feat(python): added robust python bindings covering the entire codebase
This commit is contained in:
8
src/include/gridfire/engine/engine.h
Normal file
8
src/include/gridfire/engine/engine.h
Normal file
@@ -0,0 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/engine/engine_graph.h"
|
||||
|
||||
#include "gridfire/engine/views/engine_views.h"
|
||||
#include "gridfire/engine/procedures/engine_procedures.h"
|
||||
#include "gridfire/engine/types/engine_types.h"
|
||||
314
src/include/gridfire/engine/engine_abstract.h
Normal file
314
src/include/gridfire/engine/engine_abstract.h
Normal file
@@ -0,0 +1,314 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
#include "gridfire/network.h"
|
||||
#include "gridfire/screening/screening_abstract.h"
|
||||
#include "gridfire/screening/screening_types.h"
|
||||
|
||||
#include "gridfire/engine/types/reporting.h"
|
||||
#include "gridfire/engine/types/building.h"
|
||||
|
||||
#include "gridfire/expectations/expected_engine.h"
|
||||
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
#include <expected>
|
||||
|
||||
/**
|
||||
* @file engine_abstract.h
|
||||
* @brief Abstract interfaces for reaction network engines in GridFire.
|
||||
*
|
||||
* This header defines the abstract base classes and concepts for implementing
|
||||
* reaction network solvers in the GridFire framework. It provides the contract
|
||||
* for calculating right-hand sides, energy generation, Jacobians, stoichiometry,
|
||||
* and other core operations required for time integration of nuclear reaction networks.
|
||||
*
|
||||
* @author
|
||||
* Emily M. Boudreaux
|
||||
*/
|
||||
|
||||
namespace gridfire {
|
||||
|
||||
/**
|
||||
* @brief Concept for types allowed in engine calculations.
|
||||
*
|
||||
* This concept restricts template parameters to either double or CppAD::AD<double>,
|
||||
* enabling both standard and automatic differentiation types.
|
||||
*/
|
||||
template<typename T>
|
||||
concept IsArithmeticOrAD = std::is_same_v<T, double> || std::is_same_v<T, CppAD::AD<double>>;
|
||||
|
||||
/**
|
||||
* @brief Structure holding derivatives and energy generation for a network step.
|
||||
*
|
||||
* @tparam T Numeric type (double or CppAD::AD<double>).
|
||||
*
|
||||
* This struct is used to return both the time derivatives of all species abundances
|
||||
* and the specific nuclear energy generation rate for a single network evaluation.
|
||||
*
|
||||
* Example usage:
|
||||
* @code
|
||||
* StepDerivatives<double> result = engine.calculateRHSAndEnergy(Y, T9, rho);
|
||||
* for (double dydt_i : result.dydt) {
|
||||
* // Use derivative
|
||||
* }
|
||||
* double energyRate = result.nuclearEnergyGenerationRate;
|
||||
* @endcode
|
||||
*/
|
||||
template <IsArithmeticOrAD T>
|
||||
struct StepDerivatives {
|
||||
std::vector<T> dydt; ///< Derivatives of abundances (dY/dt for each species).
|
||||
T nuclearEnergyGenerationRate = T(0.0); ///< Specific energy generation rate (e.g., erg/g/s).
|
||||
};
|
||||
|
||||
using SparsityPattern = std::vector<std::pair<size_t, size_t>>;
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for a reaction network engine.
|
||||
*
|
||||
* This class defines the minimal interface for a reaction network engine,
|
||||
* which is responsible for evaluating the right-hand side (dY/dt) and
|
||||
* energy generation for a given set of abundances, temperature, and density.
|
||||
*
|
||||
* Intended usage: Derive from this class to implement a concrete engine
|
||||
* for a specific network or integration method.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* class MyEngine : public gridfire::Engine {
|
||||
* // Implement required methods...
|
||||
* };
|
||||
* @endcode
|
||||
*/
|
||||
class Engine {
|
||||
public:
|
||||
/**
|
||||
* @brief Virtual destructor.
|
||||
*/
|
||||
virtual ~Engine() = default;
|
||||
|
||||
/**
|
||||
* @brief Get the list of species in the network.
|
||||
* @return Vector of Species objects representing all network species.
|
||||
*/
|
||||
[[nodiscard]] virtual const std::vector<fourdst::atomic::Species>& getNetworkSpecies() const = 0;
|
||||
|
||||
/**
|
||||
* @brief Calculate the right-hand side (dY/dt) and energy generation.
|
||||
*
|
||||
* @param Y Vector of current abundances for all species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return StepDerivatives<double> containing dY/dt and energy generation rate.
|
||||
*
|
||||
* This function must be implemented by derived classes to compute the
|
||||
* time derivatives of all species and the specific nuclear energy generation
|
||||
* rate for the current state.
|
||||
*/
|
||||
[[nodiscard]] virtual std::expected<StepDerivatives<double>, expectations::StaleEngineError> calculateRHSAndEnergy(
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Abstract class for engines supporting Jacobian and stoichiometry operations.
|
||||
*
|
||||
* Extends Engine with additional methods for:
|
||||
* - Generating and accessing the Jacobian matrix (for implicit solvers).
|
||||
* - Generating and accessing the stoichiometry matrix.
|
||||
* - Calculating molar reaction flows for individual reactions.
|
||||
* - Accessing the set of logical reactions in the network.
|
||||
* - Computing timescales for each species.
|
||||
*
|
||||
* Intended usage: Derive from this class to implement engines that support
|
||||
* advanced solver features such as implicit integration, sensitivity analysis,
|
||||
* QSE (Quasi-Steady-State Equilibrium) handling, and more.
|
||||
*/
|
||||
class DynamicEngine : public Engine {
|
||||
public:
|
||||
/**
|
||||
* @brief Generate the Jacobian matrix for the current state.
|
||||
*
|
||||
* @param Y_dynamic Vector of current abundances.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
*
|
||||
* This method must compute and store the Jacobian matrix (∂(dY/dt)_i/∂Y_j)
|
||||
* for the current state. The matrix can then be accessed via getJacobianMatrixEntry().
|
||||
*/
|
||||
virtual void generateJacobianMatrix(
|
||||
const std::vector<double>& Y_dynamic,
|
||||
double T9,
|
||||
double rho
|
||||
) const = 0;
|
||||
|
||||
virtual void generateJacobianMatrix(
|
||||
const std::vector<double>& Y_dynamic,
|
||||
double T9,
|
||||
double rho,
|
||||
const SparsityPattern& sparsityPattern
|
||||
) const {
|
||||
throw std::logic_error("Sparsity pattern not supported by this engine.");
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get an entry from the previously generated Jacobian matrix.
|
||||
*
|
||||
* @param i Row index (species index).
|
||||
* @param j Column index (species index).
|
||||
* @return Value of the Jacobian matrix at (i, j).
|
||||
*
|
||||
* The Jacobian must have been generated by generateJacobianMatrix() before calling this.
|
||||
*/
|
||||
[[nodiscard]] virtual double getJacobianMatrixEntry(
|
||||
int i,
|
||||
int j
|
||||
) const = 0;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Generate the stoichiometry matrix for the network.
|
||||
*
|
||||
* This method must compute and store the stoichiometry matrix,
|
||||
* which encodes the net change of each species in each reaction.
|
||||
*/
|
||||
virtual void generateStoichiometryMatrix() = 0;
|
||||
|
||||
/**
|
||||
* @brief Get an entry from the stoichiometry matrix.
|
||||
*
|
||||
* @param speciesIndex Index of the species.
|
||||
* @param reactionIndex Index of the reaction.
|
||||
* @return Stoichiometric coefficient for the species in the reaction.
|
||||
*
|
||||
* The stoichiometry matrix must have been generated by generateStoichiometryMatrix().
|
||||
*/
|
||||
[[nodiscard]] virtual int getStoichiometryMatrixEntry(
|
||||
int speciesIndex,
|
||||
int reactionIndex
|
||||
) const = 0;
|
||||
|
||||
/**
|
||||
* @brief Calculate the molar reaction flow for a given reaction.
|
||||
*
|
||||
* @param reaction The reaction for which to calculate the flow.
|
||||
* @param Y Vector of current abundances.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Molar flow rate for the reaction (e.g., mol/g/s).
|
||||
*
|
||||
* This method computes the net rate at which the given reaction proceeds
|
||||
* under the current state.
|
||||
*/
|
||||
[[nodiscard]] virtual double calculateMolarReactionFlow(
|
||||
const reaction::Reaction& reaction,
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const = 0;
|
||||
|
||||
/**
|
||||
* @brief Get the set of logical reactions in the network.
|
||||
*
|
||||
* @return Reference to the LogicalReactionSet containing all reactions.
|
||||
*/
|
||||
[[nodiscard]] virtual const reaction::LogicalReactionSet& getNetworkReactions() const = 0;
|
||||
|
||||
virtual void setNetworkReactions(const reaction::LogicalReactionSet& reactions) = 0;
|
||||
|
||||
/**
|
||||
* @brief Compute timescales for all species in the network.
|
||||
*
|
||||
* @param Y Vector of current abundances.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Map from Species to their characteristic timescales (s).
|
||||
*
|
||||
* This method estimates the timescale for abundance change of each species,
|
||||
* which can be used for timestep control, diagnostics, and reaction network culling.
|
||||
*/
|
||||
[[nodiscard]] virtual std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesTimescales(
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const = 0;
|
||||
|
||||
[[nodiscard]] virtual std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesDestructionTimescales(
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const = 0;
|
||||
|
||||
/**
|
||||
* @brief Update the internal state of the engine.
|
||||
*
|
||||
* @param netIn A struct containing the current network input, such as
|
||||
* temperature, density, and composition.
|
||||
*
|
||||
* This method is intended to be implemented by derived classes to update
|
||||
* their internal state based on the provided network conditions. For example,
|
||||
* an adaptive engine might use this to re-evaluate which reactions and species
|
||||
* are active. For other engines that do not support manually updating, this
|
||||
* method might do nothing.
|
||||
*
|
||||
* @par Usage Example:
|
||||
* @code
|
||||
* NetIn input = { ... };
|
||||
* myEngine.update(input);
|
||||
* @endcode
|
||||
*
|
||||
* @post The internal state of the engine is updated to reflect the new conditions.
|
||||
*/
|
||||
virtual fourdst::composition::Composition update(const NetIn &netIn) = 0;
|
||||
|
||||
virtual bool isStale(const NetIn& netIn) = 0;
|
||||
|
||||
/**
|
||||
* @brief Set the electron screening model.
|
||||
*
|
||||
* @param model The type of screening model to use for reaction rate calculations.
|
||||
*
|
||||
* This method allows changing the screening model at runtime. Screening corrections
|
||||
* account for the electrostatic shielding of nuclei by electrons, which affects
|
||||
* reaction rates in dense stellar plasmas.
|
||||
*
|
||||
* @par Usage Example:
|
||||
* @code
|
||||
* myEngine.setScreeningModel(screening::ScreeningType::WEAK);
|
||||
* @endcode
|
||||
*
|
||||
* @post The engine will use the specified screening model for subsequent rate calculations.
|
||||
*/
|
||||
virtual void setScreeningModel(screening::ScreeningType model) = 0;
|
||||
|
||||
/**
|
||||
* @brief Get the current electron screening model.
|
||||
*
|
||||
* @return The currently active screening model type.
