#include "gridfire/solver/strategies/CVODE_solver_strategy.h" #include "gridfire/network.h" #include "gridfire/utils/table_format.h" #include "gridfire/engine/diagnostics/dynamic_engine_diagnostics.h" #include "quill/LogMacros.h" #include "fourdst/composition/composition.h" // ReSharper disable once CppUnusedIncludeDirective #include #include #include #include #include #include #include "fourdst/composition/exceptions/exceptions_composition.h" namespace { std::unordered_map cvode_ret_code_map { {0, "CV_SUCCESS: The solver succeeded."}, {1, "CV_TSTOP_RETURN: The solver reached the specified stopping time."}, {2, "CV_ROOT_RETURN: A root was found."}, {-99, "CV_WARNING: CVODE succeeded but in an unusual manner"}, {-1, "CV_TOO_MUCH_WORK: The solver took too many internal steps."}, {-2, "CV_TOO_MUCH_ACC: The solver could not satisfy the accuracy requested."}, {-3, "CV_ERR_FAILURE: The solver encountered a non-recoverable error."}, {-4, "CV_CONV_FAILURE: The solver failed to converge."}, {-5, "CV_LINIT_FAIL: The linear solver's initialization function failed."}, {-6, "CV_LSETUP_FAIL: The linear solver's setup function failed."}, {-7, "CV_LSOLVE_FAIL: The linear solver's solve function failed."}, {-8, "CV_RHSFUNC_FAIL: The right-hand side function failed in an unrecoverable manner."}, {-9, "CV_FIRST_RHSFUNC_ERR: The right-hand side function failed at the first call."}, {-10, "CV_REPTD_RHSFUNC_ERR: The right-hand side function repeatedly failed recoverable."}, {-11, "CV_UNREC_RHSFUNC_ERR: The right-hand side function failed unrecoverably."}, {-12, "CV_RTFUNC_FAIL: The rootfinding function failed in an unrecoverable manner."}, {-13, "CV_NLS_INIT_FAIL: The nonlinear solver's initialization function failed."}, {-14, "CV_NLS_SETUP_FAIL: The nonlinear solver's setup function failed."}, {-15, "CV_CONSTR_FAIL : The inequality constraint was violated and the solver was unable to recover."}, {-16, "CV_NLS_FAIL: The nonlinear solver's solve function failed."}, {-20, "CV_MEM_FAIL: Memory allocation failed."}, {-21, "CV_MEM_NULL: The CVODE memory structure is NULL."}, {-22, "CV_ILL_INPUT: An illegal input was detected."}, {-23, "CV_NO_MALLOC: The CVODE memory structure has not been allocated."}, {-24, "CV_BAD_K: The value of k is invalid."}, {-25, "CV_BAD_T: The value of t is invalid."}, {-26, "CV_BAD_DKY: The value of dky is invalid."}, {-27, "CV_TOO_CLOSE: The time points are too close together."}, {-28, "CV_VECTOROP_ERR: A vector operation failed."}, {-29, "CV_PROJ_MEM_NULL: The projection memory structure is NULL."}, {-30, "CV_PROJFUNC_FAIL: The projection function failed in an unrecoverable manner."}, {-31, "CV_REPTD_PROJFUNC_ERR: THe projection function has repeated recoverable errors."} }; void check_cvode_flag(const int flag, const std::string& func_name) { if (flag < 0) { if (!cvode_ret_code_map.contains(flag)) { throw std::runtime_error("CVODE error in " + func_name + ": Unknown error code: " + std::to_string(flag)); } throw std::runtime_error("CVODE error in " + func_name + ": " + cvode_ret_code_map.at(flag)); } } N_Vector init_sun_vector(uint64_t size, SUNContext sun_ctx) { #ifdef SUNDIALS_HAVE_OPENMP N_Vector vec = N_VNew_OpenMP(size, 0, sun_ctx); #elif SUNDIALS_HAVE_PTHREADS N_Vector vec = N_VNew_Pthreads(size, sun_ctx); #else N_Vector vec = N_VNew_Serial(size, sun_ctx); #endif