_op_0(i_z+0, addr, parameter, cap_order, taylor);
|
|
|
|
// z_1 = - x * x
|
|
addr[0] = arg[1]; // zero
|
|
addr[1] = addr_t(i_z); // z_0
|
|
forward_subpv_op_0(i_z+1, addr, parameter, cap_order, taylor);
|
|
|
|
// z_2 = exp( - x * x )
|
|
forward_exp_op_0(i_z+2, i_z+1, cap_order, taylor);
|
|
|
|
// z_3 = (2 / sqrt(pi)) * exp( - x * x )
|
|
addr[0] = arg[2]; // 2 / sqrt(pi)
|
|
addr[1] = addr_t(i_z + 2); // z_2
|
|
forward_mulpv_op_0(i_z+3, addr, parameter, cap_order, taylor);
|
|
|
|
// zero order Taylor coefficient for z_4
|
|
Base* x = taylor + size_t(arg[0]) * cap_order;
|
|
Base* z_4 = taylor + (i_z + 4) * cap_order;
|
|
if( op == ErfOp )
|
|
z_4[0] = erf(x[0]);
|
|
else
|
|
z_4[0] = erfc(x[0]);
|
|
}
|
|
/*!
|
|
Forward mode Taylor coefficient for result of op = ErfOp or ErfcOp.
|
|
|
|
The C++ source code corresponding to this operation is one of
|
|
\verbatim
|
|
z = erf(x)
|
|
z = erfc(x)
|
|
\endverbatim
|
|
|
|
\tparam Base
|
|
base type for the operator; i.e., this operation was recorded
|
|
using AD< Base > and computations by this routine are done using type Base.
|
|
|
|
\param op
|
|
must be either ErfOp or ErfcOp and indicates if this is
|
|
z = erf(x) or z = erfc(x).
|
|
|
|
\param q
|
|
order of the Taylor coefficients that we are computing.
|
|
|
|
\param r
|
|
number of directions for the Taylor coefficients that we afre computing.
|
|
|
|
\param i_z
|
|
variable index corresponding to the last (primary) result for this operation;
|
|
i.e. the row index in taylor corresponding to z.
|
|
The auxillary results have index i_z - j for j = 0 , ... , 4
|
|
(and include z).
|
|
|
|
\param arg
|
|
arg[0]: is the variable index corresponding to x.
|
|
\n
|
|
arg[1]: is the parameter index corresponding to the value zero.
|
|
\n
|
|
arg[2]: is the parameter index correspodning to the value 2 / sqrt(pi).
|
|
|
|
\param parameter
|
|
parameter[ arg[1] ] is the value zero,
|
|
and parameter[ arg[2] ] is the value 2 / sqrt(pi).
|
|
|
|
\param cap_order
|
|
maximum number of orders that will fit in the taylor array.
|
|
|
|
\par tpv
|
|
We use the notation
|
|
<code>tpv = (cap_order-1) * r + 1</code>
|
|
which is the number of Taylor coefficients per variable
|
|
|
|
\param taylor
|
|
\b Input: If x is a variable,
|
|
<code>taylor [ arg[0] * tpv + 0 ]</code>,
|
|
is the zero order Taylor coefficient for all directions and
|
|
<code>taylor [ arg[0] * tpv + (k-1)*r + ell + 1 ]</code>,
|
|
for k = 1 , ... , q,
|
|
ell = 0, ..., r-1,
|
|
is the k-th order Taylor coefficient
|
|
corresponding to x and the ell-th direction.
|
|
\n
|
|
\b Input:
|
|
taylor [ (i_z - j) * tpv + 0 ]
|
|
is the zero order Taylor coefficient for all directions and the
|
|
j-th result for z.
|
|
for k = 1 , ... , q-1,
|
|
ell = 0, ... , r-1,
|
|
<code>
|
|
taylor[ (i_z - j) * tpv + (k-1)*r + ell + 1]
|
|
</code>
|
|
is the Taylor coefficient for the k-th order, ell-th direction,
|
|
and j-th auzillary result.