|
||||
*
|
||||
* @par Usage Example:
|
||||
* @code
|
||||
* screening::ScreeningType currentModel = myEngine.getScreeningModel();
|
||||
* @endcode
|
||||
*/
|
||||
[[nodiscard]] virtual screening::ScreeningType getScreeningModel() const = 0;
|
||||
|
||||
[[nodiscard]] virtual int getSpeciesIndex(const fourdst::atomic::Species &species) const = 0;
|
||||
|
||||
[[nodiscard]] virtual std::vector<double> mapNetInToMolarAbundanceVector(const NetIn &netIn) const = 0;
|
||||
|
||||
[[nodiscard]] virtual PrimingReport primeEngine(const NetIn &netIn) = 0;
|
||||
|
||||
[[nodiscard]] virtual BuildDepthType getDepth() const {
|
||||
throw std::logic_error("Network depth not supported by this engine.");
|
||||
}
|
||||
|
||||
virtual void rebuild(const fourdst::composition::Composition& comp, BuildDepthType depth) {
|
||||
throw std::logic_error("Setting network depth not supported by this engine.");
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
331
src/include/gridfire/engine/engine_approx8.h
Normal file
331
src/include/gridfire/engine/engine_approx8.h
Normal file
@@ -0,0 +1,331 @@
|
||||
/* ***********************************************************************
|
||||
//
|
||||
// Copyright (C) 2025 -- The 4D-STAR Collaboration
|
||||
// File Author: Emily Boudreaux
|
||||
// Last Modified: March 21, 2025
|
||||
//
|
||||
// 4DSSE is free software; you can use it and/or modify
|
||||
// it under the terms and restrictions the GNU General Library Public
|
||||
// License version 3 (GPLv3) as published by the Free Software Foundation.
|
||||
//
|
||||
// 4DSSE is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
// See the GNU Library General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Library General Public License
|
||||
// along with this software; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
// *********************************************************************** */
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
|
||||
#include <boost/numeric/odeint.hpp>
|
||||
|
||||
#include "gridfire/network.h"
|
||||
|
||||
/**
|
||||
* @file approx8.h
|
||||
* @brief Header file for the Approx8 nuclear reaction network.
|
||||
*
|
||||
* This file contains the definitions and declarations for the Approx8 nuclear reaction network.
|
||||
* The network is based on Frank Timmes' "approx8" and includes 8 isotopes and various nuclear reactions.
|
||||
* The rates are evaluated using a fitting function with coefficients from reaclib.jinaweb.org.
|
||||
*/
|
||||
|
||||
|
||||
namespace gridfire::approx8{
|
||||
|
||||
/**
|
||||
* @typedef vector_type
|
||||
* @brief Alias for a vector of doubles using Boost uBLAS.
|
||||
*/
|
||||
typedef boost::numeric::ublas::vector< double > vector_type;
|
||||
|
||||
/**
|
||||
* @typedef matrix_type
|
||||
* @brief Alias for a matrix of doubles using Boost uBLAS.
|
||||
*/
|
||||
typedef boost::numeric::ublas::matrix< double > matrix_type;
|
||||
|
||||
/**
|
||||
* @typedef vec7
|
||||
* @brief Alias for a std::array of 7 doubles.
|
||||
*/
|
||||
typedef std::array<double,7> vec7;
|
||||
|
||||
/**
|
||||
* @struct Approx8Net
|
||||
* @brief Contains constants and arrays related to the nuclear network.
|
||||
*/
|
||||
struct Approx8Net{
|
||||
static constexpr int ih1=0;
|
||||
static constexpr int ihe3=1;
|
||||
static constexpr int ihe4=2;
|
||||
static constexpr int ic12=3;
|
||||
static constexpr int in14=4;
|
||||
static constexpr int io16=5;
|
||||
static constexpr int ine20=6;
|
||||
static constexpr int img24=7;
|
||||
|
||||
static constexpr int iTemp=img24+1;
|
||||
static constexpr int iDensity =iTemp+1;
|
||||
static constexpr int iEnergy=iDensity+1;
|
||||
|
||||
static constexpr int nIso=img24+1; // number of isotopes
|
||||
static constexpr int nVar=iEnergy+1; // number of variables
|
||||
|
||||
static constexpr std::array<int,nIso> aIon = {
|
||||
1,
|
||||
3,
|
||||
4,
|
||||
12,
|
||||
14,
|
||||
16,
|
||||
20,
|
||||
24
|
||||
};
|
||||
|
||||
static constexpr std::array<double,nIso> mIon = {
|
||||
1.67262164e-24,
|
||||
5.00641157e-24,
|
||||
6.64465545e-24,
|
||||
1.99209977e-23,
|
||||
2.32462686e-23,
|
||||
2.65528858e-23,
|
||||
3.31891077e-23,
|
||||
3.98171594e-23
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Multiplies two arrays and sums the resulting elements.
|
||||
* @param a First array.
|
||||
* @param b Second array.
|
||||
* @return Sum of the product of the arrays.
|
||||
* @example
|
||||
* @code
|
||||
* vec7 a = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
|
||||
* vec7 b = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
|
||||
* double result = sum_product(a, b);
|
||||
* @endcode
|
||||
*/
|
||||
double sum_product( const vec7 &a, const vec7 &b);
|
||||
|
||||
/**
|
||||
* @brief Returns an array of T9 terms for the nuclear reaction rate fit.
|
||||
* @param T Temperature in GigaKelvin.
|
||||
* @return Array of T9 terms.
|
||||
* @example
|
||||
* @code
|
||||
* double T = 1.5;
|
||||
* vec7 T9_array = get_T9_array(T);
|
||||
* @endcode
|
||||
*/
|
||||
vec7 get_T9_array(const double &T);
|
||||
|
||||
/**
|
||||
* @brief Evaluates the nuclear reaction rate given the T9 array and coefficients.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @param coef Array of coefficients.
|
||||
* @return Evaluated rate.
|
||||
* @example
|
||||
* @code
|
||||
* vec7 T9 = get_T9_array(1.5);
|
||||
* vec7 coef = {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001};
|
||||
* double rate = rate_fit(T9, coef);
|
||||
* @endcode
|
||||
*/
|
||||
double rate_fit(const vec7 &T9, const vec7 &coef);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction p + p -> d.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double pp_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction p + d -> he3.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double dp_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction he3 + he3 -> he4 + 2p.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double he3he3_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction he3(he3,2p)he4.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double he3he4_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction he4 + he4 + he4 -> c12.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double triple_alpha_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction c12 + p -> n13.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double c12p_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction c12 + he4 -> o16.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double c12a_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction n14(p,g)o15 - o15 + p -> c12 + he4.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double n14p_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction n14(a,g)f18 assumed to go on to ne20.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double n14a_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction n15(p,a)c12 (CNO I).
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double n15pa_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction n15(p,g)o16 (CNO II).
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double n15pg_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the fraction for the reaction n15(p,g)o16.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Fraction of the reaction.
|
||||
*/
|
||||
double n15pg_frac(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction o16(p,g)f17 then f17 -> o17(p,a)n14.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double o16p_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction o16(a,g)ne20.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double o16a_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction ne20(a,g)mg24.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double ne20a_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction c12(c12,a)ne20.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double c12c12_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @brief Calculates the rate for the reaction c12(o16,a)mg24.
|
||||
* @param T9 Array of T9 terms.
|
||||
* @return Rate of the reaction.
|
||||
*/
|
||||
double c12o16_rate(const vec7 &T9);
|
||||
|
||||
/**
|
||||
* @struct Jacobian
|
||||
* @brief Functor to calculate the Jacobian matrix for implicit solvers.
|
||||
*/
|
||||
struct Jacobian {
|
||||
/**
|
||||
* @brief Calculates the Jacobian matrix.
|
||||
* @param y State vector.
|
||||
* @param J Jacobian matrix.
|
||||
* @param dfdt Derivative of the state vector.
|
||||
*/
|
||||
void operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt ) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* @struct ODE
|
||||
* @brief Functor to calculate the derivatives for the ODE solver.
|
||||
*/
|
||||
struct ODE {
|
||||
/**
|
||||
* @brief Calculates the derivatives of the state vector.
|
||||
* @param y State vector.
|
||||
* @param dydt Derivative of the state vector.
|
||||
*/
|
||||
void operator() ( const vector_type &y, vector_type &dydt, double /* t */) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* @class Approx8Network
|
||||
* @brief Class for the Approx8 nuclear reaction network.
|
||||
*/
|
||||
class Approx8Network final : public Network {
|
||||
public:
|
||||
Approx8Network();
|
||||
|
||||
/**
|
||||
* @brief Evaluates the nuclear network.
|
||||
* @param netIn Input parameters for the network.
|
||||
* @return Output results from the network.
|
||||
*/
|
||||
NetOut evaluate(const NetIn &netIn) override;
|
||||
|
||||
/**
|
||||
* @brief Sets whether the solver should use a stiff method.
|
||||
* @param stiff Boolean indicating if a stiff method should be used.
|
||||
*/
|
||||
void setStiff(bool stiff) override;
|
||||
|
||||
/**
|
||||
* @brief Checks if the solver is using a stiff method.
|
||||
* @return Boolean indicating if a stiff method is being used.
|
||||
*/
|
||||
bool isStiff() const override { return m_stiff; }
|
||||
private:
|
||||
vector_type m_y;
|
||||
double m_tMax = 0;
|
||||
double m_dt0 = 0;
|
||||
bool m_stiff = false;
|
||||
|
||||
/**
|
||||
* @brief Converts the input parameters to the internal state vector.
|
||||
* @param netIn Input parameters for the network.
|
||||
* @return Internal state vector.
|
||||
*/
|
||||
static vector_type convert_netIn(const NetIn &netIn);
|
||||
};
|
||||
|
||||
|
||||
} // namespace nnApprox8
|
||||
887
src/include/gridfire/engine/engine_graph.h
Normal file
887
src/include/gridfire/engine/engine_graph.h
Normal file
@@ -0,0 +1,887 @@
|
||||
#pragma once
|
||||
|
||||
#include "fourdst/composition/atomicSpecies.h"
|
||||
#include "fourdst/composition/composition.h"
|
||||
#include "fourdst/logging/logging.h"
|
||||
#include "fourdst/config/config.h"
|
||||
|
||||
#include "gridfire/network.h"
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/screening/screening_abstract.h"
|
||||
#include "gridfire/screening/screening_types.h"
|
||||
#include "gridfire/partition/partition_abstract.h"
|
||||
#include "gridfire/engine/procedures/construction.h"
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <ranges>
|
||||
|
||||
#include <boost/numeric/ublas/matrix_sparse.hpp>
|
||||
|
||||
#include "cppad/cppad.hpp"
|
||||
#include "cppad/utility/sparse_rc.hpp"
|
||||
#include "cppad/speed/sparse_jac_fun.hpp"
|
||||
|
||||
#include "procedures/priming.h"
|
||||
|
||||
|
||||
#include "quill/LogMacros.h"
|
||||
|
||||
// PERF: The function getNetReactionStoichiometry returns a map of species to their stoichiometric coefficients for a given reaction.
|
||||
// this makes extra copies of the species, which is not ideal and could be optimized further.
|
||||
// Even more relevant is the member m_reactionIDMap which makes copies of a REACLIBReaction for each reaction ID.
|
||||
// REACLIBReactions are quite large data structures, so this could be a performance bottleneck.
|
||||
// static bool isF17 = false;
|
||||
namespace gridfire {
|
||||
static bool s_debug = false; // Global debug flag for the GraphEngine
|
||||
/**
|
||||
* @brief Alias for CppAD AD type for double precision.
|
||||
*
|
||||
* This alias simplifies the use of the CppAD automatic differentiation type.
