Files
GridFire/src/extern/lib/gridfire_context.cpp
Emily Boudreaux 39a689ee5d feat(neutrino): Updated neutrino output
GridFire now reports neutrino loss for reaclib reactions. Note this
currently is only computed if precomputation is enabled.
2025-11-27 15:00:51 -05:00

161 lines
5.2 KiB
C++

#include "gridfire/extern/gridfire_context.h"
#include "fourdst/atomic/species.h"
#include "fourdst/composition/exceptions/exceptions_composition.h"
void GridFireContext::init_species_map(const std::vector<std::string> &species_names) {
for (const auto& name: species_names) {
working_comp.registerSymbol(name);
}
this->speciesList.clear();
this->speciesList.reserve(species_names.size());
auto resolve_species_name = [](const std::string& name) -> fourdst::atomic::Species {
if (fourdst::atomic::species.contains(name)) {
return fourdst::atomic::species.at(name);
}
throw fourdst::composition::exceptions::UnknownSymbolError("Species " + name + " is not recognized in the atomic species database.");
};
for (const auto& name: species_names) {
this->speciesList.push_back(resolve_species_name(name));
}
}
void GridFireContext::init_engine_from_policy(const std::string &policy_name, const double *abundances, const size_t num_species) {
init_composition_from_abundance_vector(abundances, num_species);
enum class EnginePolicy {
MAIN_SEQUENCE_POLICY
};
static const std::unordered_map<std::string, EnginePolicy> engine_map = {
{"MAIN_SEQUENCE_POLICY", EnginePolicy::MAIN_SEQUENCE_POLICY}
};
if (!engine_map.contains(policy_name)) {
throw gridfire::exceptions::PolicyError(
std::format(
"Engine Policy {} is not recognized. Valid policies are: {}",
policy_name,
gridfire::utils::iterable_to_delimited_string(engine_map, ", ", [](const auto& pair){ return pair.first; })
)
);
}
switch (engine_map.at(policy_name)) {
case EnginePolicy::MAIN_SEQUENCE_POLICY: {
this->policy = std::make_unique<gridfire::policy::MainSequencePolicy>(this->working_comp);
this->engine = &policy->construct();
break;
}
default:
throw gridfire::exceptions::PolicyError(
"Unhandled engine policy in GridFireContext::init_engine_from_policy"
);
}
}
void GridFireContext::init_solver_from_engine(const std::string &solver_name) {
enum class SolverType {
CVODE
};
static const std::unordered_map<std::string, SolverType> solver_map = {
{"CVODE", SolverType::CVODE}
};
if (!solver_map.contains(solver_name)) {
throw gridfire::exceptions::SolverError(
std::format(
"Solver {} is not recognized. Valid solvers are: {}",
solver_name,
gridfire::utils::iterable_to_delimited_string(solver_map, ", ", [](const auto& pair){ return pair.first; })
)
);
}
switch (solver_map.at(solver_name)) {
case SolverType::CVODE: {
this->solver = std::make_unique<gridfire::solver::CVODESolverStrategy>(*this->engine);
break;
}
default:
throw gridfire::exceptions::SolverError(
"Unhandled solver type in GridFireContext::init_solver_from_engine"
);
}
}
void GridFireContext::init_composition_from_abundance_vector(const double *abundances, size_t num_species) {
if (num_species == 0) {
throw fourdst::composition::exceptions::InvalidCompositionError("Cannot initialize composition with zero species.");
}
if (num_species != working_comp.size()) {
throw fourdst::composition::exceptions::InvalidCompositionError(
std::format(
"Number of species provided ({}) does not match the registered species count ({}).",
num_species,
working_comp.size()
)
);
}
for (size_t i = 0; i < num_species; i++) {
this->working_comp.setMolarAbundance(this->speciesList[i], abundances[i]);
}
}
int GridFireContext::evolve(
const double* Y_in,
const size_t num_species,
const double T,
const double rho,
const double tMax,
const double dt0,
double* Y_out,
double& energy_out,
double& dEps_dT,
double& dEps_dRho,
double& specific_neutrino_energy_loss,
double& specific_neutrino_flux,
double& mass_lost
) {
init_composition_from_abundance_vector(Y_in, num_species);
gridfire::NetIn netIn;
netIn.temperature = T;
netIn.density = rho;
netIn.dt0 = dt0;
netIn.tMax = tMax;
netIn.composition = this->working_comp;
const gridfire::NetOut result = this->solver->evaluate(netIn);
energy_out = result.energy;
dEps_dT = result.dEps_dT;
dEps_dRho = result.dEps_dRho;
specific_neutrino_energy_loss = result.specific_neutrino_energy_loss;
specific_neutrino_flux = result.specific_neutrino_flux;
std::set<fourdst::atomic::Species> seen_species;
for (size_t i = 0; i < num_species; i++) {
fourdst::atomic::Species species = this->speciesList[i];
Y_out[i] = result.composition.getMolarAbundance(species);
seen_species.insert(species);
}
mass_lost = 0.0;
for (const auto& species : result.composition.getRegisteredSpecies()) {
if (!seen_species.contains(species)) {
mass_lost += species.mass() * result.composition.getMolarAbundance(species);
}
}
return 0;
}