|
|
\n
|
|
\b Output:
|
|
taylor [ (i_z-j) * tpv + (q-1)*r + ell + 1 ],
|
|
for ell = 0 , ... , r-1,
|
|
is the Taylor coefficient for the q-th order, ell-th direction,
|
|
and j-th auzillary result.
|
|
|
|
*/
|
|
template <class Base>
|
|
void forward_erf_op_dir(
|
|
OpCode op ,
|
|
size_t q ,
|
|
size_t r ,
|
|
size_t i_z ,
|
|
const addr_t* arg ,
|
|
const Base* parameter ,
|
|
size_t cap_order ,
|
|
Base* taylor )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( op == ErfOp || op == ErfcOp );
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 3 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(op) == 5 );
|
|
CPPAD_ASSERT_UNKNOWN( q < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN( 0 < q );
|
|
CPPAD_ASSERT_UNKNOWN(
|
|
size_t( std::numeric_limits<addr_t>::max() ) >= i_z + 2
|
|
);
|
|
|
|
// array used to pass parameter values for sub-operations
|
|
addr_t addr[2];
|
|
|
|
// convert from final result to first result
|
|
i_z -= 4; // 4 = NumRes(ErfOp) - 1;
|
|
|
|
// z_0 = x * x
|
|
addr[0] = arg[0]; // x
|
|
addr[1] = arg[0]; // x
|
|
forward_mulvv_op_dir(q, r, i_z+0, addr, parameter, cap_order, taylor);
|
|
|
|
// z_1 = - x * x
|
|
addr[0] = arg[1]; // zero
|
|
addr[1] = addr_t( i_z ); // z_0
|
|
forward_subpv_op_dir(q, r, i_z+1, addr, parameter, cap_order, taylor);
|
|
|
|
// z_2 = exp( - x * x )
|
|
forward_exp_op_dir(q, r, i_z+2, i_z+1, cap_order, taylor);
|
|
|
|
// z_3 = (2 / sqrt(pi)) * exp( - x * x )
|
|
addr[0] = arg[2]; // 2 / sqrt(pi)
|
|
addr[1] = addr_t( i_z + 2 ); // z_2
|
|
forward_mulpv_op_dir(q, r, i_z+3, addr, parameter, cap_order, taylor);
|
|
|
|
// pointers to taylor coefficients for x , z_3, and z_4
|
|
size_t num_taylor_per_var = (cap_order - 1) * r + 1;
|
|
Base* x = taylor + size_t(arg[0]) * num_taylor_per_var;
|
|
Base* z_3 = taylor + (i_z+3) * num_taylor_per_var;
|
|
Base* z_4 = taylor + (i_z+4) * num_taylor_per_var;
|
|
|
|
// sign
|
|
Base sign(1.0);
|
|
if( op == ErfcOp )
|
|
sign = Base(-1.0);
|
|
|
|
// erf: z_4' (t) = erf'[x(t)] * x'(t) = z3(t) * x'(t)
|
|
// erfc: z_4' (t) = - erf'[x(t)] * x'(t) = z3(t) * x'(t)
|
|
// z_4[1] + 2 * z_4[2] * t + ... =
|
|
// sign * (z_3[0] + z_3[1] * t + ...) * (x[1] + 2 * x[2] * t + ...)
|
|
Base base_q = static_cast<Base>(double(q));
|
|
for(size_t ell = 0; ell < r; ell++)
|
|
{ // index in z_4 and x for q-th order term
|
|
size_t m = (q-1)*r + ell + 1;
|
|
// initialize q-th order term summation
|
|
z_4[m] = sign * z_3[0] * x[m];
|
|
for(size_t k = 1; k < q; k++)
|
|
{ size_t x_index = (k-1)*r + ell + 1;
|
|
size_t z3_index = (q-k-1)*r + ell + 1;
|
|
Base bk = Base(double(k));
|
|
z_4[m] += sign * (bk / base_q) * x[x_index] * z_3[z3_index];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Compute reverse mode partial derivatives for result of op = ErfOp or ErfcOp.