|
||||
*/
|
||||
typedef CppAD::AD<double> ADDouble;
|
||||
|
||||
using fourdst::config::Config;
|
||||
using fourdst::logging::LogManager;
|
||||
using fourdst::constant::Constants;
|
||||
|
||||
/**
|
||||
* @brief Minimum density threshold below which reactions are ignored.
|
||||
*
|
||||
* Reactions are not calculated if the density falls below this threshold.
|
||||
* This helps to improve performance by avoiding unnecessary calculations
|
||||
* in very low-density regimes.
|
||||
*/
|
||||
static constexpr double MIN_DENSITY_THRESHOLD = 1e-18;
|
||||
|
||||
/**
|
||||
* @brief Minimum abundance threshold below which species are ignored.
|
||||
*
|
||||
* Species with abundances below this threshold are treated as zero in
|
||||
* reaction rate calculations. This helps to improve performance by
|
||||
* avoiding unnecessary calculations for trace species.
|
||||
*/
|
||||
static constexpr double MIN_ABUNDANCE_THRESHOLD = 1e-18;
|
||||
|
||||
/**
|
||||
* @brief Minimum value for Jacobian matrix entries.
|
||||
*
|
||||
* Jacobian matrix entries with absolute values below this threshold are
|
||||
* treated as zero to maintain sparsity and improve performance.
|
||||
*/
|
||||
static constexpr double MIN_JACOBIAN_THRESHOLD = 1e-24;
|
||||
|
||||
|
||||
/**
|
||||
* @class GraphEngine
|
||||
* @brief A reaction network engine that uses a graph-based representation.
|
||||
*
|
||||
* The GraphEngine class implements the DynamicEngine interface using a
|
||||
* graph-based representation of the reaction network. It uses sparse
|
||||
* matrices for efficient storage and computation of the stoichiometry
|
||||
* and Jacobian matrices. Automatic differentiation (AD) is used to
|
||||
* calculate the Jacobian matrix.
|
||||
*
|
||||
* The engine supports:
|
||||
* - Calculation of the right-hand side (dY/dt) and energy generation rate.
|
||||
* - Generation and access to the Jacobian matrix.
|
||||
* - Generation and access to the stoichiometry matrix.
|
||||
* - Calculation of molar reaction flows.
|
||||
* - Access to the set of logical reactions in the network.
|
||||
* - Computation of timescales for each species.
|
||||
* - Exporting the network to DOT and CSV formats for visualization and analysis.
|
||||
*
|
||||
* @implements DynamicEngine
|
||||
*
|
||||
* @see engine_abstract.h
|
||||
*/
|
||||
class GraphEngine final : public DynamicEngine{
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a GraphEngine from a composition.
|
||||
*
|
||||
* @param composition The composition of the material.
|
||||
*
|
||||
* This constructor builds the reaction network from the given composition
|
||||
* using the `build_reaclib_nuclear_network` function.
|
||||
*
|
||||
* @see build_reaclib_nuclear_network
|
||||
*/
|
||||
explicit GraphEngine(
|
||||
const fourdst::composition::Composition &composition,
|
||||
const BuildDepthType = NetworkBuildDepth::Full
|
||||
);
|
||||
|
||||
explicit GraphEngine(
|
||||
const fourdst::composition::Composition &composition,
|
||||
const partition::PartitionFunction& partitionFunction,
|
||||
const BuildDepthType buildDepth = NetworkBuildDepth::Full
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Constructs a GraphEngine from a set of reactions.
|
||||
*
|
||||
* @param reactions The set of reactions to use in the network.
|
||||
*
|
||||
* This constructor uses the given set of reactions to construct the
|
||||
* reaction network.
|
||||
*/
|
||||
explicit GraphEngine(const reaction::LogicalReactionSet &reactions);
|
||||
|
||||
/**
|
||||
* @brief Calculates the right-hand side (dY/dt) and energy generation rate.
|
||||
*
|
||||
* @param Y Vector of current abundances for all species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return StepDerivatives<double> containing dY/dt and energy generation rate.
|
||||
*
|
||||
* This method calculates the time derivatives of all species and the
|
||||
* specific nuclear energy generation rate for the current state.
|
||||
*
|
||||
* @see StepDerivatives
|
||||
*/
|
||||
[[nodiscard]] std::expected<StepDerivatives<double>, expectations::StaleEngineError> calculateRHSAndEnergy(
|
||||
const std::vector<double>& Y,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Generates the Jacobian matrix for the current state.
|
||||
*
|
||||
* @param Y_dynamic Vector of current abundances.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
*
|
||||
* This method computes and stores the Jacobian matrix (∂(dY/dt)_i/∂Y_j)
|
||||
* for the current state using automatic differentiation. The matrix can
|
||||
* then be accessed via `getJacobianMatrixEntry()`.
|
||||
*
|
||||
* @see getJacobianMatrixEntry()
|
||||
*/
|
||||
void generateJacobianMatrix(
|
||||
const std::vector<double>& Y_dynamic,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
void generateJacobianMatrix(
|
||||
const std::vector<double> &Y_dynamic,
|
||||
double T9,
|
||||
double rho,
|
||||
const SparsityPattern &sparsityPattern
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Generates the stoichiometry matrix for the network.
|
||||
*
|
||||
* This method computes and stores the stoichiometry matrix,
|
||||
* which encodes the net change of each species in each reaction.
|
||||
*/
|
||||
void generateStoichiometryMatrix() override;
|
||||
|
||||
/**
|
||||
* @brief Calculates the molar reaction flow for a given reaction.
|
||||
*
|
||||
* @param reaction The reaction for which to calculate the flow.
|
||||
* @param Y Vector of current abundances.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Molar flow rate for the reaction (e.g., mol/g/s).
|
||||
*
|
||||
* This method computes the net rate at which the given reaction proceeds
|
||||
* under the current state.
|
||||
*/
|
||||
[[nodiscard]] double calculateMolarReactionFlow(
|
||||
const reaction::Reaction& reaction,
|
||||
const std::vector<double>&Y,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Gets the list of species in the network.
|
||||
* @return Vector of Species objects representing all network species.
|
||||
*/
|
||||
[[nodiscard]] const std::vector<fourdst::atomic::Species>& getNetworkSpecies() const override;
|
||||
|
||||
/**
|
||||
* @brief Gets the set of logical reactions in the network.
|
||||
* @return Reference to the LogicalReactionSet containing all reactions.
|
||||
*/
|
||||
[[nodiscard]] const reaction::LogicalReactionSet& getNetworkReactions() const override;
|
||||
|
||||
void setNetworkReactions(const reaction::LogicalReactionSet& reactions) override;
|
||||
|
||||
/**
|
||||
* @brief Gets an entry from the previously generated Jacobian matrix.
|
||||
*
|
||||
* @param i Row index (species index).
|
||||
* @param j Column index (species index).
|
||||
* @return Value of the Jacobian matrix at (i, j).
|
||||
*
|
||||
* The Jacobian must have been generated by `generateJacobianMatrix()` before calling this.
|
||||
*
|
||||
* @see generateJacobianMatrix()
|
||||
*/
|
||||
[[nodiscard]] double getJacobianMatrixEntry(
|
||||
const int i,
|
||||
const int j
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Gets the net stoichiometry for a given reaction.
|
||||
*
|
||||
* @param reaction The reaction for which to get the stoichiometry.
|
||||
* @return Map of species to their stoichiometric coefficients.
|
||||
*/
|
||||
[[nodiscard]] static std::unordered_map<fourdst::atomic::Species, int> getNetReactionStoichiometry(
|
||||
const reaction::Reaction& reaction
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Gets an entry from the stoichiometry matrix.
|
||||
*
|
||||
* @param speciesIndex Index of the species.
|
||||
* @param reactionIndex Index of the reaction.
|
||||
* @return Stoichiometric coefficient for the species in the reaction.
|
||||
*
|
||||
* The stoichiometry matrix must have been generated by `generateStoichiometryMatrix()`.
|
||||
*
|
||||
* @see generateStoichiometryMatrix()
|
||||
*/
|
||||
[[nodiscard]] int getStoichiometryMatrixEntry(
|
||||
const int speciesIndex,
|
||||
const int reactionIndex
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Computes timescales for all species in the network.
|
||||
*
|
||||
* @param Y Vector of current abundances.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Map from Species to their characteristic timescales (s).
|
||||
*
|
||||
* This method estimates the timescale for abundance change of each species,
|
||||
* which can be used for timestep control or diagnostics.
|
||||
*/
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesTimescales(
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesDestructionTimescales(
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
fourdst::composition::Composition update(const NetIn &netIn) override;
|
||||
|
||||
bool isStale(const NetIn &netIn) override;
|
||||
|
||||
/**
|
||||
* @brief Checks if a given species is involved in the network.
|
||||
*
|
||||
* @param species The species to check.
|
||||
* @return True if the species is involved in the network, false otherwise.
|
||||
*/
|
||||
[[nodiscard]] bool involvesSpecies(
|
||||
const fourdst::atomic::Species& species
|
||||
) const;
|
||||
|
||||
/**
|
||||
* @brief Exports the network to a DOT file for visualization.
|
||||
*
|
||||
* @param filename The name of the DOT file to create.
|
||||
*
|
||||
* This method generates a DOT file that can be used to visualize the
|
||||
* reaction network as a graph. The DOT file can be converted to a
|
||||
* graphical image using Graphviz.
|
||||
*
|
||||
* @throws std::runtime_error If the file cannot be opened for writing.
|
||||
*
|
||||
* Example usage:
|
||||
* @code
|
||||
* engine.exportToDot("network.dot");
|
||||
* @endcode
|
||||
*/
|
||||
void exportToDot(
|
||||
const std::string& filename
|
||||
) const;
|
||||
|
||||
/**
|
||||
* @brief Exports the network to a CSV file for analysis.
|
||||
*
|
||||
* @param filename The name of the CSV file to create.
|
||||
*
|
||||
* This method generates a CSV file containing information about the
|
||||
* reactions in the network, including the reactants, products, Q-value,
|
||||
* and reaction rate coefficients.
|
||||
*
|
||||
* @throws std::runtime_error If the file cannot be opened for writing.
|
||||
*
|
||||
* Example usage:
|
||||
* @code
|
||||
* engine.exportToCSV("network.csv");
|
||||
* @endcode
|
||||
*/
|
||||
void exportToCSV(
|
||||
const std::string& filename
|
||||
) const;
|
||||
|
||||
void setScreeningModel(screening::ScreeningType) override;
|
||||
|
||||
[[nodiscard]] screening::ScreeningType getScreeningModel() const override;
|
||||
|
||||
void setPrecomputation(bool precompute);
|
||||
|
||||
[[nodiscard]] bool isPrecomputationEnabled() const;
|
||||
|
||||
[[nodiscard]] const partition::PartitionFunction& getPartitionFunction() const;
|
||||
|
||||
[[nodiscard]] double calculateReverseRate(
|
||||
const reaction::Reaction &reaction,
|
||||
double T9
|
||||
) const;
|
||||
|
||||
[[nodiscard]] double calculateReverseRateTwoBody(
|
||||
const reaction::Reaction &reaction,
|
||||
const double T9,
|
||||
const double forwardRate,
|
||||
const double expFactor
|
||||
) const;
|
||||
|
||||
[[nodiscard]] double calculateReverseRateTwoBodyDerivative(
|
||||
const reaction::Reaction &reaction,
|
||||
const double T9,
|
||||
const double reverseRate
|
||||
) const;
|
||||
|
||||
[[nodiscard]] bool isUsingReverseReactions() const;
|
||||
|
||||
void setUseReverseReactions(bool useReverse);
|
||||
|
||||
[[nodiscard]] int getSpeciesIndex(
|
||||
const fourdst::atomic::Species& species
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] std::vector<double> mapNetInToMolarAbundanceVector(const NetIn &netIn) const override;
|
||||
|
||||
[[nodiscard]] PrimingReport primeEngine(const NetIn &netIn) override;
|
||||
|
||||
[[nodiscard]] BuildDepthType getDepth() const override;
|
||||
|
||||
void rebuild(const fourdst::composition::Composition& comp, const BuildDepthType depth) override;
|
||||
|
||||
|
||||
private:
|
||||
struct PrecomputedReaction {
|
||||
// Forward cacheing
|
||||
size_t reaction_index;
|
||||
std::vector<size_t> unique_reactant_indices;
|
||||
std::vector<int> reactant_powers;
|
||||
double symmetry_factor;
|
||||
std::vector<size_t> affected_species_indices;
|
||||
std::vector<int> stoichiometric_coefficients;
|
||||
|
||||
// Reverse cacheing
|
||||
std::vector<size_t> unique_product_indices; ///< Unique product indices for reverse reactions.
