#include #include #include #include #include "const.h" #include "config.h" #include "quill/LogMacros.h" #include "approx8.h" #include "network.h" /* Nuclear reaction network in cgs units based on Frank Timmes' "aprox8". At this time it does neither screening nor neutrino losses. It includes the following 8 isotopes: h1 he3 he4 c12 n14 o16 ne20 mg24 and the following nuclear reactions: ---pp chain--- p(p,e+)d d(p,g)he3 he3(he3,2p)he4 ---CNO cycle--- c12(p,g)n13 - n13 -> c13 + p -> n14 n14(p,g)o15 - o15 + p -> c12 + he4 n14(a,g)f18 - proceeds to ne20 n15(p,a)c12 - / these two n15 reactions are \ CNO I n15(p,g)o16 - \ used to calculate a fraction / CNO II o16(p,g)f17 - f17 + e -> o17 and then o17 + p -> n14 + he4 ---alpha captures--- c12(a,g)o16 triple alpha o16(a,g)ne20 ne20(a,g)mg24 c12(c12,a)ne20 c12(o16,a)mg24 At present the rates are all evaluated using a fitting function. The coefficients to the fit are from reaclib.jinaweb.org . */ namespace nnApprox8{ // using namespace std; using namespace boost::numeric::odeint; //helper functions // a function to multilpy two arrays and then sum the resulting elements: sum(a*b) double sum_product( const vec7 &a, const vec7 &b){ if (a.size() != b.size()) { throw std::runtime_error("Error: array size mismatch in sum_product"); } double sum=0; for (size_t i=0; i < a.size(); i++) { sum += a[i] * b[i]; } return sum; } // the fit to the nuclear reaction rates is of the form: // exp( a0 + a1/T9 + a2/T9^(1/3) + a3*T9^(1/3) + a4*T9 + a5*T9^(5/3) + log(T9) ) // this function returns an array of the T9 terms in that order, where T9 is the temperatures in GigaKelvin vec7 get_T9_array(const double &T) { vec7 arr; double T9=1e-9*T; double T913=pow(T9,1./3.); arr[0]=1; arr[1]=1/T9; arr[2]=1/T913; arr[3]=T913; arr[4]=T9; arr[5]=pow(T9,5./3.); arr[6]=log(T9); return arr; } // this function uses the two preceding functions to evaluate the rate given the T9 array and the coefficients double rate_fit(const vec7 &T9, const vec7 &coef){ return exp(sum_product(T9,coef)); } // p + p -> d; this, like some of the other rates, this is a composite of multiple fits double pp_rate(const vec7 &T9) { vec7 a1 = {-34.78630, 0,-3.511930, 3.100860, -0.1983140, 1.262510e-2, -1.025170}; vec7 a2 = { -4.364990e+1,-2.460640e-3,-2.750700,-4.248770e-1,1.598700e-2,-6.908750e-4,-2.076250e-1}; return rate_fit(T9,a1) + rate_fit(T9,a2); } // p + d -> he3 double dp_rate(const vec7 &T9) { vec7 a1 = {7.528980, 0, -3.720800, 0.8717820, 0, 0,-0.6666670}; vec7 a2 = {8.935250, 0, -3.720800, 0.1986540, 0, 0, 0.3333330}; return rate_fit(T9,a1) + rate_fit(T9,a2); } // he3 + he3 -> he4 + 2p double he3he3_rate(const vec7 &T9){ vec7 a = {2.477880e+01,0,-12.27700,-0.1036990,-6.499670e-02,1.681910e-02,-6.666670e-01}; return rate_fit(T9,a); } // he3(he3,2p)he4 double he3he4_rate(const vec7 &T9){ vec7 a1 = {1.560990e+01,0.000000e+00,-1.282710e+01,-3.082250e-02,-6.546850e-01,8.963310e-02,-6.666670e-01}; vec7 a2 = {1.770750e+01,0.000000e+00,-1.282710e+01,-3.812600e+00,9.422850e-02,-3.010180e-03,1.333330e+00}; return rate_fit(T9,a1) + rate_fit(T9,a2); } // he4 + he4 + he4 -> c12 double triple_alpha_rate(const vec7 &T9){ vec7 a1 = {-9.710520e-01,0.000000e+00,-3.706000e+01,2.934930e+01,-1.155070e+02,-1.000000e+01,-1.333330e+00}; vec7 a2 = {-1.178840e+01,-1.024460e+00,-2.357000e+01,2.048860e+01,-1.298820e+01,-2.000000e+01,-2.166670e+00}; vec7 a3 = {-2.435050e+01,-4.126560e+00,-1.349000e+01,2.142590e+01,-1.347690e+00,8.798160e-02,-1.316530e+01}; return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); } // c12 + p -> n13 double c12p_rate(const vec7 &T9){ vec7 a1={1.714820e+01,0.000000e+00,-1.369200e+01,-2.308810e-01,4.443620e+00,-3.158980e+00,-6.666670e-01}; vec7 a2={1.754280e+01,-3.778490e+00,-5.107350e+00,-2.241110e+00,1.488830e-01,0.000000e+00,-1.500000e+00}; return rate_fit(T9,a1) + rate_fit(T9,a2); } // c12 + he4 -> o16 double c12a_rate(const vec7 &T9){ vec7 a1={6.965260e+01,-1.392540e+00,5.891280e+01,-1.482730e+02,9.083240e+00,-5.410410e-01,7.035540e+01}; vec7 a2={2.546340e+02,-1.840970e+00,1.034110e+02,-4.205670e+02,6.408740e+01,-1.246240e+01,1.373030e+02}; return rate_fit(T9,a1) + rate_fit(T9,a2); } // n14(p,g)o15 - o15 + p -> c12 + he4 double n14p_rate(const vec7 &T9){ vec7 a1={1.701000e+01,0.000000e+00,-1.519300e+01,-1.619540e-01,-7.521230e+00,-9.875650e-01,-6.666670e-01}; vec7 a2={2.011690e+01,0.000000e+00,-1.519300e+01,-4.639750e+00,9.734580e+00,-9.550510e+00,3.333330e-01}; vec7 a3={7.654440e+00,-2.998000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; vec7 a4={6.735780e+00,-4.891000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,6.820000e-02}; return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); } // n14(a,g)f18 assumed to go on to ne20 double n14a_rate(const vec7 &T9){ vec7 a1={2.153390e+01,0.000000e+00,-3.625040e+01,0.000000e+00,0.000000e+00,-5.000000e+00,-6.666670e-01}; vec7 a2={1.968380e-01,-5.160340e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; vec7 a3={1.389950e+01,-1.096560e+01,-5.622700e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); } // n15(p,a)c12 (CNO I) double n15pa_rate(const vec7 &T9){ vec7 a1 = {2.747640e+01,0.000000e+00,-1.525300e+01,1.593180e+00,2.447900e+00,-2.197080e+00,-6.666670e-01}; vec7 a2 = {-4.873470e+00,-2.021170e+00,0.000000e+00,3.084970e+01,-8.504330e+00,-1.544260e+00,-1.500000e+00}; vec7 a3 = {2.089720e+01,-7.406000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; vec7 a4 = {-6.575220e+00,-1.163800e+00,0.000000e+00,2.271050e+01,-2.907070e+00,2.057540e-01,-1.500000e+00}; return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); } // n15(p,g)o16 (CNO II) double n15pg_rate(const vec7 &T9){ vec7 a1 = {2.001760e+01,0.000000e+00,-1.524000e+01,3.349260e-01,4.590880e+00,-4.784680e+00,-6.666670e-01}; vec7 a2 = {6.590560e+00,-2.923150e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; vec7 a3 = {1.454440e+01,-1.022950e+01,0.000000e+00,0.000000e+00,4.590370e-02,0.000000e+00,-1.500000e+00}; return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); } double n15pg_frac(const vec7 &T9){ double f1=n15pg_rate(T9); double f2=n15pa_rate(T9); return f1/(f1+f2); } // o16(p,g)f17 then f17 -> o17(p,a)n14 double o16p_rate(const vec7 &T9){ vec7 a={1.909040e+01,0.000000e+00,-1.669600e+01,-1.162520e+00,2.677030e-01,-3.384110e-02,-6.666670e-01}; return rate_fit(T9,a); } // o16(a,g)ne20 double o16a_rate(const vec7 &T9){ vec7 a1={2.390300e+01,0.000000e+00,-3.972620e+01,-2.107990e-01,4.428790e-01,-7.977530e-02,-6.666670e-01}; vec7 a2={3.885710e+00,-1.035850e+01,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; vec7 