#pragma once #include "fourdst/composition/atomicSpecies.h" #include "fourdst/composition/composition.h" #include "fourdst/logging/logging.h" #include "fourdst/config/config.h" #include "gridfire/network.h" #include "gridfire/reaction/reaction.h" #include "gridfire/engine/engine_abstract.h" #include "gridfire/screening/screening_abstract.h" #include "gridfire/screening/screening_types.h" #include "gridfire/partition/partition_abstract.h" #include "gridfire/engine/procedures/construction.h" #include #include #include #include #include #include #include "cppad/cppad.hpp" #include "cppad/utility/sparse_rc.hpp" #include "cppad/speed/sparse_jac_fun.hpp" #include "procedures/priming.h" #include "quill/LogMacros.h" // PERF: The function getNetReactionStoichiometry returns a map of species to their stoichiometric coefficients for a given reaction. // this makes extra copies of the species, which is not ideal and could be optimized further. // Even more relevant is the member m_reactionIDMap which makes copies of a REACLIBReaction for each reaction ID. // REACLIBReactions are quite large data structures, so this could be a performance bottleneck. // static bool isF17 = false; namespace gridfire { static bool s_debug = false; // Global debug flag for the GraphEngine /** * @brief Alias for CppAD AD type for double precision. * * This alias simplifies the use of the CppAD automatic differentiation type. */ typedef CppAD::AD ADDouble; using fourdst::config::Config; using fourdst::logging::LogManager; using fourdst::constant::Constants; /** * @brief Minimum density threshold below which reactions are ignored. * * Reactions are not calculated if the density falls below this threshold. * This helps to improve performance by avoiding unnecessary calculations * in very low-density regimes. */ static constexpr double MIN_DENSITY_THRESHOLD = 1e-18; /** * @brief Minimum abundance threshold below which species are ignored. * * Species with abundances below this threshold are treated as zero in * reaction rate calculations. This helps to improve performance by * avoiding unnecessary calculations for trace species. */ static constexpr double MIN_ABUNDANCE_THRESHOLD = 1e-18; /** * @brief Minimum value for Jacobian matrix entries. * * Jacobian matrix entries with absolute values below this threshold are * treated as zero to maintain sparsity and improve performance. */ static constexpr double MIN_JACOBIAN_THRESHOLD = 1e-24; /** * @class GraphEngine * @brief A reaction network engine that uses a graph-based representation. * * The GraphEngine class implements the DynamicEngine interface using a * graph-based representation of the reaction network. It uses sparse * matrices for efficient storage and computation of the stoichiometry * and Jacobian matrices. Automatic differentiation (AD) is used to * calculate the Jacobian matrix. * * The engine supports: * - Calculation of the right-hand side (dY/dt) and energy generation rate. * - Generation and access to the Jacobian matrix. * - Generation and access to the stoichiometry matrix. * - Calculation of molar reaction flows. * - Access to the set of logical reactions in the network. * - Computation of timescales for each species. * - Exporting the network to DOT and CSV formats for visualization and analysis. * * @implements DynamicEngine * * @see engine_abstract.h */ class GraphEngine final : public DynamicEngine{ public: /** * @brief Constructs a GraphEngine from a composition. * * @param composition The composition of the material. * * This constructor builds the reaction network from the given composition * using the `build_reaclib_nuclear_network` function. * * @see build_reaclib_nuclear_network */ explicit GraphEngine( const fourdst::composition::Composition &composition, const BuildDepthType = NetworkBuildDepth::Full ); explicit GraphEngine( const fourdst::composition::Composition &composition, const partition::PartitionFunction& partitionFunction, const BuildDepthType buildDepth = NetworkBuildDepth::Full ); /** * @brief Constructs a GraphEngine from a set of reactions. * * @param reactions The set of reactions to use in the network. * * This constructor uses the given set of reactions to construct the * reaction network. */ explicit GraphEngine(const reaction::LogicalReactionSet &reactions); /** * @brief Calculates the right-hand side (dY/dt) and energy generation rate. * * @param Y Vector of current abundances for all species. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * @return StepDerivatives containing dY/dt and energy generation rate. * * This method calculates the time derivatives of all species and the * specific nuclear energy generation rate for the current state. * * @see StepDerivatives */ [[nodiscard]] std::expected, expectations::StaleEngineError> calculateRHSAndEnergy( const std::vector& Y, const double T9, const double rho ) const override; /** * @brief Generates the Jacobian matrix for the current state. * * @param Y_dynamic Vector of current abundances. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * * This method computes and stores the Jacobian matrix (∂(dY/dt)_i/∂Y_j) * for the current state using automatic differentiation. The matrix can * then be accessed via `getJacobianMatrixEntry()`. * * @see getJacobianMatrixEntry() */ void generateJacobianMatrix( const std::vector& Y_dynamic, const double T9, const double rho ) const override; void generateJacobianMatrix( const std::vector &Y_dynamic, double T9, double rho, const SparsityPattern &sparsityPattern ) const override; /** * @brief Generates the stoichiometry matrix for the network. * * This method computes and stores the stoichiometry matrix, * which encodes the net change of each species in each reaction. */ void generateStoichiometryMatrix() override; /** * @brief Calculates the molar reaction flow for a given reaction. * * @param reaction The reaction for which to calculate the flow. * @param Y Vector of current abundances. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * @return Molar flow rate for the reaction (e.g., mol/g/s). * * This method computes the net rate at which the given reaction proceeds * under the current state. */ [[nodiscard]] double calculateMolarReactionFlow( const reaction::Reaction& reaction, const std::vector&Y, const double T9, const double rho ) const override; /** * @brief Gets the list of species in the network. * @return Vector of Species objects representing all network species. */ [[nodiscard]] const std::vector& getNetworkSpecies() const override; /** * @brief Gets the set of logical reactions in the network. * @return Reference to the LogicalReactionSet containing all reactions. */ [[nodiscard]] const reaction::LogicalReactionSet& getNetworkReactions() const override; void setNetworkReactions(const reaction::LogicalReactionSet& reactions) override; /** * @brief Gets an entry from the previously generated Jacobian matrix. * * @param i Row index (species index). * @param j Column index (species index). * @return Value of the Jacobian matrix at (i, j). * * The Jacobian must have been generated by `generateJacobianMatrix()` before calling this. * * @see generateJacobianMatrix() */ [[nodiscard]] double getJacobianMatrixEntry( const int i, const int j ) const override; /** * @brief Gets the net stoichiometry for a given reaction. * * @param reaction The reaction for which to get the stoichiometry. * @return Map of species to their stoichiometric coefficients. */ [[nodiscard]] static std::unordered_map getNetReactionStoichiometry( const reaction::Reaction& reaction ); /** * @brief Gets an entry from the stoichiometry matrix. * * @param speciesIndex Index of the species. * @param reactionIndex Index of the reaction. * @return Stoichiometric coefficient for the species in the reaction. * * The stoichiometry matrix must have been generated by `generateStoichiometryMatrix()`. * * @see generateStoichiometryMatrix() */ [[nodiscard]] int getStoichiometryMatrixEntry( const int speciesIndex, const int reactionIndex ) const override; /** * @brief Computes timescales for all species in the network. * * @param Y Vector of current abundances. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * @return Map from Species to their characteristic timescales (s). * * This method estimates the timescale for abundance change of each species, * which can be used for timestep control or diagnostics. */ [[nodiscard]] std::expected, expectations::StaleEngineError> getSpeciesTimescales( const std::vector& Y, double T9, double rho ) const override; [[nodiscard]] std::expected, expectations::StaleEngineError> getSpeciesDestructionTimescales( const std::vector& Y, double T9, double rho ) const override; fourdst::composition::Composition update(const NetIn &netIn) override; bool isStale(const NetIn &netIn) override; /** * @brief Checks if a given species is involved in the network. * * @param species The species to check. * @return True if the species is involved in the network, false otherwise. */ [[nodiscard]] bool involvesSpecies( const fourdst::atomic::Species& species ) const; /** * @brief Exports the network to a DOT file for visualization. * * @param filename The name of the DOT file to create. * * This method generates a DOT file that can be used to visualize the * reaction network as a graph. The DOT file can be converted to a * graphical image using Graphviz. * * @throws std::runtime_error If the file cannot be opened for writing. * * Example usage: * @code * engine.exportToDot("network.dot"); * @endcode */ void exportToDot( const std::string& filename ) const; /** * @brief Exports the network to a CSV file for analysis. * * @param filename The name of the CSV file to create. * * This method generates a CSV file containing information about the * reactions in the network, including the reactants, products, Q-value, * and reaction rate coefficients. * * @throws std::runtime_error If the file cannot be opened for writing. * * Example usage: * @code * engine.exportToCSV("network.csv"); * @endcode */ void exportToCSV( const std::string& filename ) const; void setScreeningModel(screening::ScreeningType) override; [[nodiscard]] screening::ScreeningType getScreeningModel() const override; void setPrecomputation(bool precompute); [[nodiscard]] bool isPrecomputationEnabled() const; [[nodiscard]] const partition::PartitionFunction& getPartitionFunction() const; [[nodiscard]] double calculateReverseRate( const reaction::Reaction &reaction, double T9 ) const; [[nodiscard]] double calculateReverseRateTwoBody( const reaction::Reaction &reaction, const double T9, const double forwardRate, const double expFactor ) const; [[nodiscard]] double calculateReverseRateTwoBodyDerivative( const reaction::Reaction &reaction, const double T9, const double reverseRate ) const; [[nodiscard]] bool isUsingReverseReactions() const; void setUseReverseReactions(bool useReverse); [[nodiscard]] int getSpeciesIndex( const fourdst::atomic::Species& species ) const override; [[nodiscard]] std::vector mapNetInToMolarAbundanceVector(const NetIn &netIn) const override; [[nodiscard]] PrimingReport primeEngine(const NetIn &netIn) override; [[nodiscard]] BuildDepthType getDepth() const override; void rebuild(const fourdst::composition::Composition& comp, const BuildDepthType depth) override; private: struct PrecomputedReaction { // Forward cacheing size_t reaction_index; std::vector unique_reactant_indices; std::vector reactant_powers; double symmetry_factor; std::vector affected_species_indices; std::vector stoichiometric_coefficients; // Reverse cacheing std::vector unique_product_indices; ///< Unique product indices for reverse reactions. std::vector product_powers; ///< Powers of each unique product in the reverse reaction. double reverse_symmetry_factor; ///< Symmetry factor for reverse reactions. }; struct constants { const double u = Constants::getInstance().get("u").value; ///< Atomic mass unit in g. const double Na = Constants::getInstance().get("N_a").value; ///< Avogadro's number. const double c = Constants::getInstance().get("c").value; ///< Speed of light in cm/s. const double kB = Constants::getInstance().get("kB").value; ///< Boltzmann constant in erg/K. }; private: class AtomicReverseRate final : public CppAD::atomic_base { public: AtomicReverseRate( const reaction::Reaction& reaction, const GraphEngine& engine ): atomic_base("AtomicReverseRate"), m_reaction(reaction), m_engine(engine) {} bool forward( size_t p, size_t q, const CppAD::vector& vx, CppAD::vector& vy, const CppAD::vector& tx, CppAD::vector& ty ) override; bool reverse( size_t q, const CppAD::vector& tx, const CppAD::vector& ty, CppAD::vector& px, const CppAD::vector& py ) override; bool for_sparse_jac( size_t q, const CppAD::vector>&r, CppAD::vector>& s ) override; bool rev_sparse_jac( size_t q, const CppAD::vector>&rt, CppAD::vector>& st ) override; private: const reaction::Reaction& m_reaction; const GraphEngine& m_engine; }; private: Config& m_config = Config::getInstance(); quill::Logger* m_logger = LogManager::getInstance().getLogger("log"); constants m_constants; reaction::LogicalReactionSet m_reactions; ///< Set of REACLIB reactions in the network. std::unordered_map m_reactionIDMap; ///< Map from reaction ID to REACLIBReaction. //PERF: This makes copies of REACLIBReaction and could be a performance bottleneck. std::vector m_networkSpecies; ///< Vector of unique species in the network. std::unordered_map m_networkSpeciesMap; ///< Map from species name to Species object. std::unordered_map m_speciesToIndexMap; ///< Map from species to their index in the stoichiometry matrix. boost::numeric::ublas::compressed_matrix m_stoichiometryMatrix; ///< Stoichiometry matrix (species x reactions). mutable boost::numeric::ublas::compressed_matrix m_jacobianMatrix; ///< Jacobian matrix (species x species). mutable CppAD::ADFun m_rhsADFun; ///< CppAD function for the right-hand side of the ODE. mutable CppAD::sparse_jac_work m_jac_work; ///< Work object for sparse Jacobian calculations. CppAD::sparse_rc> m_full_jacobian_sparsity_pattern; ///< Full sparsity pattern for the Jacobian matrix. std::vector> m_atomicReverseRates; screening::ScreeningType m_screeningType = screening::ScreeningType::BARE; ///< Screening type for the reaction network. Default to no screening. std::unique_ptr m_screeningModel = screening::selectScreeningModel(m_screeningType); bool m_usePrecomputation = true; ///< Flag to enable or disable using precomputed reactions for efficiency. Mathematically, this should not change the results. Generally end users should not need to change this. bool m_useReverseReactions = true; ///< Flag to enable or disable reverse reactions. If false, only forward reactions are considered. BuildDepthType m_depth; std::vector m_precomputedReactions; ///< Precomputed reactions for efficiency. std::unique_ptr m_partitionFunction; ///< Partition function for the network. private: /** * @brief Synchronizes the internal maps. * * This method synchronizes the internal maps used by the engine, * including the species map, reaction ID map, and species-to-index map. * It also generates the stoichiometry matrix and records the AD tape. */ void syncInternalMaps(); /** * @brief Collects the unique species in the network. * * This method collects the unique species in the network from the * reactants and products of all reactions. */ void collectNetworkSpecies(); /** * @brief Populates the reaction ID map. * * This method populates the reaction ID map, which maps reaction IDs * to REACLIBReaction objects. */ void populateReactionIDMap(); /** * @brief Populates the species-to-index map. * * This method populates the species-to-index map, which maps species * to their index in the stoichiometry matrix. */ void populateSpeciesToIndexMap(); /** * @brief Reserves space for the Jacobian matrix. * * This method reserves space for the Jacobian matrix, which is used * to store the partial derivatives of the right-hand side of the ODE * with respect to the species abundances. */ void reserveJacobianMatrix() const; /** * @brief Records the AD tape for the right-hand side of the ODE. * * This method records the AD tape for the right-hand side of the ODE, * which is used to calculate the Jacobian matrix using automatic * differentiation. * * @throws std::runtime_error If there are no species in the network. */ void recordADTape(); void collectAtomicReverseRateAtomicBases(); void precomputeNetwork(); /** * @brief Validates mass and charge conservation across all reactions. * * @return True if all reactions conserve mass and charge, false otherwise. * * This method checks that all reactions in the network conserve mass * and charge. If any reaction does not conserve mass or charge, an * error message is logged and false is returned. */ [[nodiscard]] bool validateConservation() const; /** * @brief Validates the composition against the current reaction set. * * @param composition The composition to validate. * @param culling The culling threshold to use. * @param T9 The temperature to use. * * This method validates the composition against the current reaction set. * If the composition is not compatible with the reaction set, the * reaction set is rebuilt from the composition. */ void validateComposition( const fourdst::composition::Composition &composition, double culling, double T9 ); [[nodiscard]] StepDerivatives calculateAllDerivativesUsingPrecomputation( const std::vector &Y_in, const std::vector& bare_rates, const std::vector &bare_reverse_rates, double T9, double rho ) const; /** * @brief Calculates the molar reaction flow for a given reaction. * * @tparam T The numeric type to use for the calculation. * @param reaction The reaction for which to calculate the flow. * @param Y Vector of current abundances. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * @return Molar flow rate for the reaction (e.g., mol/g/s). * * This method computes the net rate at which the given reaction proceeds * under the current state. */ template T calculateMolarReactionFlow( const reaction::Reaction &reaction, const std::vector &Y, const T T9, const T rho ) const; template T calculateReverseMolarReactionFlow( T T9, T rho, std::vector screeningFactors, std::vector Y, size_t reactionIndex, const reaction::LogicalReaction &reaction ) const; /** * @brief Calculates all derivatives (dY/dt) and the energy generation rate. * * @tparam T The numeric type to use for the calculation. * @param Y_in Vector of current abundances for all species. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * @return StepDerivatives containing dY/dt and energy generation rate. * * This method calculates the time derivatives of all species and the * specific nuclear energy generation rate for the current state. */ template [[nodiscard]] StepDerivatives calculateAllDerivatives( const std::vector &Y_in, T T9, T rho ) const; /** * @brief Calculates all derivatives (dY/dt) and the energy generation rate (double precision). * * @param Y_in Vector of current abundances for all species. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * @return StepDerivatives containing dY/dt and energy generation rate. * * This method calculates the time derivatives of all species and the * specific nuclear energy generation rate for the current state using * double precision arithmetic. */ [[nodiscard]] StepDerivatives calculateAllDerivatives( const std::vector& Y_in, const double T9, const double rho ) const; /** * @brief Calculates all derivatives (dY/dt) and the energy generation rate (automatic differentiation). * * @param Y_in Vector of current abundances for all species. * @param T9 Temperature in units of 10^9 K. * @param rho Density in g/cm^3. * @return StepDerivatives containing dY/dt and energy generation rate. * * This method calculates the time derivatives of all species and the * specific nuclear energy generation rate for the current state using * automatic differentiation. */ [[nodiscard]] StepDerivatives calculateAllDerivatives( const std::vector& Y_in, const ADDouble &T9, const ADDouble &rho ) const; }; template T GraphEngine::calculateReverseMolarReactionFlow( T T9, T rho, std::vector screeningFactors, std::vector Y, size_t reactionIndex, const reaction::LogicalReaction &reaction ) const { if (!m_useReverseReactions) { return static_cast(0.0); // If reverse reactions are not used, return zero } s_debug = false; if (reaction.peName() == "p(p,e+)d" || reaction.peName() =="d(d,n)he3" || reaction.peName() == "c12(p,g)n13") { if constexpr (!std::is_same_v) { s_debug = true; std::cout << "Calculating reverse molar flow for reaction: " << reaction.peName() << std::endl; std::cout << "\tT9: " << T9 << ", rho: " << rho << std::endl; } } T reverseMolarFlow = static_cast(0.0); if (reaction.qValue() != 0.0) { T reverseRateConstant = static_cast(0.0); if constexpr (std::is_same_v) { // Check if T is an AD type at compile time const auto& atomic_func_ptr = m_atomicReverseRates[reactionIndex]; if (atomic_func_ptr != nullptr) { // A. Instantiate the atomic operator for the specific reaction // B. Marshal the input vector std::vector ax = { T9 }; std::vector ay(1); (*atomic_func_ptr)(ax, ay); reverseRateConstant = static_cast(ay[0]); } else { return reverseMolarFlow; // If no atomic function is available, return zero } } else { // A,B If not calling with an AD type, calculate the reverse rate directly if (s_debug) { std::cout << "\tUsing double overload\n"; } reverseRateConstant = calculateReverseRate(reaction, T9); } // C. Get product multiplicities std::unordered_map productCounts; for (const auto& product : reaction.products()) { productCounts[product]++; } // D. Calculate the symmetry factor T reverseSymmetryFactor = static_cast(1.0); for (const auto &count: productCounts | std::views::values) { reverseSymmetryFactor /= static_cast(std::tgamma(static_cast(count + 1))); // Gamma function for factorial } // E. Calculate the abundance term T productAbundanceTerm = static_cast(1.0); for (const auto& [species, count] : productCounts) { const unsigned long speciesIndex = m_speciesToIndexMap.at(species); productAbundanceTerm *= CppAD::pow(Y[speciesIndex], count); } // F. Determine the power for the density term const size_t num_products = reaction.products().size(); const T rho_power = CppAD::pow(rho, static_cast(num_products > 1 ? num_products - 1 : 0)); // Density raised to the power of (N-1) for N products // G. Assemble the reverse molar flow rate reverseMolarFlow = screeningFactors[reactionIndex] * reverseRateConstant * productAbundanceTerm * reverseSymmetryFactor * rho_power; } return reverseMolarFlow; } template StepDerivatives GraphEngine::calculateAllDerivatives( const std::vector &Y_in, T T9, T rho) const { std::vector screeningFactors = m_screeningModel->calculateScreeningFactors( m_reactions, m_networkSpecies, Y_in, T9, rho ); // --- Setup output derivatives structure --- StepDerivatives result; result.dydt.resize(m_networkSpecies.size(), static_cast(0.0)); // --- AD Pre-setup (flags to control conditionals in an AD safe / branch aware manner) --- // ----- Constants for AD safe calculations --- const T zero = static_cast(0.0); const T one = static_cast(1.0); // ----- Initialize variables for molar concentration product and thresholds --- // Note: the logic here is that we use CppAD::CondExprLt to test thresholds and if they are less we set the flag // to zero so that the final returned reaction flow is 0. This is as opposed to standard if statements // which create branches that break the AD tape. const T rho_threshold = static_cast(MIN_DENSITY_THRESHOLD); // --- Check if the density is below the threshold where we ignore reactions --- T threshold_flag = CppAD::CondExpLt(rho, rho_threshold, zero, one); // If rho < threshold, set flag to 0 std::vector Y = Y_in; for (size_t i = 0; i < m_networkSpecies.size(); ++i) { // We use CppAD::CondExpLt to handle AD taping and prevent branching // Note