|
||||
std::vector<int> product_powers; ///< Powers of each unique product in the reverse reaction.
|
||||
double reverse_symmetry_factor; ///< Symmetry factor for reverse reactions.
|
||||
};
|
||||
|
||||
struct constants {
|
||||
const double u = Constants::getInstance().get("u").value; ///< Atomic mass unit in g.
|
||||
const double Na = Constants::getInstance().get("N_a").value; ///< Avogadro's number.
|
||||
const double c = Constants::getInstance().get("c").value; ///< Speed of light in cm/s.
|
||||
const double kB = Constants::getInstance().get("kB").value; ///< Boltzmann constant in erg/K.
|
||||
};
|
||||
private:
|
||||
class AtomicReverseRate final : public CppAD::atomic_base<double> {
|
||||
public:
|
||||
AtomicReverseRate(
|
||||
const reaction::Reaction& reaction,
|
||||
const GraphEngine& engine
|
||||
):
|
||||
atomic_base<double>("AtomicReverseRate"),
|
||||
m_reaction(reaction),
|
||||
m_engine(engine) {}
|
||||
|
||||
bool forward(
|
||||
size_t p,
|
||||
size_t q,
|
||||
const CppAD::vector<bool>& vx,
|
||||
CppAD::vector<bool>& vy,
|
||||
const CppAD::vector<double>& tx,
|
||||
CppAD::vector<double>& ty
|
||||
) override;
|
||||
bool reverse(
|
||||
size_t q,
|
||||
const CppAD::vector<double>& tx,
|
||||
const CppAD::vector<double>& ty,
|
||||
CppAD::vector<double>& px,
|
||||
const CppAD::vector<double>& py
|
||||
) override;
|
||||
bool for_sparse_jac(
|
||||
size_t q,
|
||||
const CppAD::vector<std::set<size_t>>&r,
|
||||
CppAD::vector<std::set<size_t>>& s
|
||||
) override;
|
||||
bool rev_sparse_jac(
|
||||
size_t q,
|
||||
const CppAD::vector<std::set<size_t>>&rt,
|
||||
CppAD::vector<std::set<size_t>>& st
|
||||
) override;
|
||||
|
||||
private:
|
||||
const reaction::Reaction& m_reaction;
|
||||
const GraphEngine& m_engine;
|
||||
};
|
||||
private:
|
||||
Config& m_config = Config::getInstance();
|
||||
quill::Logger* m_logger = LogManager::getInstance().getLogger("log");
|
||||
|
||||
constants m_constants;
|
||||
|
||||
reaction::LogicalReactionSet m_reactions; ///< Set of REACLIB reactions in the network.
|
||||
std::unordered_map<std::string_view, reaction::Reaction*> m_reactionIDMap; ///< Map from reaction ID to REACLIBReaction. //PERF: This makes copies of REACLIBReaction and could be a performance bottleneck.
|
||||
|
||||
std::vector<fourdst::atomic::Species> m_networkSpecies; ///< Vector of unique species in the network.
|
||||
std::unordered_map<std::string_view, fourdst::atomic::Species> m_networkSpeciesMap; ///< Map from species name to Species object.
|
||||
std::unordered_map<fourdst::atomic::Species, size_t> m_speciesToIndexMap; ///< Map from species to their index in the stoichiometry matrix.
|
||||
|
||||
boost::numeric::ublas::compressed_matrix<int> m_stoichiometryMatrix; ///< Stoichiometry matrix (species x reactions).
|
||||
|
||||
mutable boost::numeric::ublas::compressed_matrix<double> m_jacobianMatrix; ///< Jacobian matrix (species x species).
|
||||
mutable CppAD::ADFun<double> m_rhsADFun; ///< CppAD function for the right-hand side of the ODE.
|
||||
mutable CppAD::sparse_jac_work m_jac_work; ///< Work object for sparse Jacobian calculations.
|
||||
CppAD::sparse_rc<std::vector<size_t>> m_full_jacobian_sparsity_pattern; ///< Full sparsity pattern for the Jacobian matrix.
|
||||
|
||||
std::vector<std::unique_ptr<AtomicReverseRate>> m_atomicReverseRates;
|
||||
|
||||
screening::ScreeningType m_screeningType = screening::ScreeningType::BARE; ///< Screening type for the reaction network. Default to no screening.
|
||||
std::unique_ptr<screening::ScreeningModel> m_screeningModel = screening::selectScreeningModel(m_screeningType);
|
||||
|
||||
bool m_usePrecomputation = true; ///< Flag to enable or disable using precomputed reactions for efficiency. Mathematically, this should not change the results. Generally end users should not need to change this.
|
||||
|
||||
bool m_useReverseReactions = true; ///< Flag to enable or disable reverse reactions. If false, only forward reactions are considered.
|
||||
|
||||
BuildDepthType m_depth;
|
||||
|
||||
std::vector<PrecomputedReaction> m_precomputedReactions; ///< Precomputed reactions for efficiency.
|
||||
std::unique_ptr<partition::PartitionFunction> m_partitionFunction; ///< Partition function for the network.
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Synchronizes the internal maps.
|
||||
*
|
||||
* This method synchronizes the internal maps used by the engine,
|
||||
* including the species map, reaction ID map, and species-to-index map.
|
||||
* It also generates the stoichiometry matrix and records the AD tape.
|
||||
*/
|
||||
void syncInternalMaps();
|
||||
|
||||
/**
|
||||
* @brief Collects the unique species in the network.
|
||||
*
|
||||
* This method collects the unique species in the network from the
|
||||
* reactants and products of all reactions.
|
||||
*/
|
||||
void collectNetworkSpecies();
|
||||
|
||||
/**
|
||||
* @brief Populates the reaction ID map.
|
||||
*
|
||||
* This method populates the reaction ID map, which maps reaction IDs
|
||||
* to REACLIBReaction objects.
|
||||
*/
|
||||
void populateReactionIDMap();
|
||||
|
||||
/**
|
||||
* @brief Populates the species-to-index map.
|
||||
*
|
||||
* This method populates the species-to-index map, which maps species
|
||||
* to their index in the stoichiometry matrix.
|
||||
*/
|
||||
void populateSpeciesToIndexMap();
|
||||
|
||||
/**
|
||||
* @brief Reserves space for the Jacobian matrix.
|
||||
*
|
||||
* This method reserves space for the Jacobian matrix, which is used
|
||||
* to store the partial derivatives of the right-hand side of the ODE
|
||||
* with respect to the species abundances.
|
||||
*/
|
||||
void reserveJacobianMatrix() const;
|
||||
|
||||
/**
|
||||
* @brief Records the AD tape for the right-hand side of the ODE.
|
||||
*
|
||||
* This method records the AD tape for the right-hand side of the ODE,
|
||||
* which is used to calculate the Jacobian matrix using automatic
|
||||
* differentiation.
|
||||
*
|
||||
* @throws std::runtime_error If there are no species in the network.
|
||||
*/
|
||||
void recordADTape();
|
||||
|
||||
void collectAtomicReverseRateAtomicBases();
|
||||
|
||||
void precomputeNetwork();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Validates mass and charge conservation across all reactions.
|
||||
*
|
||||
* @return True if all reactions conserve mass and charge, false otherwise.
|
||||
*
|
||||
* This method checks that all reactions in the network conserve mass
|
||||
* and charge. If any reaction does not conserve mass or charge, an
|
||||
* error message is logged and false is returned.
|
||||
*/
|
||||
[[nodiscard]] bool validateConservation() const;
|
||||
|
||||
/**
|
||||
* @brief Validates the composition against the current reaction set.
|
||||
*
|
||||
* @param composition The composition to validate.
|
||||
* @param culling The culling threshold to use.
|
||||
* @param T9 The temperature to use.
|
||||
*
|
||||
* This method validates the composition against the current reaction set.
|
||||
* If the composition is not compatible with the reaction set, the
|
||||
* reaction set is rebuilt from the composition.
|
||||
*/
|
||||
void validateComposition(
|
||||
const fourdst::composition::Composition &composition,
|
||||
double culling,
|
||||
double T9
|
||||
);
|
||||
|
||||
|
||||
|
||||
[[nodiscard]] StepDerivatives<double> calculateAllDerivativesUsingPrecomputation(
|
||||
const std::vector<double> &Y_in,
|
||||
const std::vector<double>& bare_rates,
|
||||
const std::vector<double> &bare_reverse_rates,
|
||||
double T9, double rho
|
||||
) const;
|
||||
|
||||
/**
|
||||
* @brief Calculates the molar reaction flow for a given reaction.
|
||||
*
|
||||
* @tparam T The numeric type to use for the calculation.
|
||||
* @param reaction The reaction for which to calculate the flow.
|
||||
* @param Y Vector of current abundances.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Molar flow rate for the reaction (e.g., mol/g/s).
|
||||
*
|
||||
* This method computes the net rate at which the given reaction proceeds
|
||||
* under the current state.
|
||||
*/
|
||||
template <IsArithmeticOrAD T>
|
||||
T calculateMolarReactionFlow(
|
||||
const reaction::Reaction &reaction,
|
||||
const std::vector<T> &Y,
|
||||
const T T9,
|
||||
const T rho
|
||||
) const;
|
||||
|
||||
template<IsArithmeticOrAD T>
|
||||
T calculateReverseMolarReactionFlow(
|
||||
T T9,
|
||||
T rho,
|
||||
std::vector<T> screeningFactors,
|
||||
std::vector<T> Y,
|
||||
size_t reactionIndex,
|
||||
const reaction::LogicalReaction &reaction
|
||||
) const;
|
||||
|
||||
/**
|
||||
* @brief Calculates all derivatives (dY/dt) and the energy generation rate.
|
||||
*
|
||||
* @tparam T The numeric type to use for the calculation.
|
||||
* @param Y_in Vector of current abundances for all species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return StepDerivatives<T> containing dY/dt and energy generation rate.
|
||||
*
|
||||
* This method calculates the time derivatives of all species and the
|
||||
* specific nuclear energy generation rate for the current state.
|
||||
*/
|
||||
template<IsArithmeticOrAD T>
|
||||
[[nodiscard]] StepDerivatives<T> calculateAllDerivatives(
|
||||
const std::vector<T> &Y_in,
|
||||
T T9,
|
||||
T rho
|
||||
) const;
|
||||
|
||||
/**
|
||||
* @brief Calculates all derivatives (dY/dt) and the energy generation rate (double precision).
|
||||
*
|
||||
* @param Y_in Vector of current abundances for all species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return StepDerivatives<double> containing dY/dt and energy generation rate.
|
||||
*
|
||||
* This method calculates the time derivatives of all species and the
|
||||
* specific nuclear energy generation rate for the current state using
|
||||
* double precision arithmetic.
