#include #include #include "gridfire/gridfire.h" #include "fourdst/composition/composition.h" #include "fourdst/plugin/bundle/bundle.h" #include "fourdst/logging/logging.h" #include "fourdst/atomic/species.h" #include "fourdst/composition/utils.h" #include "quill/Logger.h" #include "quill/Backend.h" #include "CLI/CLI.hpp" #include #include #include "gridfire/reaction/reaclib.h" static std::terminate_handler g_previousHandler = nullptr; boost::json::object g_reaction_contribution_history; static std::vector>>> g_callbackHistory; static bool s_wrote_abundance_history = false; static bool s_wrote_reaction_history = false; void quill_terminate_handler(); gridfire::NetIn init(const double temp, const double rho, const double tMax) { std::setlocale(LC_ALL, ""); g_previousHandler = std::set_terminate(quill_terminate_handler); quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log"); logger->set_log_level(quill::LogLevel::TraceL2); using namespace gridfire; const std::vector X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4}; const std::vector symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"}; const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X); NetIn netIn; netIn.composition = composition; netIn.temperature = temp; netIn.density = rho; netIn.energy = 0; netIn.tMax = tMax; netIn.dt0 = 1e-12; return netIn; } void log_results(const gridfire::NetOut& netOut, const gridfire::NetIn& netIn) { std::vector logSpecies = { fourdst::atomic::H_1, fourdst::atomic::He_3, fourdst::atomic::He_4, fourdst::atomic::C_12, fourdst::atomic::N_14, fourdst::atomic::O_16, fourdst::atomic::Ne_20, fourdst::atomic::Mg_24 }; std::vector initial; std::vector final; std::vector delta; std::vector fractional; for (const auto& species : logSpecies) { double initial_X = netIn.composition.getMassFraction(species); double final_X = netOut.composition.getMassFraction(species); double delta_X = final_X - initial_X; double fractionalChange = (delta_X) / initial_X * 100.0; initial.push_back(initial_X); final.push_back(final_X); delta.push_back(delta_X); fractional.push_back(fractionalChange); } initial.push_back(0.0); // Placeholder for energy final.push_back(netOut.energy); delta.push_back(netOut.energy); fractional.push_back(0.0); // Placeholder for energy initial.push_back(0.0); final.push_back(netOut.dEps_dT); delta.push_back(netOut.dEps_dT); fractional.push_back(0.0); initial.push_back(0.0); final.push_back(netOut.dEps_dRho); delta.push_back(netOut.dEps_dRho); fractional.push_back(0.0); initial.push_back(netIn.composition.getMeanParticleMass()); final.push_back(netOut.composition.getMeanParticleMass()); delta.push_back(final.back() - initial.back()); fractional.push_back((final.back() - initial.back()) / initial.back() * 100.0); std::vector rowLabels = [&]() -> std::vector { std::vector labels; for (const auto& species : logSpecies) { labels.push_back(std::string(species.name())); } labels.push_back("ε"); labels.push_back("dε/dT"); labels.push_back("dε/dρ"); labels.push_back("<μ>"); return labels; }(); gridfire::utils::Column paramCol("Parameter", rowLabels); gridfire::utils::Column initialCol("Initial", initial); gridfire::utils::Column finalCol ("Final", final); gridfire::utils::Column deltaCol ("δ", delta); gridfire::utils::Column percentCol("% Change", fractional); std::vector> columns; columns.push_back(std::make_unique>(paramCol)); columns.push_back(std::make_unique>(initialCol)); columns.push_back(std::make_unique>(finalCol)); columns.push_back(std::make_unique>(deltaCol)); columns.push_back(std::make_unique>(percentCol)); gridfire::utils::print_table("Simulation Results", columns); } void record_abundance_history_callback(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) { s_wrote_abundance_history = true; const auto& engine = ctx.engine; // std::unordered_map> abundances; std::vector Y; for (const auto& species : engine.getNetworkSpecies()) { const size_t sid = engine.getSpeciesIndex(species); double y = N_VGetArrayPointer(ctx.state)[sid]; Y.push_back(y > 0.0 ? y : 0.0); // Regularize tiny negative abundances to zero } fourdst::composition::Composition comp(engine.getNetworkSpecies(), Y); std::unordered_map> abundances; for (const auto& sp : comp | std::views::keys) { abundances.emplace(std::string(sp.name()), std::make_pair(sp.mass(), comp.getMolarAbundance(sp))); } g_callbackHistory.emplace_back(ctx.t, abundances); } size_t g_iters = 0; void record_contribution_callback(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) { s_wrote_reaction_history = true; boost::json::object timestep; boost::json::object reaction_contribution; boost::json::object species_abundance; std::set activeSpecies(ctx.engine.getNetworkSpecies().begin(), ctx.engine.getNetworkSpecies().end()); for (const auto& [species, contributions] : ctx.reactionContributionMap) { boost::json::object species_obj; for (const auto& [reaction_id, contribution] : contributions) { species_obj[reaction_id] = contribution; } reaction_contribution[std::string(species.name())] = species_obj; double y; if (activeSpecies.contains(species)) { const size_t sid = ctx.engine.getSpeciesIndex(species); y = N_VGetArrayPointer(ctx.state)[sid]; } else { y = 0.0; } species_abundance[std::string(species.name())] = y; } timestep["t"] = ctx.t; timestep["dt"] = ctx.dt; timestep["reaction_contribution"] = reaction_contribution; timestep["species_abundance"] = species_abundance; g_reaction_contribution_history[std::to_string(g_iters)] = timestep; g_iters++; } void save_callback_data(const std::string_view filename) { std::set unique_species; for (const auto &abundances: g_callbackHistory | std::views::values) { for (const auto &species_name: abundances | std::views::keys) { unique_species.insert(species_name); } } std::ofstream csvFile(filename.data(), std::ios::out); csvFile << "t,"; size_t i = 0; for (const auto& species_name : unique_species) { csvFile << species_name; if (i < unique_species.size() - 1) { csvFile << ","; } i++; } csvFile << "\n"; for (const auto& [time, data] : g_callbackHistory) { csvFile << time << ","; size_t j = 0; for (const auto& species_name : unique_species) { if (!data.contains(species_name)) { csvFile << "0.0"; } else { csvFile << data.at(species_name).second; } if (j < unique_species.size() - 1) { csvFile << ","; } ++j; } csvFile << "\n"; } csvFile.close(); } void log_callback_data(const double temp) { if (s_wrote_abundance_history) { std::cout << "Saving abundance history to abundance_history.csv" << std::endl; save_callback_data("abundance_history_" + std::to_string(temp) + ".csv"); } if (s_wrote_reaction_history) { std::cout << "Saving reaction history to reaction_contribution_history.json" << std::endl; std::ofstream jsonFile("reaction_contribution_history_" + std::to_string(temp) + ".json", std::ios::out); jsonFile << boost::json::serialize(g_reaction_contribution_history); jsonFile.close(); } } void quill_terminate_handler() { log_callback_data(1.5e7); quill::Backend::stop(); if (g_previousHandler) g_previousHandler(); else std::abort(); } void callback_main(const gridfire::solver::CVODESolverStrategy::TimestepContext& ctx) { record_abundance_history_callback(ctx); record_contribution_callback(ctx); } int main(int argc, char** argv) { using namespace gridfire; CLI::App app{"GridFire Sandbox Application."}; double temp = 1.5e7; double rho = 1.5e2; double tMax = 3.1536e+17; app.add_option("-t,--temp", temp, "Temperature in K (Default 1.5e7K)"); app.add_option("-r,--rho", rho, "Density in g/cm^3 (Default 1.5e2g/cm^3)"); app.add_option("--tmax", tMax, "Maximum simulation time in s (Default 3.1536e17s)"); CLI11_PARSE(app, argc, argv); const NetIn netIn = init(temp, rho, tMax); policy::MainSequencePolicy stellarPolicy(netIn.composition); stellarPolicy.construct(); engine::DynamicEngine& engine = stellarPolicy.construct(); solver::CVODESolverStrategy solver(engine); solver.set_callback(solver::CVODESolverStrategy::TimestepCallback(callback_main)); const NetOut netOut = solver.evaluate(netIn, false); log_results(netOut, netIn); log_callback_data(temp); }