check_cvode_flag(vec == nullptr ? -1 : 0, "N_VNew"); return vec; } } namespace gridfire::solver { CVODESolverStrategy::CVODESolverStrategy(DynamicEngine &engine): NetworkSolverStrategy(engine) { // TODO: In order to support MPI this function must be changed const int flag = SUNContext_Create(SUN_COMM_NULL, &m_sun_ctx); if (flag < 0) { throw std::runtime_error("Failed to create SUNDIALS context (SUNDIALS Errno: " + std::to_string(flag) + ")"); } } CVODESolverStrategy::~CVODESolverStrategy() { std::cout << "Cleaning up CVODE resources..." << std::endl; cleanup_cvode_resources(true); if (m_sun_ctx) { SUNContext_Free(&m_sun_ctx); } } NetOut CVODESolverStrategy::evaluate(const NetIn& netIn) { const double T9 = netIn.temperature / 1e9; // Convert temperature from Kelvin to T9 (T9 = T / 1e9) const auto absTol = m_config.get("gridfire:solver:CVODESolverStrategy:absTol", 1.0e-8); const auto relTol = m_config.get("gridfire:solver:CVODESolverStrategy:relTol", 1.0e-8); fourdst::composition::Composition equilibratedComposition = m_engine.update(netIn); size_t numSpecies = m_engine.getNetworkSpecies().size(); uint64_t N = numSpecies + 1; m_cvode_mem = CVodeCreate(CV_BDF, m_sun_ctx); check_cvode_flag(m_cvode_mem == nullptr ? -1 : 0, "CVodeCreate"); initialize_cvode_integration_resources(N, numSpecies, 0.0, equilibratedComposition, absTol, relTol, 0.0); CVODEUserData user_data; user_data.solver_instance = this; user_data.engine = &m_engine; double current_time = 0; [[maybe_unused]] double last_callback_time = 0; m_num_steps = 0; double accumulated_energy = 0.0; int total_update_stages_triggered = 0; while (current_time < netIn.tMax) { try { user_data.T9 = T9; user_data.rho = netIn.density; user_data.networkSpecies = &m_engine.getNetworkSpecies(); user_data.captured_exception.reset(); check_cvode_flag(CVodeSetUserData(m_cvode_mem, &user_data), "CVodeSetUserData"); int flag = -1; if (m_stdout_logging_enabled) { flag = CVode(m_cvode_mem, netIn.tMax, m_Y, ¤t_time, CV_ONE_STEP); } else { flag = CVode(m_cvode_mem, netIn.tMax, m_Y, ¤t_time, CV_NORMAL); } if (user_data.captured_exception){ std::rethrow_exception(std::make_exception_ptr(*user_data.captured_exception)); } check_cvode_flag(flag, "CVode"); long int n_steps; double last_step_size; CVodeGetNumSteps(m_cvode_mem, &n_steps); CVodeGetLastStep(m_cvode_mem, &last_step_size); long int nliters, nlcfails; CVodeGetNumNonlinSolvIters(m_cvode_mem, &nliters); CVodeGetNumNonlinSolvConvFails(m_cvode_mem, &nlcfails); sunrealtype* y_data = N_VGetArrayPointer(m_Y); const double current_energy = y_data[numSpecies]; // Specific energy rate std::cout << std::scientific << std::setprecision(3) << "Step: " << std::setw(6) << n_steps << " | Time: " << current_time << " [s]" << " | Last Step Size: " << last_step_size << " | Accumulated Energy: " << current_energy << " [erg/g]" << " | NonlinIters: " << std::setw(2) << nliters << " | ConvFails: " << std::setw(2) << nlcfails << std::endl; // if (n_steps % 50 == 0) { // std::cout << "Logging step diagnostics at step " << n_steps << "..." << std::endl; // log_step_diagnostics(user_data); // } // if (n_steps == 300) { // log_step_diagnostics(user_data); // exit(0); // } // log_step_diagnostics(user_data); } catch (const exceptions::StaleEngineTrigger& e) { exceptions::StaleEngineTrigger::state