|
||||
*/
|
||||
[[nodiscard]] StepDerivatives<double> calculateAllDerivatives(
|
||||
const std::vector<double>& Y_in,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const;
|
||||
|
||||
/**
|
||||
* @brief Calculates all derivatives (dY/dt) and the energy generation rate (automatic differentiation).
|
||||
*
|
||||
* @param Y_in Vector of current abundances for all species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return StepDerivatives<ADDouble> containing dY/dt and energy generation rate.
|
||||
*
|
||||
* This method calculates the time derivatives of all species and the
|
||||
* specific nuclear energy generation rate for the current state using
|
||||
* automatic differentiation.
|
||||
*/
|
||||
[[nodiscard]] StepDerivatives<ADDouble> calculateAllDerivatives(
|
||||
const std::vector<ADDouble>& Y_in,
|
||||
const ADDouble &T9,
|
||||
const ADDouble &rho
|
||||
) const;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <IsArithmeticOrAD T>
|
||||
T GraphEngine::calculateReverseMolarReactionFlow(
|
||||
T T9,
|
||||
T rho,
|
||||
std::vector<T> screeningFactors,
|
||||
std::vector<T> Y,
|
||||
size_t reactionIndex,
|
||||
const reaction::LogicalReaction &reaction
|
||||
) const {
|
||||
if (!m_useReverseReactions) {
|
||||
return static_cast<T>(0.0); // If reverse reactions are not used, return zero
|
||||
}
|
||||
s_debug = false;
|
||||
if (reaction.peName() == "p(p,e+)d" || reaction.peName() =="d(d,n)he3" || reaction.peName() == "c12(p,g)n13") {
|
||||
if constexpr (!std::is_same_v<T, ADDouble>) {
|
||||
s_debug = true;
|
||||
std::cout << "Calculating reverse molar flow for reaction: " << reaction.peName() << std::endl;
|
||||
std::cout << "\tT9: " << T9 << ", rho: " << rho << std::endl;
|
||||
}
|
||||
}
|
||||
T reverseMolarFlow = static_cast<T>(0.0);
|
||||
|
||||
if (reaction.qValue() != 0.0) {
|
||||
T reverseRateConstant = static_cast<T>(0.0);
|
||||
if constexpr (std::is_same_v<T, ADDouble>) { // Check if T is an AD type at compile time
|
||||
const auto& atomic_func_ptr = m_atomicReverseRates[reactionIndex];
|
||||
if (atomic_func_ptr != nullptr) {
|
||||
// A. Instantiate the atomic operator for the specific reaction
|
||||
// B. Marshal the input vector
|
||||
std::vector<T> ax = { T9 };
|
||||
|
||||
std::vector<T> ay(1);
|
||||
(*atomic_func_ptr)(ax, ay);
|
||||
reverseRateConstant = static_cast<T>(ay[0]);
|
||||
} else {
|
||||
return reverseMolarFlow; // If no atomic function is available, return zero
|
||||
}
|
||||
} else {
|
||||
// A,B If not calling with an AD type, calculate the reverse rate directly
|
||||
if (s_debug) {
|
||||
std::cout << "\tUsing double overload\n";
|
||||
}
|
||||
reverseRateConstant = calculateReverseRate(reaction, T9);
|
||||
}
|
||||
|
||||
// C. Get product multiplicities
|
||||
std::unordered_map<fourdst::atomic::Species, int> productCounts;
|
||||
for (const auto& product : reaction.products()) {
|
||||
productCounts[product]++;
|
||||
}
|
||||
|
||||
// D. Calculate the symmetry factor
|
||||
T reverseSymmetryFactor = static_cast<T>(1.0);
|
||||
for (const auto &count: productCounts | std::views::values) {
|
||||
reverseSymmetryFactor /= static_cast<T>(std::tgamma(static_cast<double>(count + 1))); // Gamma function for factorial
|
||||
}
|
||||
|
||||
// E. Calculate the abundance term
|
||||
T productAbundanceTerm = static_cast<T>(1.0);
|
||||
for (const auto& [species, count] : productCounts) {
|
||||
const unsigned long speciesIndex = m_speciesToIndexMap.at(species);
|
||||
productAbundanceTerm *= CppAD::pow(Y[speciesIndex], count);
|
||||
}
|
||||
|
||||
// F. Determine the power for the density term
|
||||
const size_t num_products = reaction.products().size();
|
||||
const T rho_power = CppAD::pow(rho, static_cast<T>(num_products > 1 ? num_products - 1 : 0)); // Density raised to the power of (N-1) for N products
|
||||
|
||||
// G. Assemble the reverse molar flow rate
|
||||
reverseMolarFlow = screeningFactors[reactionIndex] *
|
||||
reverseRateConstant *
|
||||
productAbundanceTerm *
|
||||
reverseSymmetryFactor *
|
||||
rho_power;
|
||||
}
|
||||
return reverseMolarFlow;
|
||||
}
|
||||
|
||||
template<IsArithmeticOrAD T>
|
||||
StepDerivatives<T> GraphEngine::calculateAllDerivatives(
|
||||
const std::vector<T> &Y_in, T T9, T rho) const {
|
||||
std::vector<T> screeningFactors = m_screeningModel->calculateScreeningFactors(
|
||||
m_reactions,
|
||||
m_networkSpecies,
|
||||
Y_in,
|
||||
T9,
|
||||
rho
|
||||
);
|
||||
|
||||
// --- Setup output derivatives structure ---
|
||||
StepDerivatives<T> result;
|
||||
result.dydt.resize(m_networkSpecies.size(), static_cast<T>(0.0));
|
||||
|
||||
// --- AD Pre-setup (flags to control conditionals in an AD safe / branch aware manner) ---
|
||||
// ----- Constants for AD safe calculations ---
|
||||
const T zero = static_cast<T>(0.0);
|
||||
const T one = static_cast<T>(1.0);
|
||||
|
||||
// ----- Initialize variables for molar concentration product and thresholds ---
|
||||
// Note: the logic here is that we use CppAD::CondExprLt to test thresholds and if they are less we set the flag
|
||||
// to zero so that the final returned reaction flow is 0. This is as opposed to standard if statements
|
||||
// which create branches that break the AD tape.
|
||||
const T rho_threshold = static_cast<T>(MIN_DENSITY_THRESHOLD);
|
||||
|
||||
// --- Check if the density is below the threshold where we ignore reactions ---
|
||||
T threshold_flag = CppAD::CondExpLt(rho, rho_threshold, zero, one); // If rho < threshold, set flag to 0
|
||||
|
||||
std::vector<T> Y = Y_in;
|
||||
for (size_t i = 0; i < m_networkSpecies.size(); ++i) {
|
||||
// We use CppAD::CondExpLt to handle AD taping and prevent branching
|
||||
// Note that while this is syntactically more complex this is equivalent to
|
||||
// if (Y[i] < 0) {Y[i] = 0;}
|
||||
// The issue is that this would introduce a branch which would require the auto diff tape to be re-recorded
|
||||
// each timestep, which is very inefficient.
|
||||
Y[i] = CppAD::CondExpLt(Y[i], zero, zero, Y[i]); // Ensure no negative abundances
|
||||
}
|
||||
|
||||
const T u = static_cast<T>(m_constants.u); // Atomic mass unit in grams
|
||||
const T N_A = static_cast<T>(m_constants.Na); // Avogadro's number in mol^-1
|
||||
const T c = static_cast<T>(m_constants.c); // Speed of light in cm/s
|
||||
|
||||
// --- SINGLE LOOP OVER ALL REACTIONS ---
|
||||
for (size_t reactionIndex = 0; reactionIndex < m_reactions.size(); ++reactionIndex) {
|
||||
const auto& reaction = m_reactions[reactionIndex];
|
||||
|
||||
// 1. Calculate forward reaction rate
|
||||
const T forwardMolarReactionFlow = screeningFactors[reactionIndex] *
|
||||
calculateMolarReactionFlow<T>(reaction, Y, T9, rho);
|
||||
|
||||
// 2. Calculate reverse reaction rate
|
||||
T reverseMolarFlow = calculateReverseMolarReactionFlow<T>(
|
||||
T9,
|
||||
rho,
|
||||
screeningFactors,
|
||||
Y,
|
||||
reactionIndex,
|
||||
reaction
|
||||
);
|
||||
|
||||
const T molarReactionFlow = forwardMolarReactionFlow - reverseMolarFlow; // Net molar reaction flow
|
||||
|
||||
// 3. Use the rate to update all relevant species derivatives (dY/dt)
|
||||
for (size_t speciesIndex = 0; speciesIndex < m_networkSpecies.size(); ++speciesIndex) {
|
||||
const T nu_ij = static_cast<T>(m_stoichiometryMatrix(speciesIndex, reactionIndex));
|
||||
result.dydt[speciesIndex] += threshold_flag * nu_ij * molarReactionFlow;
|
||||
}
|
||||
}
|
||||
|
||||
T massProductionRate = static_cast<T>(0.0); // [mol][s^-1]
|
||||
for (const auto& [species, index] : m_speciesToIndexMap) {
|
||||
massProductionRate += result.dydt[index] * species.mass() * u;
|
||||
}
|
||||
|
||||
result.nuclearEnergyGenerationRate = -massProductionRate * N_A * c * c; // [cm^2][s^-3] = [erg][s^-1][g^-1]
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template <IsArithmeticOrAD T>
|
||||
T GraphEngine::calculateMolarReactionFlow(
|
||||
const reaction::Reaction &reaction,
|
||||
const std::vector<T> &Y,
|
||||
const T T9,
|
||||
const T rho
|
||||
) const {
|
||||
|
||||
// --- Pre-setup (flags to control conditionals in an AD safe / branch aware manner) ---
|
||||
// ----- Constants for AD safe calculations ---
|
||||
const T zero = static_cast<T>(0.0);
|
||||
const T one = static_cast<T>(1.0);
|
||||
|
||||
// ----- Initialize variables for molar concentration product and thresholds ---
|
||||
// Note: the logic here is that we use CppAD::CondExprLt to test thresholds and if they are less we set the flag
|
||||
// to zero so that the final returned reaction flow is 0. This is as opposed to standard if statements
|
||||
// which create branches that break the AD tape.
|
||||
const T Y_threshold = static_cast<T>(MIN_ABUNDANCE_THRESHOLD);
|
||||
T threshold_flag = one;
|
||||
|
||||
// --- Calculate the molar reaction rate (in units of [s^-1][cm^3(N-1)][mol^(1-N)] for N reactants) ---
|
||||
const T k_reaction = reaction.calculate_rate(T9);
|
||||
|
||||
// --- Cound the number of each reactant species to account for species multiplicity ---
|
||||
std::unordered_map<std::string, int> reactant_counts;
|
||||
reactant_counts.reserve(reaction.reactants().size());
|
||||
for (const auto& reactant : reaction.reactants()) {
|
||||
reactant_counts[std::string(reactant.name())]++;
|
||||
}
|
||||
const int totalReactants = static_cast<int>(reaction.reactants().size());
|
||||
|
||||
// --- Accumulator for the molar concentration ---
|
||||
auto molar_concentration_product = static_cast<T>(1.0);
|
||||
|
||||
// --- Loop through each unique reactant species and calculate the molar concentration for that species then multiply that into the accumulator ---
|
||||
for (const auto& [species_name, count] : reactant_counts) {
|
||||
// --- Resolve species to molar abundance ---
|
||||
// PERF: Could probably optimize out this lookup
|
||||
const auto species_it = m_speciesToIndexMap.find(m_networkSpeciesMap.at(species_name));
|
||||
const size_t species_index = species_it->second;
|
||||
const T Yi = Y[species_index];
|
||||
|
||||
// --- Check if the species abundance is below the threshold where we ignore reactions ---
|
||||
// threshold_flag *= CppAD::CondExpLt(Yi, Y_threshold, zero, one);
|
||||
|
||||
// --- If count is > 1 , we need to raise the molar concentration to the power of count since there are really count bodies in that reaction ---
|
||||
molar_concentration_product *= CppAD::pow(Yi, static_cast<T>(count)); // ni^count
|
||||
|
||||
// --- Apply factorial correction for identical reactions ---
|
||||
if (count > 1) {
|
||||
molar_concentration_product /= static_cast<T>(std::tgamma(static_cast<double>(count + 1))); // Gamma function for factorial
|
||||
}
|
||||
}
|
||||
// --- Final reaction flow calculation [mol][s^-1][g^-1] ---
|
||||
// Note: If the threshold flag ever gets set to zero this will return zero.
