// ReSharper disable CppUnusedIncludeDirective #include #include #include #include #include #include "gridfire/gridfire.h" #include // Required for parallel_setup #include "fourdst/composition/composition.h" #include "fourdst/logging/logging.h" #include "fourdst/atomic/species.h" #include "fourdst/composition/utils.h" #include "quill/Logger.h" #include "quill/Backend.h" #include "CLI/CLI.hpp" #include #include "gridfire/utils/gf_omp.h" static std::terminate_handler g_previousHandler = nullptr; static std::vector>>> g_callbackHistory; static bool s_wrote_abundance_history = false; void quill_terminate_handler(); enum class ScalingTypes { LINEAR, LOG, GEOM }; std::map scaling_type_map = { {"linear", ScalingTypes::LINEAR}, {"log", ScalingTypes::LOG}, {"geom", ScalingTypes::GEOM} }; template concept IsOrderableLinear = std::floating_point; template concept IsOrderableLog = std::floating_point; template constexpr std::vector linspace(T start, T end, size_t N) { if (N == 0) { return {}; } if (N == 1) { return {start}; } std::vector result{}; result.resize(N); for (std::size_t i = 0; i < N; ++i) { const T t = static_cast(i) / static_cast(N - 1); result[i] = std::lerp(start, end, t); } return result; } template std::vector logspace(T start, T end, size_t N) { if (N == 0) { return {}; } if (N == 1) { return {start}; } std::vector result{}; result.resize(N); const T log_start = start; const T log_end = end; for (std::size_t i = 0; i < N; ++i) { const T t = static_cast(i) / static_cast(N - 1); const T exponent = std::lerp(log_start, log_end, t); result[i] = std::pow(static_cast(10), exponent); } return result; } template std::vector geomspace(T start, T end, size_t N) { if (start <= 0 || end <= 0) { throw std::domain_error("geomspace requires positive start/end values"); } const T log_start = std::log10(start); const T log_end = std::log10(end); std::vector result = logspace(log_start, log_end, N); result[0] = start; result[N - 1] = end; return result; } gridfire::NetIn init(const double temp, const double rho, const double tMax) { std::setlocale(LC_ALL, ""); g_previousHandler = std::set_terminate(quill_terminate_handler); quill::Logger* logger = fourdst::logging::LogManager::getInstance().getLogger("log"); logger->set_log_level(quill::LogLevel::Info); using namespace gridfire; const std::vector X = {0.7081145999999999, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4}; const std::vector symbols = {"H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"}; const fourdst::composition::Composition composition = fourdst::composition::buildCompositionFromMassFractions(symbols, X); NetIn netIn; netIn.composition = composition; netIn.temperature = temp; netIn.density = rho; netIn.energy = 0; netIn.tMax = tMax; netIn.dt0 = 1e-12; return netIn; } void log_results(const gridfire::NetOut& netOut, const gridfire::NetIn& netIn) { std::vector logSpecies = { fourdst::atomic::H_1, fourdst::atomic::He_3, fourdst::atomic::He_4, fourdst::atomic::C_12, fourdst::atomic::N_14, fourdst::atomic::O_16, fourdst::atomic::Ne_20, fourdst::atomic::Mg_24 }; std::vector initial; std::vector final; std::vector delta; std::vector fractional; for (const auto& species : logSpecies) { double initial_X = netIn.composition.getMassFraction(species); double final_X = netOut.composition.getMassFraction(species); double delta_X = final_X - initial_X; double fractionalChange = (delta_X) / initial_X * 100.0; initial.push_back(initial_X); final.push_back(final_X); delta.push_back(delta_X); fractional.push_back(fractionalChange); } initial.push_back(0.0); // Placeholder for energy final.push_back(netOut.energy); delta.push_back(netOut.energy); fractional.push_back(0.0); // Placeholder for energy initial.push_back(0.0); final.push_back(netOut.dEps_dT); delta.push_back(netOut.dEps_dT); fractional.push_back(0.0); initial.push_back(0.0); final.push_back(netOut.dEps_dRho); delta.push_back(netOut.dEps_dRho); fractional.push_back(0.0); initial.push_back(0.0); final.push_back(netOut.specific_neutrino_energy_loss); delta.push_back(netOut.specific_neutrino_energy_loss); fractional.push_back(0.0); initial.push_back(0.0); final.push_back(netOut.specific_neutrino_flux); delta.push_back(netOut.specific_neutrino_flux); fractional.push_back(0.0); initial.push_back(netIn.composition.getMeanParticleMass()); final.push_back(netOut.composition.getMeanParticleMass()); delta.push_back(final.back() - initial.back()); fractional.push_back((final.back() - initial.back()) / initial.back() * 100.0); std::vector rowLabels = [&]() -> std::vector { std::vector labels; for (const auto& species : logSpecies) { labels.emplace_back(species.name()); } labels.emplace_back("ε"); labels.emplace_back("dε/dT"); labels.emplace_back("dε/dρ"); labels.emplace_back("Eν"); labels.emplace_back("Fν"); labels.emplace_back("<μ>"); return labels; }(); gridfire::utils::Column paramCol("Parameter", rowLabels); gridfire::utils::Column initialCol("Initial", initial); gridfire::utils::Column finalCol ("Final", final); gridfire::utils::Column deltaCol ("δ", delta); gridfire::utils::Column