|
|
|
|
The C++ source code corresponding to this operation is one of
|
|
\verbatim
|
|
z = erf(x)
|
|
z = erfc(x)
|
|
\endverbatim
|
|
|
|
\tparam Base
|
|
base type for the operator; i.e., this operation was recorded
|
|
using AD< Base > and computations by this routine are done using type Base.
|
|
|
|
\param op
|
|
must be either ErfOp or ErfcOp and indicates if this is
|
|
z = erf(x) or z = erfc(x).
|
|
|
|
\param d
|
|
highest order Taylor of the Taylor coefficients that we are computing
|
|
the partial derivatives with respect to.
|
|
|
|
\param i_z
|
|
variable index corresponding to the last (primary) result for this operation;
|
|
i.e. the row index in taylor corresponding to z.
|
|
The auxillary results are called y_j have index i_z - j.
|
|
|
|
\param arg
|
|
arg[0]: is the variable index corresponding to x.
|
|
\n
|
|
arg[1]: is the parameter index corresponding to the value zero.
|
|
\n
|
|
arg[2]: is the parameter index correspodning to the value 2 / sqrt(pi).
|
|
|
|
\param parameter
|
|
parameter[ arg[1] ] is the value zero,
|
|
and parameter[ arg[2] ] is the value 2 / sqrt(pi).
|
|
|
|
\param cap_order
|
|
maximum number of orders that will fit in the taylor array.
|
|
|
|
\param taylor
|
|
\b Input:
|
|
taylor [ size_t(arg[0]) * cap_order + k ]
|
|
for k = 0 , ... , d,
|
|
is the k-th order Taylor coefficient corresponding to x.
|
|
\n
|
|
taylor [ (i_z - j) * cap_order + k ]
|
|
for k = 0 , ... , d,
|
|
and for j = 0 , ... , 4,
|
|
is the k-th order Taylor coefficient corresponding to the j-th result
|
|
for this operation.
|
|
|
|
\param nc_partial
|
|
number of columns in the matrix containing all the partial derivatives
|
|
|
|
\param partial
|
|
\b Input:
|
|
partial [ size_t(arg[0]) * nc_partial + k ]
|
|
for k = 0 , ... , d,
|
|
is the partial derivative of G( z , x , w , u , ... ) with respect to
|
|
the k-th order Taylor coefficient for x.
|
|
\n
|
|
\b Input:
|
|
partial [ (i_z - j) * nc_partial + k ]
|
|
for k = 0 , ... , d,
|
|
and for j = 0 , ... , 4,
|
|
is the partial derivative of G( z , x , w , u , ... ) with respect to
|
|
the k-th order Taylor coefficient for the j-th result of this operation.
|
|
\n
|
|
\b Output:
|
|
partial [ size_t(arg[0]) * nc_partial + k ]
|
|
for k = 0 , ... , d,
|
|
is the partial derivative of H( x , w , u , ... ) with respect to
|
|
the k-th order Taylor coefficient for x.
|
|
\n
|
|
\b Output:
|
|
partial [ (i_z-j) * nc_partial + k ]
|
|
for k = 0 , ... , d,
|
|
and for j = 0 , ... , 4,
|
|
may be used as work space; i.e., may change in an unspecified manner.