|
||||
// This will result basically in multiple branches being written to the AD tape, which will make
|
||||
// the tape more expensive to record, but it will also mean that we only need to record it once for
|
||||
// the entire network.
|
||||
const T densityTerm = CppAD::pow(rho, totalReactants > 1 ? static_cast<T>(totalReactants - 1) : zero); // Density raised to the power of (N-1) for N reactants
|
||||
return molar_concentration_product * k_reaction * threshold_flag * densityTerm;
|
||||
}
|
||||
|
||||
};
|
||||
17
src/include/gridfire/engine/procedures/construction.h
Normal file
17
src/include/gridfire/engine/procedures/construction.h
Normal file
@@ -0,0 +1,17 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
#include "gridfire/engine/types/building.h"
|
||||
|
||||
#include "fourdst/composition/composition.h"
|
||||
|
||||
#include <variant>
|
||||
|
||||
namespace gridfire {
|
||||
|
||||
reaction::LogicalReactionSet build_reaclib_nuclear_network(
|
||||
const fourdst::composition::Composition &composition,
|
||||
BuildDepthType maxLayers = NetworkBuildDepth::Full,
|
||||
bool reverse = false
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,4 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/procedures/construction.h"
|
||||
#include "gridfire/engine/procedures/priming.h"
|
||||
37
src/include/gridfire/engine/procedures/priming.h
Normal file
37
src/include/gridfire/engine/procedures/priming.h
Normal file
@@ -0,0 +1,37 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/network.h"
|
||||
|
||||
#include "fourdst/composition/composition.h"
|
||||
#include "fourdst/composition/atomicSpecies.h"
|
||||
|
||||
#include <map>
|
||||
#include <ranges>
|
||||
#include <sstream>
|
||||
|
||||
|
||||
namespace gridfire {
|
||||
|
||||
|
||||
PrimingReport primeNetwork(
|
||||
const NetIn&,
|
||||
DynamicEngine& engine
|
||||
);
|
||||
|
||||
double calculateDestructionRateConstant(
|
||||
const DynamicEngine& engine,
|
||||
const fourdst::atomic::Species& species,
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
);
|
||||
|
||||
double calculateCreationRate(
|
||||
const DynamicEngine& engine,
|
||||
const fourdst::atomic::Species& species,
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
);
|
||||
}
|
||||
16
src/include/gridfire/engine/types/building.h
Normal file
16
src/include/gridfire/engine/types/building.h
Normal file
@@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
|
||||
#include <variant>
|
||||
|
||||
namespace gridfire {
|
||||
enum class NetworkBuildDepth {
|
||||
Full = -1,
|
||||
Shallow = 1,
|
||||
SecondOrder = 2,
|
||||
ThirdOrder = 3,
|
||||
FourthOrder = 4,
|
||||
FifthOrder = 5
|
||||
};
|
||||
|
||||
using BuildDepthType = std::variant<NetworkBuildDepth, int>;
|
||||
}
|
||||
4
src/include/gridfire/engine/types/engine_types.h
Normal file
4
src/include/gridfire/engine/types/engine_types.h
Normal file
@@ -0,0 +1,4 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/types/building.h"
|
||||
#include "gridfire/engine/types/reporting.h"
|
||||
42
src/include/gridfire/engine/types/reporting.h
Normal file
42
src/include/gridfire/engine/types/reporting.h
Normal file
@@ -0,0 +1,42 @@
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <ranges>
|
||||
|
||||
namespace gridfire {
|
||||
enum class PrimingReportStatus {
|
||||
FULL_SUCCESS = 0,
|
||||
NO_SPECIES_TO_PRIME = 1,
|
||||
MAX_ITERATIONS_REACHED = 2,
|
||||
FAILED_TO_FINALIZE_COMPOSITION = 3,
|
||||
FAILED_TO_FIND_CREATION_CHANNEL = 4,
|
||||
FAILED_TO_FIND_PRIMING_REACTIONS = 5,
|
||||
BASE_NETWORK_TOO_SHALLOW = 6
|
||||
};
|
||||
|
||||
inline std::map<PrimingReportStatus, std::string> PrimingReportStatusStrings = {
|
||||
{PrimingReportStatus::FULL_SUCCESS, "Full Success"},
|
||||
{PrimingReportStatus::NO_SPECIES_TO_PRIME, "No Species to Prime"},
|
||||
{PrimingReportStatus::MAX_ITERATIONS_REACHED, "Max Iterations Reached"},
|
||||
{PrimingReportStatus::FAILED_TO_FINALIZE_COMPOSITION, "Failed to Finalize Composition"},
|
||||
{PrimingReportStatus::FAILED_TO_FIND_CREATION_CHANNEL, "Failed to Find Creation Channel"},
|
||||
{PrimingReportStatus::FAILED_TO_FIND_PRIMING_REACTIONS, "Failed to Find Priming Reactions"},
|
||||
{PrimingReportStatus::BASE_NETWORK_TOO_SHALLOW, "Base Network Too Shallow"}
|
||||
};
|
||||
|
||||
struct PrimingReport {
|
||||
fourdst::composition::Composition primedComposition;
|
||||
std::vector<std::pair<fourdst::atomic::Species, double>> massFractionChanges; ///< Species and their destruction/creation rates
|
||||
bool success;
|
||||
PrimingReportStatus status;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const PrimingReport& report) {
|
||||
std::stringstream ss;
|
||||
const std::string successStr = report.success ? "true" : "false";
|
||||
ss << "PrimingReport(success=" << successStr
|
||||
<< ", status=" << PrimingReportStatusStrings[report.status] << ")";
|
||||
return os << ss.str();
|
||||
}
|
||||
};
|
||||
}
|
||||
479
src/include/gridfire/engine/views/engine_adaptive.h
Normal file
479
src/include/gridfire/engine/views/engine_adaptive.h
Normal file
@@ -0,0 +1,479 @@
|
||||
#pragma once
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/engine/views/engine_view_abstract.h"
|
||||
#include "gridfire/screening/screening_abstract.h"
|
||||
#include "gridfire/screening/screening_types.h"
|
||||
#include "gridfire/network.h"
|
||||
|
||||
#include "fourdst/composition/atomicSpecies.h"
|
||||
#include "fourdst/config/config.h"
|
||||
#include "fourdst/logging/logging.h"
|
||||
|
||||
#include "gridfire/engine/procedures/priming.h"
|
||||
#include "gridfire/engine/procedures/construction.h"
|
||||
|
||||
#include "quill/Logger.h"
|
||||
|
||||
namespace gridfire {
|
||||
/**
|
||||
* @class AdaptiveEngineView
|
||||
* @brief An engine view that dynamically adapts the reaction network based on runtime conditions.
|
||||
*
|
||||
* This class implements an EngineView that dynamically culls species and reactions from the
|
||||
* full reaction network based on their reaction flow rates and connectivity. This allows for
|
||||
* efficient simulation of reaction networks by focusing computational effort on the most
|
||||
* important species and reactions.
|
||||
*
|
||||
* The AdaptiveEngineView maintains a subset of "active" species and reactions, and maps
|
||||
* between the full network indices and the active subset indices. This allows the base engine
|
||||
* to operate on the full network data, while the AdaptiveEngineView provides a reduced view
|
||||
* for external clients.
|
||||
*
|
||||
* The adaptation process is driven by the `update()` method, which performs the following steps:
|
||||
* 1. **Reaction Flow Calculation:** Calculates the molar reaction flow rate for each reaction
|
||||
* in the full network based on the current temperature, density, and composition.
|
||||
* 2. **Reaction Culling:** Culls reactions with flow rates below a threshold, determined by
|
||||
* a relative culling threshold multiplied by the maximum flow rate.
|
||||
* 3. **Connectivity Analysis:** Performs a connectivity analysis to identify species that are
|
||||
* reachable from the initial fuel species through the culled reaction network.
|
||||
* 4. **Species Culling:** Culls species that are not reachable from the initial fuel.
|
||||
* 5. **Index Map Construction:** Constructs index maps to map between the full network indices
|
||||
* and the active subset indices for species and reactions.
|
||||
*
|
||||
* @implements DynamicEngine
|
||||
* @implements EngineView<DynamicEngine>
|
||||
*
|
||||
* @see engine_abstract.h
|
||||
* @see engine_view_abstract.h
|
||||
* @see AdaptiveEngineView::update()
|
||||
*/
|
||||
class AdaptiveEngineView final : public DynamicEngine, public EngineView<DynamicEngine> {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs an AdaptiveEngineView.
|
||||
*
|
||||
* @param baseEngine The underlying DynamicEngine to which this view delegates calculations.
|
||||
*
|
||||
* Initializes the active species and reactions to the full network, and constructs the
|
||||
* initial index maps.
|
||||
*/
|
||||
explicit AdaptiveEngineView(DynamicEngine& baseEngine);
|
||||
|
||||
/**
|
||||
* @brief Updates the active species and reactions based on the current conditions.
|
||||
*
|
||||
* @param netIn The current network input, containing temperature, density, and composition.
|
||||
*
|
||||
* This method performs the reaction flow calculation, reaction culling, connectivity analysis,
|
||||
* and index map construction steps described above.
|
||||
*
|
||||
* The culling thresholds are read from the configuration using the following keys:
|
||||
* - `gridfire:AdaptiveEngineView:RelativeCullingThreshold` (default: 1e-75)
|
||||
*
|
||||
* @throws std::runtime_error If there is a mismatch between the active reactions and the base engine.
|
||||
* @post The active species and reactions are updated, and the index maps are reconstructed.
|
||||
* @see AdaptiveEngineView
|
||||
* @see AdaptiveEngineView::constructSpeciesIndexMap()
|
||||
* @see AdaptiveEngineView::constructReactionIndexMap()
|
||||
*/
|
||||
fourdst::composition::Composition update(const NetIn &netIn) override;
|
||||
|
||||
bool isStale(const NetIn& netIn) override;
|
||||
|
||||
/**
|
||||
* @brief Gets the list of active species in the network.
|
||||
* @return A const reference to the vector of active species.
|
||||
*/
|
||||
[[nodiscard]] const std::vector<fourdst::atomic::Species>& getNetworkSpecies() const override;
|
||||
|
||||
/**
|
||||
* @brief Calculates the right-hand side (dY/dt) and energy generation for the active species.
|
||||
*
|
||||
* @param Y_culled A vector of abundances for the active species.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @param rho The density in g/cm^3.
|
||||
* @return A StepDerivatives struct containing the derivatives of the active species and the
|
||||
* nuclear energy generation rate.