percentCol("% Change", fractional); std::vector> columns; columns.push_back(std::make_unique>(paramCol)); columns.push_back(std::make_unique>(initialCol)); columns.push_back(std::make_unique>(finalCol)); columns.push_back(std::make_unique>(deltaCol)); columns.push_back(std::make_unique>(percentCol)); gridfire::utils::print_table("Simulation Results", columns); } void record_abundance_history_callback(const gridfire::solver::PointSolverTimestepContext& ctx) { s_wrote_abundance_history = true; const auto& engine = ctx.engine; // std::unordered_map> abundances; std::vector Y; for (const auto& species : engine.getNetworkSpecies(ctx.state_ctx)) { const size_t sid = engine.getSpeciesIndex(ctx.state_ctx, species); double y = N_VGetArrayPointer(ctx.state)[sid]; Y.push_back(y > 0.0 ? y : 0.0); // Regularize tiny negative abundances to zero } fourdst::composition::Composition comp(engine.getNetworkSpecies(ctx.state_ctx), Y); std::unordered_map> abundances; for (const auto& sp : comp | std::views::keys) { abundances.emplace(std::string(sp.name()), std::make_pair(sp.mass(), comp.getMolarAbundance(sp))); } g_callbackHistory.emplace_back(ctx.t, abundances); } void save_callback_data(const std::string_view filename) { std::set unique_species; for (const auto &abundances: g_callbackHistory | std::views::values) { for (const auto &species_name: abundances | std::views::keys) { unique_species.insert(species_name); } } std::ofstream csvFile(filename.data(), std::ios::out); csvFile << "t,"; size_t i = 0; for (const auto& species_name : unique_species) { csvFile << species_name; if (i < unique_species.size() - 1) { csvFile << ","; } i++; } csvFile << "\n"; for (const auto& [time, data] : g_callbackHistory) { csvFile << time << ","; size_t j = 0; for (const auto& species_name : unique_species) { if (!data.contains(species_name)) { csvFile << "0.0"; } else { csvFile << data.at(species_name).second; } if (j < unique_species.size() - 1) { csvFile << ","; } ++j; } csvFile << "\n"; } csvFile.close(); } void log_callback_data(const double temp) { if (s_wrote_abundance_history) { std::cout << "Saving abundance history to abundance_history.csv" << std::endl; save_callback_data("abundance_history_" + std::to_string(temp) + ".csv"); } } void quill_terminate_handler() { log_callback_data(1.5e7); quill::Backend::stop(); if (g_previousHandler) g_previousHandler(); else std::abort(); } void callback_main(const gridfire::solver::PointSolverTimestepContext& ctx) { record_abundance_history_callback(ctx); } int main(int argc, char** argv) { GF_PAR_INIT(); using namespace gridfire; double tMin = 1e7; double tMax = 3e7; ScalingTypes tempScaling = ScalingTypes::LINEAR; double rhoMin = 1e2; double rhoMax = 1e3; ScalingTypes rhoScaling = ScalingTypes::LOG; double evolveTime = 1e13; size_t shells = 10; CLI::App app("GridFire Quick CLI Test"); // Add temp, rho, and tMax as options if desired app.add_option("--tMin", tMin, "Initial Temperature")->default_val(std::format("{:5.2E}", tMin)); app.add_option("--tMax", tMax, "Maximum Temperature")->default_val(std::format("{:5.2E}", tMax)); app.add_option("--tempScaling", tempScaling, "Temperature Scaling Type (linear, log, geom)")->default_val(ScalingTypes::LINEAR)->transform(CLI::CheckedTransformer(scaling_type_map, CLI::ignore_case)); app.add_option("--rhoMin", rhoMin, "Initial Density")->default_val(std::format("{:5.2E}", rhoMin)); app.add_option("--rhoMax", rhoMax, "Maximum Density")->default_val(std::format("{:5.2E}", rhoMax)); app.add_option("--rhoScaling", rhoScaling, "Density Scaling Type (linear, log, geom)")->default_val(ScalingTypes::LOG)->transform(CLI::CheckedTransformer(scaling_type_map, CLI::ignore_case)); app.add_option("--shell", shells, "Number of Shells")->default_val(shells); app.add_option("--evolveTime", evolveTime, "Evolution Time")->default_val(std::format("{:5.2E}", evolveTime)); CLI11_PARSE(app, argc, argv); NetIn rootNetIn = init(tMin, tMax, evolveTime); std::vector temps; std::vector densities; switch (tempScaling) { case ScalingTypes::LINEAR: temps = linspace(tMin, tMax, static_cast(shells)); break; case ScalingTypes::LOG: temps = logspace(std::log10(tMin), std::log10(tMax), static_cast(shells)); break; case ScalingTypes::GEOM: temps = geomspace(tMin, tMax, static_cast(shells)); break; } switch (rhoScaling) { case ScalingTypes::LINEAR: densities = linspace(rhoMin, rhoMax, static_cast(shells)); break; case ScalingTypes::LOG: densities = logspace(std::log10(rhoMin), std::log10(rhoMax), static_cast(shells)); break; case ScalingTypes::GEOM: densities = geomspace(rhoMin, rhoMax, static_cast(shells)); break; } std::vector netIns; netIns.reserve(shells); for (size_t i = 0; i < static_cast(shells); ++i) { NetIn netIn = rootNetIn; netIn.temperature = temps[i]; netIn.density = densities[i]; netIns.emplace_back(netIn); } policy::MainSequencePolicy stellarPolicy(rootNetIn.composition); auto [engine, ctx_template] = stellarPolicy.construct(); solver::PointSolver point_solver(engine); solver::GridSolver grid_solver(engine, point_solver); solver::GridSolverContext solver_ctx(*ctx_template); std::vector results = grid_solver.evaluate(solver_ctx, netIns); for (size_t i = 0; i < results.size(); ++i) { std::cout << "=== Shell " << i << " ===" << std::endl; log_results(results[i], netIns[i]); } }