staleState = e.getState(); accumulated_energy += e.energy(); // Add the specific energy rate to the accumulated energy LOG_INFO( m_logger, "Engine Update Triggered due to StaleEngineTrigger exception at time {} ({} update{} triggered). Current total specific energy {} [erg/g]", current_time, total_update_stages_triggered, total_update_stages_triggered == 1 ? "" : "s", accumulated_energy); total_update_stages_triggered++; fourdst::composition::Composition temp_comp; std::vector mass_fractions; size_t num_species_at_stop = e.numSpecies(); mass_fractions.reserve(num_species_at_stop); for (size_t i = 0; i < num_species_at_stop; ++i) { const auto& species = m_engine.getNetworkSpecies()[i]; temp_comp.registerSpecies(species); mass_fractions.push_back(e.getMolarAbundance(i) * species.mass()); // Convert from molar abundance to mass fraction } temp_comp.setMassFraction(m_engine.getNetworkSpecies(), mass_fractions); temp_comp.finalize(true); NetIn netInTemp = netIn; netInTemp.temperature = e.temperature(); netInTemp.density = e.density(); netInTemp.composition = temp_comp; fourdst::composition::Composition currentComposition = m_engine.update(netInTemp); LOG_INFO( m_logger, "Due to a triggered stale engine the composition was updated from size {} to {} species.", num_species_at_stop, m_engine.getNetworkSpecies().size() ); numSpecies = m_engine.getNetworkSpecies().size(); N = numSpecies + 1; initialize_cvode_integration_resources(N, numSpecies, current_time, currentComposition, absTol, relTol, accumulated_energy); check_cvode_flag(CVodeReInit(m_cvode_mem, current_time, m_Y), "CVodeReInit"); } catch (fourdst::composition::exceptions::InvalidCompositionError& e) { log_step_diagnostics(user_data); std::rethrow_exception(std::make_exception_ptr(e)); } } sunrealtype* y_data = N_VGetArrayPointer(m_Y); accumulated_energy += y_data[numSpecies]; std::vector finalMassFractions(numSpecies); for (size_t i = 0; i < numSpecies; ++i) { const double molarMass = m_engine.getNetworkSpecies()[i].mass(); finalMassFractions[i] = y_data[i] * molarMass; // Convert from molar abundance to mass fraction if (finalMassFractions[i] < MIN_ABUNDANCE_THRESHOLD) { finalMassFractions[i] = 0.0; } } std::vector speciesNames; speciesNames.reserve(numSpecies); for (const auto& species : m_engine.getNetworkSpecies()) { speciesNames.emplace_back(species.name()); } fourdst::composition::Composition outputComposition(speciesNames); outputComposition.setMassFraction(speciesNames, finalMassFractions); outputComposition.finalize(true); NetOut netOut; netOut.composition = outputComposition; netOut.energy = accumulated_energy; check_cvode_flag(CVodeGetNumSteps(m_cvode_mem, reinterpret_cast(&netOut.num_steps)), "CVodeGetNumSteps"); outputComposition.setCompositionMode(false); // set to number fraction mode std::vector Y = outputComposition.getNumberFractionVector(); // TODO need to ensure that the canonical vector representation is used throughout the code to make sure tracking does not get messed up auto [dEps_dT, dEps_dRho] = m_engine.calculateEpsDerivatives( std::vector(Y.begin(), Y.begin() + numSpecies), // TODO: This narrowing should probably be solved. Its possible unforeseen bugs will arise from this T9, netIn.density ); netOut.dEps_dT = dEps_dT; netOut.dEps_dRho = dEps_dRho; return netOut; } void