|
||||
*
|
||||
* This method maps the culled abundances to the full network abundances, calls the base engine
|
||||
* to calculate the RHS and energy generation, and then maps the full network derivatives back
|
||||
* to the culled derivatives.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
* @see AdaptiveEngineView::update()
|
||||
*/
|
||||
[[nodiscard]] std::expected<StepDerivatives<double>, expectations::StaleEngineError> calculateRHSAndEnergy(
|
||||
const std::vector<double> &Y_culled,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Generates the Jacobian matrix for the active species.
|
||||
*
|
||||
* @param Y_dynamic A vector of abundances for the active species.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @param rho The density in g/cm^3.
|
||||
*
|
||||
* This method maps the culled abundances to the full network abundances and calls the base engine
|
||||
* to generate the Jacobian matrix.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
* @see AdaptiveEngineView::update()
|
||||
*/
|
||||
void generateJacobianMatrix(
|
||||
const std::vector<double> &Y_dynamic,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Gets an entry from the Jacobian matrix for the active species.
|
||||
*
|
||||
* @param i_culled The row index (species index) in the culled matrix.
|
||||
* @param j_culled The column index (species index) in the culled matrix.
|
||||
* @return The value of the Jacobian matrix at (i_culled, j_culled).
|
||||
*
|
||||
* This method maps the culled indices to the full network indices and calls the base engine
|
||||
* to get the Jacobian matrix entry.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
* @throws std::out_of_range If the culled index is out of bounds for the species index map.
|
||||
* @see AdaptiveEngineView::update()
|
||||
*/
|
||||
[[nodiscard]] double getJacobianMatrixEntry(
|
||||
const int i_culled,
|
||||
const int j_culled
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Generates the stoichiometry matrix for the active reactions and species.
|
||||
*
|
||||
* This method calls the base engine to generate the stoichiometry matrix.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
* @note The stoichiometry matrix generated by the base engine is assumed to be consistent with
|
||||
* the active species and reactions in this view.
|
||||
*/
|
||||
void generateStoichiometryMatrix() override;
|
||||
|
||||
/**
|
||||
* @brief Gets an entry from the stoichiometry matrix for the active species and reactions.
|
||||
*
|
||||
* @param speciesIndex_culled The index of the species in the culled species list.
|
||||
* @param reactionIndex_culled The index of the reaction in the culled reaction list.
|
||||
* @return The stoichiometric coefficient for the given species and reaction.
|
||||
*
|
||||
* This method maps the culled indices to the full network indices and calls the base engine
|
||||
* to get the stoichiometry matrix entry.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
* @throws std::out_of_range If the culled index is out of bounds for the species or reaction index map.
|
||||
* @see AdaptiveEngineView::update()
|
||||
*/
|
||||
[[nodiscard]] int getStoichiometryMatrixEntry(
|
||||
const int speciesIndex_culled,
|
||||
const int reactionIndex_culled
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Calculates the molar reaction flow for a given reaction in the active network.
|
||||
*
|
||||
* @param reaction The reaction for which to calculate the flow.
|
||||
* @param Y_culled Vector of current abundances for the active species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Molar flow rate for the reaction (e.g., mol/g/s).
|
||||
*
|
||||
* This method maps the culled abundances to the full network abundances and calls the base engine
|
||||
* to calculate the molar reaction flow.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
* @throws std::runtime_error If the reaction is not part of the active reactions in the adaptive engine view.
|
||||
*/
|
||||
[[nodiscard]] double calculateMolarReactionFlow(
|
||||
const reaction::Reaction &reaction,
|
||||
const std::vector<double> &Y_culled,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Gets the set of active logical reactions in the network.
|
||||
*
|
||||
* @return Reference to the LogicalReactionSet containing all active reactions.
|
||||
*/
|
||||
[[nodiscard]] const reaction::LogicalReactionSet& getNetworkReactions() const override;
|
||||
|
||||
void setNetworkReactions(const reaction::LogicalReactionSet& reactions) override;
|
||||
|
||||
/**
|
||||
* @brief Computes timescales for all active species in the network.
|
||||
*
|
||||
* @param Y_culled Vector of current abundances for the active species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Map from Species to their characteristic timescales (s).
|
||||
*
|
||||
* This method maps the culled abundances to the full network abundances and calls the base engine
|
||||
* to compute the species timescales.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
*/
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesTimescales(
|
||||
const std::vector<double> &Y_culled,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesDestructionTimescales(
|
||||
const std::vector<double> &Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Gets the base engine.
|
||||
* @return A const reference to the base engine.
|
||||
*/
|
||||
[[nodiscard]] const DynamicEngine& getBaseEngine() const override { return m_baseEngine; }
|
||||
|
||||
/**
|
||||
* @brief Sets the screening model for the base engine.
|
||||
*
|
||||
* This method delegates the call to the base engine to set the electron screening model.
|
||||
*
|
||||
* @param model The electron screening model to set.
|
||||
*
|
||||
* @par Usage Example:
|
||||
* @code
|
||||
* AdaptiveEngineView engineView(...);
|
||||
* engineView.setScreeningModel(screening::ScreeningType::WEAK);
|
||||
* @endcode
|
||||
*
|
||||
* @post The screening model of the base engine is updated.
|
||||
*/
|
||||
void setScreeningModel(screening::ScreeningType model) override;
|
||||
|
||||
/**
|
||||
* @brief Gets the screening model from the base engine.
|
||||
*
|
||||
* This method delegates the call to the base engine to get the screening model.
|
||||
*
|
||||
* @return The current screening model type.
|
||||
*
|
||||
* @par Usage Example:
|
||||
* @code
|
||||
* AdaptiveEngineView engineView(...);
|
||||
* screening::ScreeningType model = engineView.getScreeningModel();
|
||||
* @endcode
|
||||
*/
|
||||
[[nodiscard]] screening::ScreeningType getScreeningModel() const override;
|
||||
|
||||
[[nodiscard]] int getSpeciesIndex(const fourdst::atomic::Species &species) const override;
|
||||
|
||||
[[nodiscard]] std::vector<double> mapNetInToMolarAbundanceVector(const NetIn &netIn) const override;
|
||||
|
||||
[[nodiscard]] PrimingReport primeEngine(const NetIn &netIn) override;
|
||||
private:
|
||||
using Config = fourdst::config::Config;
|
||||
using LogManager = fourdst::logging::LogManager;
|
||||
/** @brief A reference to the singleton Config instance, used for retrieving configuration parameters. */
|
||||
Config& m_config = Config::getInstance();
|
||||
/** @brief A pointer to the logger instance, used for logging messages. */
|
||||
quill::Logger* m_logger = LogManager::getInstance().getLogger("log");
|
||||
|
||||
/** @brief The underlying engine to which this view delegates calculations. */
|
||||
DynamicEngine& m_baseEngine;
|
||||
|
||||
/** @brief The set of species that are currently active in the network. */
|
||||
std::vector<fourdst::atomic::Species> m_activeSpecies;
|
||||
/** @brief The set of reactions that are currently active in the network. */
|
||||
reaction::LogicalReactionSet m_activeReactions;
|
||||
|
||||
/** @brief A map from the indices of the active species to the indices of the corresponding species in the full network. */
|
||||
std::vector<size_t> m_speciesIndexMap;
|
||||
/** @brief A map from the indices of the active reactions to the indices of the corresponding reactions in the full network. */
|
||||
std::vector<size_t> m_reactionIndexMap;
|
||||
|
||||
/** @brief A flag indicating whether the view is stale and needs to be updated. */
|
||||
bool m_isStale = true;
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief A struct to hold a reaction and its flow rate.
|
||||
*/
|
||||
struct ReactionFlow {
|
||||
const reaction::LogicalReaction* reactionPtr;
|
||||
double flowRate;
|
||||
};
|
||||
private:
|
||||
/**
|
||||
* @brief Constructs the species index map.
|
||||
*
|
||||
* @return A vector mapping culled species indices to full species indices.
|
||||
*
|
||||
* This method creates a map from the indices of the active species to the indices of the
|
||||
* corresponding species in the full network.
|
||||
*
|
||||
* @see AdaptiveEngineView::update()
|
||||
*/
|
||||
[[nodiscard]] std::vector<size_t> constructSpeciesIndexMap() const;
|
||||
|
||||
/**
|
||||
* @brief Constructs the reaction index map.
|
||||
*
|
||||
* @return A vector mapping culled reaction indices to full reaction indices.
|
||||
*
|
||||
* This method creates a map from the indices of the active reactions to the indices of the
|
||||
* corresponding reactions in the full network.
|
||||
*
|
||||
* @see AdaptiveEngineView::update()
|
||||
*/
|
||||
[[nodiscard]] std::vector<size_t> constructReactionIndexMap() const;
|
||||
|
||||
/**
|
||||
* @brief Maps a vector of culled abundances to a vector of full abundances.
|
||||
*
|
||||
* @param culled A vector of abundances for the active species.
|
||||
* @return A vector of abundances for the full network, with the abundances of the active
|
||||
* species copied from the culled vector.
|
||||
*/
|
||||
[[nodiscard]] std::vector<double> mapCulledToFull(const std::vector<double>& culled) const;
|
||||
|
||||
/**
|
||||
* @brief Maps a vector of full abundances to a vector of culled abundances.
|
||||
*
|
||||
* @param full A vector of abundances for the full network.
|
||||
* @return A vector of abundances for the active species, with the abundances of the active
|
||||
* species copied from the full vector.
|
||||
*/
|
||||
[[nodiscard]] std::vector<double> mapFullToCulled(const std::vector<double>& full) const;
|
||||
|
||||
/**
|
||||
* @brief Maps a culled species index to a full species index.
|
||||
*
|
||||
* @param culledSpeciesIndex The index of the species in the culled species list.
|
||||
* @return The index of the corresponding species in the full network.
|
||||
*
|
||||
* @throws std::out_of_range If the culled index is out of bounds for the species index map.
|
||||
*/
|
||||
[[nodiscard]] size_t mapCulledToFullSpeciesIndex(size_t culledSpeciesIndex) const;
|
||||
|
||||
/**
|
||||
* @brief Maps a culled reaction index to a full reaction index.
|
||||
*
|
||||
* @param culledReactionIndex The index of the reaction in the culled reaction list.
|
||||
* @return The index of the corresponding reaction in the full network.
|
||||
*
|
||||
* @throws std::out_of_range If the culled index is out of bounds for the reaction index map.
|
||||
*/
|
||||
[[nodiscard]] size_t mapCulledToFullReactionIndex(size_t culledReactionIndex) const;
|
||||
|
||||
/**
|
||||
* @brief Validates that the AdaptiveEngineView is not stale.
|
||||
*
|
||||
* @throws std::runtime_error If the AdaptiveEngineView is stale (i.e., `update()` has not been called).
|
||||
*/
|
||||
void validateState() const;
|
||||
|
||||
/**
|
||||
* @brief Calculates the molar reaction flow rate for all reactions in the full network.
|
||||
*
|
||||
* This method iterates through all reactions in the base engine's network and calculates
|
||||
* their molar flow rates based on the provided network input conditions (temperature, density,
|
||||
* and composition). It also constructs a vector of molar abundances for all species in the
|
||||
* full network.
|
||||
*
|
||||
* @param netIn The current network input, containing temperature, density, and composition.
|
||||
* @param out_Y_Full A vector that will be populated with the molar abundances of all species in the full network.
|
||||
* @return A vector of ReactionFlow structs, each containing a pointer to a reaction and its calculated flow rate.
|
||||
*
|
||||
* @par Algorithm:
|
||||
* 1. Clears and reserves space in `out_Y_Full`.
|
||||
* 2. Iterates through all species in the base engine's network.
|
||||
* 3. For each species, it retrieves the molar abundance from `netIn.composition`. If the species is not found, its abundance is set to 0.0.