that while this is syntactically more complex this is equivalent to // if (Y[i] < 0) {Y[i] = 0;} // The issue is that this would introduce a branch which would require the auto diff tape to be re-recorded // each timestep, which is very inefficient. Y[i] = CppAD::CondExpLt(Y[i], zero, zero, Y[i]); // Ensure no negative abundances } const T u = static_cast(m_constants.u); // Atomic mass unit in grams const T N_A = static_cast(m_constants.Na); // Avogadro's number in mol^-1 const T c = static_cast(m_constants.c); // Speed of light in cm/s // --- SINGLE LOOP OVER ALL REACTIONS --- for (size_t reactionIndex = 0; reactionIndex < m_reactions.size(); ++reactionIndex) { const auto& reaction = m_reactions[reactionIndex]; // 1. Calculate forward reaction rate const T forwardMolarReactionFlow = screeningFactors[reactionIndex] * calculateMolarReactionFlow(reaction, Y, T9, rho); // 2. Calculate reverse reaction rate T reverseMolarFlow = calculateReverseMolarReactionFlow( T9, rho, screeningFactors, Y, reactionIndex, reaction ); const T molarReactionFlow = forwardMolarReactionFlow - reverseMolarFlow; // Net molar reaction flow // 3. Use the rate to update all relevant species derivatives (dY/dt) for (size_t speciesIndex = 0; speciesIndex < m_networkSpecies.size(); ++speciesIndex) { const T nu_ij = static_cast(m_stoichiometryMatrix(speciesIndex, reactionIndex)); result.dydt[speciesIndex] += threshold_flag * nu_ij * molarReactionFlow; } } T massProductionRate = static_cast(0.0); // [mol][s^-1] for (const auto& [species, index] : m_speciesToIndexMap) { massProductionRate += result.dydt[index] * species.mass() * u; } result.nuclearEnergyGenerationRate = -massProductionRate * N_A * c * c; // [cm^2][s^-3] = [erg][s^-1][g^-1] return result; } template T GraphEngine::calculateMolarReactionFlow( const reaction::Reaction &reaction, const std::vector &Y, const T T9, const T rho ) const { // --- Pre-setup (flags to control conditionals in an AD safe / branch aware manner) --- // ----- Constants for AD safe calculations --- const T zero = static_cast(0.0); const T one = static_cast(1.0); // ----- Initialize variables for molar concentration product and thresholds --- // Note: the logic here is that we use CppAD::CondExprLt to test thresholds and if they are less we set the flag // to zero so that the final returned reaction flow is 0. This is as opposed to standard if statements // which create branches that break the AD tape. const T Y_threshold = static_cast(MIN_ABUNDANCE_THRESHOLD); T threshold_flag = one; // --- Calculate the molar reaction rate (in units of [s^-1][cm^3(N-1)][mol^(1-N)] for N reactants) --- const T k_reaction = reaction.calculate_rate(T9); // --- Cound the number of each reactant species to account for species multiplicity --- std::unordered_map reactant_counts; reactant_counts.reserve(reaction.reactants().size()); for (const auto& reactant : reaction.reactants()) { reactant_counts[std::string(reactant.name())]++; } const int totalReactants = static_cast(reaction.reactants().size()); // --- Accumulator for the molar concentration --- auto molar_concentration_product = static_cast(1.0); // --- Loop through each unique reactant species and calculate the molar concentration for that species then multiply that into the accumulator --- for (const auto& [species_name, count] : reactant_counts) { // --- Resolve species to molar abundance --- // PERF: Could probably optimize out this lookup const auto species_it = m_speciesToIndexMap.find(m_networkSpeciesMap.at(species_name)); const size_t species_index = species_it->second; const T Yi = Y[species_index]; // --- Check if the species abundance is below the threshold where we ignore reactions --- // threshold_flag *= CppAD::CondExpLt(Yi, Y_threshold, zero, one); // --- If count is > 1 , we need to raise the molar concentration to the power of count since there are really count bodies in that reaction --- molar_concentration_product *= CppAD::pow(Yi, static_cast(count)); // ni^count // --- Apply factorial correction for identical reactions --- if (count > 1) { molar_concentration_product /= static_cast(std::tgamma(static_cast(count + 1))); // Gamma function for factorial } } // --- Final reaction flow calculation [mol][s^-1][g^-1] --- // Note: If the threshold flag ever gets set to zero this will return zero. // This will result basically in multiple branches being written to the AD tape, which will make // the tape more expensive to record, but it will also mean that we only need to record it once for // the entire network. const T densityTerm = CppAD::pow(rho, totalReactants > 1 ? static_cast(totalReactants - 1) : zero); // Density raised to the power of (N-1) for N reactants return molar_concentration_product * k_reaction * threshold_flag * densityTerm; } };