CVODESolverStrategy::set_callback(const std::any &callback) { m_callback = std::any_cast(callback); } bool CVODESolverStrategy::get_stdout_logging_enabled() const { return m_stdout_logging_enabled; } void CVODESolverStrategy::set_stdout_logging_enabled(const bool value) { m_stdout_logging_enabled = value; } std::vector> CVODESolverStrategy::describe_callback_context() const { return {}; } int CVODESolverStrategy::cvode_rhs_wrapper( sunrealtype t, N_Vector y, N_Vector ydot, void *user_data ) { auto* data = static_cast(user_data); const auto* instance = data->solver_instance; try { instance->calculate_rhs(t, y, ydot, data); return 0; } catch (const exceptions::StaleEngineTrigger& e) { data->captured_exception = std::make_unique(e); return 1; // 1 Indicates a recoverable error, CVODE will retry the step } catch (...) { return -1; // Some unrecoverable error } } int CVODESolverStrategy::cvode_jac_wrapper( sunrealtype t, N_Vector y, N_Vector ydot, SUNMatrix J, void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3 ) { const auto* data = static_cast(user_data); const auto* engine = data->engine; const size_t numSpecies = engine->getNetworkSpecies().size(); sunrealtype* J_data = SUNDenseMatrix_Data(J); const long int N = SUNDenseMatrix_Columns(J); for (size_t j = 0; j < numSpecies; ++j) { for (size_t i = 0; i < numSpecies; ++i) { // J(i,j) = d(f_i)/d(y_j) // Column-major order format for SUNDenseMatrix: J_data[j*N + i] J_data[j * N + i] = engine->getJacobianMatrixEntry(i, j); } } // For now assume that the energy derivatives wrt. abundances are zero for (size_t i = 0; i < N; ++i) { J_data[(N - 1) * N + i] = 0.0; // df(energy_dot)/df(y_i) J_data[i * N + (N - 1)] = 0.0; // df(f_i)/df(energy_dot) } return 0; } void CVODESolverStrategy::calculate_rhs( const sunrealtype t, const N_Vector y, const N_Vector ydot, const CVODEUserData *data ) const { const size_t numSpecies = m_engine.getNetworkSpecies().size(); sunrealtype* y_data = N_VGetArrayPointer(y); std::vector y_vec(y_data, y_data + numSpecies); std::ranges::replace_if(y_vec, [](const double val) { return val < 0.0; }, 0.0); const auto result = m_engine.calculateRHSAndEnergy(y_vec, data->T9, data->rho); if (!result) { throw exceptions::StaleEngineTrigger({data->T9, data->rho, y_vec, t, m_num_steps, y_data[numSpecies]}); } sunrealtype* ydot_data = N_VGetArrayPointer(ydot); const auto& [dydt, nuclearEnergyGenerationRate] = result.value(); for (size_t i = 0; i < numSpecies; ++i) { ydot_data[i] = dydt[i]; } ydot_data[numSpecies] = nuclearEnergyGenerationRate; // Set the last element to the specific energy rate } void CVODESolverStrategy::initialize_cvode_integration_resources( const uint64_t N, const size_t numSpecies, const double current_time, const fourdst::composition::Composition &composition, const double absTol, const double relTol, const double accumulatedEnergy ) { cleanup_cvode_resources(false); // Cleanup any existing resources before initializing new ones m_Y = init_sun_vector(N, m_sun_ctx); m_YErr = N_VClone(m_Y); sunrealtype *y_data = N_VGetArrayPointer(m_Y); for (size_t i = 0; i < numSpecies; i++) { const auto& species = m_engine.getNetworkSpecies()[i]; if (composition.contains(species)) { y_data[i] = composition.getMolarAbundance(species); } else { y_data[i] = std::numeric_limits::min(); // Species