a3={9.508480e+00,-1.276430e+01,0.000000e+00,-3.659250e+00,7.142240e-01,-1.075080e-03,-1.500000e+00}; return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); } // ne20(a,g)mg24 double ne20a_rate(const vec7 &T9){ vec7 a1={2.450580e+01,0.000000e+00,-4.625250e+01,5.589010e+00,7.618430e+00,-3.683000e+00,-6.666670e-01}; vec7 a2={-3.870550e+01,-2.506050e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; vec7 a3={1.983070e+00,-9.220260e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; vec7 a4={-8.798270e+00,-1.278090e+01,0.000000e+00,1.692290e+01,-2.573250e+00,2.089970e-01,-1.500000e+00}; return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); } // c12(c12,a)ne20 double c12c12_rate(const vec7 &T9){ vec7 a={6.128630e+01,0.000000e+00,-8.416500e+01,-1.566270e+00,-7.360840e-02,-7.279700e-02,-6.666670e-01}; return rate_fit(T9,a); } // c12(o16,a)mg24 double c12o16_rate(const vec7 &T9){ vec7 a={4.853410e+01,3.720400e-01,-1.334130e+02,5.015720e+01,-3.159870e+00,1.782510e-02,-2.370270e+01}; return rate_fit(T9,a); } // for Boost ODE solvers either a struct or a class is required // a Jacobian matrix for implicit solvers void Jacobian::operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt ) { Constants& constants = Constants::getInstance(); const double avo = constants.get("N_a").value; const double clight = constants.get("c").value; // EOS vec7 T9=get_T9_array(y[Net::itemp]); // evaluate rates once per call double rpp=pp_rate(T9); double r33=he3he3_rate(T9); double r34=he3he4_rate(T9); double r3a=triple_alpha_rate(T9); double rc12p=c12p_rate(T9); double rc12a=c12a_rate(T9); double rn14p=n14p_rate(T9); double rn14a=n14a_rate(T9); double ro16p=o16p_rate(T9); double ro16a=o16a_rate(T9); double rne20a=ne20a_rate(T9); double r1212=c12c12_rate(T9); double r1216=c12o16_rate(T9); double pfrac=n15pg_frac(T9); double afrac=1-pfrac; double yh1 = y[Net::ih1]; double yhe3 = y[Net::ihe3]; double yhe4 = y[Net::ihe4]; double yc12 = y[Net::ic12]; double yn14 = y[Net::in14]; double yo16 = y[Net::io16]; double yne20 = y[Net::ine20]; // zero all elements to begin for (int i=0; i < Net::nvar; i++) { for (int j=0; j < Net::nvar; j++) { J(i,j)=0.0; } } // h1 jacobian elements J(Net::ih1,Net::ih1) = -3*yh1*rpp - 2*yc12*rc12p -2*yn14*rn14p -2*yo16*ro16p; J(Net::ih1,Net::ihe3) = 2*yhe3*r33 - yhe4*r34; J(Net::ih1,Net::ihe4) = -yhe3*r34; J(Net::ih1,Net::ic12) = -2*yh1*rc12p; J(Net::ih1,Net::in14) = -2*yh1*rn14p; J(Net::ih1,Net::io16) = -2*yh1*ro16p; // he3 jacobian elements J(Net::ihe3,Net::ih1) = yh1*rpp; J(Net::ihe3,Net::ihe3) = -2*yhe3*r33 - yhe4*r34; J(Net::ihe3,Net::ihe4) = -yhe3*r34; // he4 jacobian elements J(Net::ihe4,Net::ih1) = yn14*afrac*rn14p + yo16*ro16p; J(Net::ihe4,Net::ihe3) = yhe3*r33 - yhe4*r34; J(Net::ihe4,Net::ihe4) = yhe3*r34 - 1.5*yhe4*yhe4*r3a - yc12*rc12a - 1.5*yn14*rn14a - yo16*ro16a - yne20*rne20a; J(Net::ihe4,Net::ic12) = -yhe4*rc12a + yc12*r1212 + yo16*r1216; J(Net::ihe4,Net::in14) = yh1*afrac*rn14p - 1.5*yhe4*rn14a; J(Net::ihe4,Net::io16) = yh1*ro16p - yhe4*ro16a + yc12*r1216; J(Net::ihe4,Net::ine20) = -yhe4*rne20a; // c12 jacobian elements J(Net::ic12,Net::ih1) = -yc12*rc12p + yn14*afrac*rn14p; J(Net::ic12,Net::ihe4) = 0.5*yhe4*yhe4*r3a - yhe4*rc12a; J(Net::ic12,Net::ic12) = -yh1*rc12p - yhe4*rc12a - yo16*r1216 - 2*yc12*r1212; J(Net::ic12,Net::in14) = yh1*yn14*afrac*rn14p; J(Net::ic12,Net::io16) = -yc12*r1216; // n14 jacobian elements J(Net::in14,Net::ih1) = yc12*rc12p - yn14*rn14p + yo16*ro16p; J(Net::in14,Net::ihe4) = -yn14*rn14a; J(Net::in14,Net::ic12) = yh1*rc12p; J(Net::in14,Net::in14) = -yh1*rn14p - yhe4*rn14a; J(Net::in14,Net::io16) = yo16*ro16p; // o16 jacobian elements J(Net::io16,Net::ih1) = yn14*pfrac*rn14p - yo16*ro16p; J(Net::io16,Net::ihe4) = yc12*rc12a - yo16*ro16a; J(Net::io16,Net::ic12) = yhe4*rc12a - yo16*r1216; J(Net::io16,Net::in14) = yh1*pfrac*rn14p; J(Net::io16,Net::io16) = yh1*ro16p - yc12*r1216 -yhe4*ro16a; // ne20 jacobian elements J(Net::ine20,Net::ihe4) = yn14*rn14a + yo16*ro16a - yne20*rne20a; J(Net::ine20,Net::ic12) = yc12*r1212; J(Net::ine20,Net::in14) = yhe4*rn14a; J(Net::ine20,Net::io16) = yo16*ro16a; J(Net::ine20,Net::ine20) = -yhe4*rne20a; // mg24 jacobian elements J(Net::img24,Net::ihe4) = yne20*rne20a; J(Net::img24,Net::ic12) = yo16*r1216; J(Net::img24,Net::io16) = yc12*r1216; J(Net::img24,Net::ine20) = yhe4*rne20a; // energy accountings for (int j=0; j("Network:Approx8:Stiff:AbsTol", 1.0e-6); const double stiff_rel_tol = m_config.get("Network:Approx8:Stiff:RelTol", 1.0e-6); const double nonstiff_abs_tol = m_config.get("Network:Approx8:NonStiff:AbsTol", 1.0e-6); const double nonstiff_rel_tol = m_config.get("Network:Approx8:NonStiff:RelTol", 1.0e-6); int num_steps = -1; if (m_stiff) { LOG_DEBUG(m_logger, "Using stiff solver for Approx8Network"); num_steps = integrate_const( make_dense_output>(stiff_abs_tol, stiff_rel_tol), std::make_pair(ODE(), Jacobian()), m_y, 0.0, m_tmax, m_dt0 ); } else { LOG_DEBUG(m_logger, "Using non stiff solver for Approx8Network"); num_steps = integrate_const ( make_dense_output>(nonstiff_abs_tol, nonstiff_rel_tol), ODE(), m_y, 0.0, m_tmax, m_dt0 ); } double ysum = 0.0; for (int i = 0; i < Net::niso; i++) { m_y[i] *= Net::aion[i]; ysum += m_y[i]; } for (int i = 0; i < Net::niso; i++) { m_y[i] /= ysum; } nuclearNetwork::NetOut netOut; std::vector outComposition; outComposition.reserve(Net::nvar); for (int i = 0; i < Net::niso; i++) { outComposition.push_back(m_y[i]); } netOut.energy = m_y[Net::iener]; netOut.composition = outComposition; netOut.num_steps = num_steps; return netOut; } void Approx8Network::setStiff(bool stiff) { m_stiff = stiff; } vector_type Approx8Network::convert_netIn(const nuclearNetwork::NetIn &netIn) { if (netIn.composition.size() != Net::niso) { LOG_ERROR(m_logger, "Error: composition size mismatch in convert_netIn"); throw std::runtime_error("Error: composition size mismatch in convert_netIn"); } vector_type y(Net::nvar, 0.0); y[Net::ih1] = netIn.composition[0]; y[Net::ihe3] = netIn.composition[1]; y[Net::ihe4] = netIn.composition[2]; y[Net::ic12] = netIn.composition[3]; y[Net::in14] = netIn.composition[4]; y[Net::io16] = netIn.composition[5]; y[Net::ine20] = netIn.composition[6]; y[Net::img24] = netIn.composition[7]; y[Net::itemp] = netIn.temperature; y[Net::iden] = netIn.density; y[Net::iener] = netIn.energy; double ysum = 0.0; for (int i = 0; i < Net::niso; i++) { y[i] /= Net::aion[i]; ysum += y[i]; } for (int i = 0; i < Net::niso; i++) { y[i] /= ysum; } return y; } }; // main program