|
|
|
|
*/
|
|
template <class Base>
|
|
void reverse_erf_op(
|
|
OpCode op ,
|
|
size_t d ,
|
|
size_t i_z ,
|
|
const addr_t* arg ,
|
|
const Base* parameter ,
|
|
size_t cap_order ,
|
|
const Base* taylor ,
|
|
size_t nc_partial ,
|
|
Base* partial )
|
|
{
|
|
// check assumptions
|
|
CPPAD_ASSERT_UNKNOWN( op == ErfOp || op == ErfcOp );
|
|
CPPAD_ASSERT_UNKNOWN( NumArg(op) == 3 );
|
|
CPPAD_ASSERT_UNKNOWN( NumRes(op) == 5 );
|
|
CPPAD_ASSERT_UNKNOWN( d < cap_order );
|
|
CPPAD_ASSERT_UNKNOWN(
|
|
size_t( std::numeric_limits<addr_t>::max() ) >= i_z + 2
|
|
);
|
|
|
|
// array used to pass parameter values for sub-operations
|
|
addr_t addr[2];
|
|
|
|
// If pz is zero, make sure this operation has no effect
|
|
// (zero times infinity or nan would be non-zero).
|
|
Base* pz = partial + i_z * nc_partial;
|
|
bool skip(true);
|
|
for(size_t i_d = 0; i_d <= d; i_d++)
|
|
skip &= IdenticalZero(pz[i_d]);
|
|
if( skip )
|
|
return;
|
|
|
|
// convert from final result to first result
|
|
i_z -= 4; // 4 = NumRes(ErfOp) - 1;
|
|
|
|
// Taylor coefficients and partials corresponding to x
|
|
const Base* x = taylor + size_t(arg[0]) * cap_order;
|
|
Base* px = partial + size_t(arg[0]) * nc_partial;
|
|
|
|
// Taylor coefficients and partials corresponding to z_3
|
|
const Base* z_3 = taylor + (i_z+3) * cap_order;
|
|
Base* pz_3 = partial + (i_z+3) * nc_partial;
|
|
|
|
// Taylor coefficients and partials corresponding to z_4
|
|
Base* pz_4 = partial + (i_z+4) * nc_partial;
|
|
|
|
// sign
|
|
Base sign(1.0);
|
|
if( op == ErfcOp )
|
|
sign = Base(-1.0);
|
|
|
|
// Reverse z_4
|
|
size_t j = d;
|
|
while(j)
|
|
{ pz_4[j] /= Base(double(j));
|
|
for(size_t k = 1; k <= j; k++)
|
|
{ px[k] += sign * azmul(pz_4[j], z_3[j-k]) * Base(double(k));
|
|
pz_3[j-k] += sign * azmul(pz_4[j], x[k]) * Base(double(k));
|
|
}
|
|
j--;
|
|
}
|
|
px[0] += sign * azmul(pz_4[0], z_3[0]);
|
|
|
|
// z_3 = (2 / sqrt(pi)) * exp( - x * x )
|
|
addr[0] = arg[2]; // 2 / sqrt(pi)
|
|
addr[1] = addr_t( i_z + 2 ); // z_2
|
|
reverse_mulpv_op(
|
|
d, i_z+3, addr, parameter, cap_order, taylor, nc_partial, partial
|
|
);
|
|
|
|
// z_2 = exp( - x * x )
|
|
reverse_exp_op(
|
|
d, i_z+2, i_z+1, cap_order, taylor, nc_partial, partial
|
|
);
|
|
|
|
// z_1 = - x * x
|
|
addr[0] = arg[1]; // zero
|
|
addr[1] = addr_t( i_z ); // z_0
|
|
reverse_subpv_op(
|
|
d, i_z+1, addr, parameter, cap_order, taylor, nc_partial, partial
|
|
);
|
|
|
|
// z_0 = x * x
|
|
addr[0] = arg[0]; // x
|
|
addr[1] = arg[0]; // x
|
|
reverse_mulvv_op(
|
|
d, i_z+0, addr, parameter, cap_order, taylor, nc_partial, partial
|
|
);
|
|
|
|
}
|
|
|
|
|
|
} } // END_CPPAD_LOCAL_NAMESPACE
|
|
# endif // CPPAD_ERF_OP_INCLUDED
|