not in the composition, set to a small value } } y_data[numSpecies] = accumulatedEnergy; // Specific energy rate, initialized to zero check_cvode_flag(CVodeInit(m_cvode_mem, cvode_rhs_wrapper, current_time, m_Y), "CVodeInit"); check_cvode_flag(CVodeSStolerances(m_cvode_mem, relTol, absTol), "CVodeSStolerances"); check_cvode_flag(CVodeSetMaxStep(m_cvode_mem, 1.0e20), "CVodeSetMaxStep"); m_J = SUNDenseMatrix(static_cast(N), static_cast(N), m_sun_ctx); check_cvode_flag(m_J == nullptr ? -1 : 0, "SUNDenseMatrix"); m_LS = SUNLinSol_Dense(m_Y, m_J, m_sun_ctx); check_cvode_flag(m_LS == nullptr ? -1 : 0, "SUNLinSol_Dense"); check_cvode_flag(CVodeSetLinearSolver(m_cvode_mem, m_LS, m_J), "CVodeSetLinearSolver"); check_cvode_flag(CVodeSetJacFn(m_cvode_mem, cvode_jac_wrapper), "CVodeSetJacFn"); } void CVODESolverStrategy::cleanup_cvode_resources(const bool memFree) { if (m_LS) SUNLinSolFree(m_LS); if (m_J) SUNMatDestroy(m_J); if (m_Y) N_VDestroy(m_Y); if (m_YErr) N_VDestroy(m_YErr); m_LS = nullptr; m_J = nullptr; m_Y = nullptr; m_YErr = nullptr; if (memFree) { if (m_cvode_mem) CVodeFree(&m_cvode_mem); m_cvode_mem = nullptr; } } void CVODESolverStrategy::log_step_diagnostics(const CVODEUserData &user_data) const { check_cvode_flag(CVodeGetEstLocalErrors(m_cvode_mem, m_YErr), "CVodeGetEstLocalErrors"); sunrealtype *y_data = N_VGetArrayPointer(m_Y); sunrealtype *y_err_data = N_VGetArrayPointer(m_YErr); std::vector err_ratios; std::vector speciesNames; const auto absTol = m_config.get("gridfire:solver:CVODESolverStrategy:absTol", 1.0e-8); const auto relTol = m_config.get("gridfire:solver:CVODESolverStrategy:relTol", 1.0e-8); const size_t num_components = N_VGetLength(m_Y); err_ratios.resize(num_components - 1); std::vector Y_full(y_data, y_data + num_components - 1); std::ranges::replace_if( Y_full, [](const double val) { return val < 0.0 && val > -1.0e-16; }, 0.0 ); for (size_t i = 0; i < num_components - 1; i++) { const double weight = relTol * std::abs(y_data[i]) + absTol; if (weight == 0.0) continue; // Skip components with zero weight const double err_ratio = std::abs(y_err_data[i]) / weight; err_ratios[i] = err_ratio; speciesNames.push_back(std::string(user_data.networkSpecies->at(i).name())); } if (err_ratios.empty()) { return; } std::vector indices(speciesNames.size()); for (size_t i = 0; i < indices.size(); ++i) { indices[i] = i; } std::ranges::sort( indices, [&err_ratios](const size_t i1, const size_t i2) { return err_ratios[i1] > err_ratios[i2]; } ); std::vector sorted_speciesNames; std::vector sorted_err_ratios; sorted_speciesNames.reserve(indices.size()); sorted_err_ratios.reserve(indices.size()); for (const auto idx: indices) { sorted_speciesNames.push_back(speciesNames[idx]); sorted_err_ratios.push_back(err_ratios[idx]); } std::vector> columns; columns.push_back(std::make_unique>("Species", sorted_speciesNames)); columns.push_back(std::make_unique>("Error Ratio", sorted_err_ratios)); std::cout << utils::format_table("Species Error Ratios", columns) << std::endl; diagnostics::inspect_jacobian_stiffness(*user_data.engine, Y_full, user_data.T9, user_data.rho); diagnostics::inspect_species_balance(*user_data.engine, "N-14", Y_full, user_data.T9, user_data.rho); diagnostics::inspect_species_balance(*user_data.engine, "n-1", Y_full, user_data.T9, user_data.rho); } }