|
||||
* 4. Converts the temperature from Kelvin to T9.
|
||||
* 5. Iterates through all reactions in the base engine's network.
|
||||
* 6. For each reaction, it calls the base engine's `calculateMolarReactionFlow` to get the flow rate.
|
||||
* 7. Stores the reaction pointer and its flow rate in a `ReactionFlow` struct and adds it to the returned vector.
|
||||
*/
|
||||
std::vector<ReactionFlow> calculateAllReactionFlows(
|
||||
const NetIn& netIn,
|
||||
std::vector<double>& out_Y_Full
|
||||
) const;
|
||||
/**
|
||||
* @brief Finds all species that are reachable from the initial fuel through the reaction network.
|
||||
*
|
||||
* This method performs a connectivity analysis to identify all species that can be produced
|
||||
* starting from the initial fuel species. A species is considered part of the initial fuel if its
|
||||
* mass fraction is above a certain threshold (`ABUNDANCE_FLOOR`).
|
||||
*
|
||||
* @param netIn The current network input, containing the initial composition.
|
||||
* @return An unordered set of all reachable species.
|
||||
*
|
||||
* @par Algorithm:
|
||||
* 1. Initializes a set `reachable` and a queue `to_visit` with the initial fuel species.
|
||||
* 2. Iteratively processes the reaction network until no new species can be reached.
|
||||
* 3. In each pass, it iterates through all reactions in the base engine's network.
|
||||
* 4. If all reactants of a reaction are in the `reachable` set, all products of that reaction are added to the `reachable` set.
|
||||
* 5. The process continues until a full pass over all reactions does not add any new species to the `reachable` set.
|
||||
*/
|
||||
[[nodiscard]] std::unordered_set<fourdst::atomic::Species> findReachableSpecies(
|
||||
const NetIn& netIn
|
||||
) const;
|
||||
/**
|
||||
* @brief Culls reactions from the network based on their flow rates.
|
||||
*
|
||||
* This method filters the list of all reactions, keeping only those with a flow rate
|
||||
* above an absolute culling threshold. The threshold is calculated by multiplying the
|
||||
* maximum flow rate by a relative culling threshold read from the configuration.
|
||||
*
|
||||
* @param allFlows A vector of all reactions and their flow rates.
|
||||
* @param reachableSpecies A set of all species reachable from the initial fuel.
|
||||
* @param Y_full A vector of molar abundances for all species in the full network.
|
||||
* @param maxFlow The maximum reaction flow rate in the network.
|
||||
* @return A vector of pointers to the reactions that have been kept after culling.
|
||||
*
|
||||
* @par Algorithm:
|
||||
* 1. Retrieves the `RelativeCullingThreshold` from the configuration.
|
||||
* 2. Calculates the `absoluteCullingThreshold` by multiplying `maxFlow` with the relative threshold.
|
||||
* 3. Iterates through `allFlows`.
|
||||
* 4. A reaction is kept if its `flowRate` is greater than the `absoluteCullingThreshold`.
|
||||
* 5. The pointers to the kept reactions are stored in a vector and returned.
|
||||
*/
|
||||
[[nodiscard]] std::vector<const reaction::LogicalReaction*> cullReactionsByFlow(
|
||||
const std::vector<ReactionFlow>& allFlows,
|
||||
const std::unordered_set<fourdst::atomic::Species>& reachableSpecies,
|
||||
const std::vector<double>& Y_full,
|
||||
double maxFlow
|
||||
) const;
|
||||
|
||||
typedef std::pair<std::unordered_set<const reaction::LogicalReaction*>, std::unordered_set<fourdst::atomic::Species>> RescueSet;
|
||||
[[nodiscard]] RescueSet rescueEdgeSpeciesDestructionChannel(
|
||||
const std::vector<double>& Y_full,
|
||||
const double T9,
|
||||
const double rho,
|
||||
const std::vector<fourdst::atomic::Species>& activeSpecies,
|
||||
const reaction::LogicalReactionSet& activeReactions
|
||||
) const;
|
||||
/**
|
||||
* @brief Finalizes the set of active species and reactions.
|
||||
*
|
||||
* This method takes the final list of culled reactions and populates the
|
||||
* `m_activeReactions` and `m_activeSpecies` members. The active species are
|
||||
* determined by collecting all reactants and products from the final reactions.
|
||||
* The active species list is then sorted by mass.
|
||||
*
|
||||
* @param finalReactions A vector of pointers to the reactions to be included in the active set.
|
||||
*
|
||||
* @post
|
||||
* - `m_activeReactions` is cleared and populated with the reactions from `finalReactions`.
|
||||
* - `m_activeSpecies` is cleared and populated with all unique species present in `finalReactions`.
|
||||
* - `m_activeSpecies` is sorted by atomic mass.
|
||||
*/
|
||||
void finalizeActiveSet(
|
||||
const std::vector<const reaction::LogicalReaction*>& finalReactions
|
||||
);
|
||||
};
|
||||
}
|
||||
277
src/include/gridfire/engine/views/engine_defined.h
Normal file
277
src/include/gridfire/engine/views/engine_defined.h
Normal file
@@ -0,0 +1,277 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/views/engine_view_abstract.h"
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/io/network_file.h"
|
||||
#include "gridfire/network.h"
|
||||
|
||||
#include "fourdst/config/config.h"
|
||||
#include "fourdst/logging/logging.h"
|
||||
|
||||
#include "quill/Logger.h"
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace gridfire{
|
||||
class DefinedEngineView : public DynamicEngine, public EngineView<DynamicEngine> {
|
||||
public:
|
||||
DefinedEngineView(const std::vector<std::string>& peNames, DynamicEngine& baseEngine);
|
||||
const DynamicEngine& getBaseEngine() const override;
|
||||
|
||||
// --- Engine Interface ---
|
||||
/**
|
||||
* @brief Gets the list of active species in the network defined by the file.
|
||||
* @return A const reference to the vector of active species.
|
||||
*/
|
||||
const std::vector<fourdst::atomic::Species>& getNetworkSpecies() const override;
|
||||
|
||||
// --- DynamicEngine Interface ---
|
||||
/**
|
||||
* @brief Calculates the right-hand side (dY/dt) and energy generation for the active species.
|
||||
*
|
||||
* @param Y_defined A vector of abundances for the active species.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @param rho The density in g/cm^3.
|
||||
* @return A StepDerivatives struct containing the derivatives of the active species and the
|
||||
* nuclear energy generation rate.
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale (i.e., `update()` has not been called after `setNetworkFile()`).
|
||||
*/
|
||||
std::expected<StepDerivatives<double>, expectations::StaleEngineError> calculateRHSAndEnergy(
|
||||
const std::vector<double>& Y_defined,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
/**
|
||||
* @brief Generates the Jacobian matrix for the active species.
|
||||
*
|
||||
* @param Y_dynamic A vector of abundances for the active species.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @param rho The density in g/cm^3.
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale.
|
||||
*/
|
||||
void generateJacobianMatrix(
|
||||
const std::vector<double>& Y_dynamic,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
/**
|
||||
* @brief Gets an entry from the Jacobian matrix for the active species.
|
||||
*
|
||||
* @param i_defined The row index (species index) in the defined matrix.
|
||||
* @param j_defined The column index (species index) in the defined matrix.
|
||||
* @return The value of the Jacobian matrix at (i_defined, j_defined).
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale.
|
||||
* @throws std::out_of_range If an index is out of bounds.
|
||||
*/
|
||||
double getJacobianMatrixEntry(
|
||||
const int i_defined,
|
||||
const int j_defined
|
||||
) const override;
|
||||
/**
|
||||
* @brief Generates the stoichiometry matrix for the active reactions and species.
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale.
|
||||
*/
|
||||
void generateStoichiometryMatrix() override;
|
||||
/**
|
||||
* @brief Gets an entry from the stoichiometry matrix for the active species and reactions.
|
||||
*
|
||||
* @param speciesIndex_defined The index of the species in the defined species list.
|
||||
* @param reactionIndex_defined The index of the reaction in the defined reaction list.
|
||||
* @return The stoichiometric coefficient for the given species and reaction.
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale.
|
||||
* @throws std::out_of_range If an index is out of bounds.
|
||||
*/
|
||||
int getStoichiometryMatrixEntry(
|
||||
const int speciesIndex_defined,
|
||||
const int reactionIndex_defined
|
||||
) const override;
|
||||
/**
|
||||
* @brief Calculates the molar reaction flow for a given reaction in the active network.
|
||||
*
|
||||
* @param reaction The reaction for which to calculate the flow.
|
||||
* @param Y_defined Vector of current abundances for the active species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Molar flow rate for the reaction (e.g., mol/g/s).
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale or if the reaction is not in the active set.
|
||||
*/
|
||||
double calculateMolarReactionFlow(
|
||||
const reaction::Reaction& reaction,
|
||||
const std::vector<double>& Y_defined,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
/**
|
||||
* @brief Gets the set of active logical reactions in the network.
|
||||
*
|
||||
* @return Reference to the LogicalReactionSet containing all active reactions.
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale.
|
||||
*/
|
||||
const reaction::LogicalReactionSet& getNetworkReactions() const override;
|
||||
|
||||
void setNetworkReactions(const reaction::LogicalReactionSet& reactions) override;
|
||||
/**
|
||||
* @brief Computes timescales for all active species in the network.
|
||||
*
|
||||
* @param Y_defined Vector of current abundances for the active species.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
* @return Map from Species to their characteristic timescales (s).
|
||||
*
|
||||
* @throws std::runtime_error If the view is stale.
|
||||
*/
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesTimescales(
|
||||
const std::vector<double>& Y_defined,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesDestructionTimescales(
|
||||
const std::vector<double>& Y_defined,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Updates the engine view if it is marked as stale.
|
||||
*
|
||||
* This method checks if the view is stale (e.g., after `setNetworkFile` was called).
|
||||
* If it is, it rebuilds the active network from the currently set file.
|
||||
* The `netIn` parameter is not used by this implementation but is required by the interface.
|
||||
*
|
||||
* @param netIn The current network input (unused).
|
||||
*
|
||||
* @post If the view was stale, it is rebuilt and is no longer stale.
|
||||
*/
|
||||
fourdst::composition::Composition update(const NetIn &netIn) override;
|
||||
|
||||
bool isStale(const NetIn& netIn) override;
|
||||
|
||||
/**
|
||||
* @brief Sets the screening model for the base engine.
|
||||
*
|
||||
* @param model The screening model to set.
|
||||
*/
|
||||
void setScreeningModel(screening::ScreeningType model) override;
|
||||
|
||||
/**
|
||||
* @brief Gets the screening model from the base engine.
|
||||
*
|
||||
* @return The current screening model type.
|
||||
*/
|
||||
[[nodiscard]] screening::ScreeningType getScreeningModel() const override;
|
||||
|
||||
[[nodiscard]] int getSpeciesIndex(const fourdst::atomic::Species &species) const override;
|
||||
|
||||
[[nodiscard]] std::vector<double> mapNetInToMolarAbundanceVector(const NetIn &netIn) const override;
|
||||
|
||||
[[nodiscard]] PrimingReport primeEngine(const NetIn &netIn) override;
|
||||
protected:
|
||||
bool m_isStale = true;
|
||||
DynamicEngine& m_baseEngine;
|
||||
private:
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log"); ///< Logger instance for trace and debug information.
|
||||
///< Active species in the defined engine.
|
||||
std::vector<fourdst::atomic::Species> m_activeSpecies;
|
||||
///< Active reactions in the defined engine.
|
||||
reaction::LogicalReactionSet m_activeReactions;
|
||||
|
||||
///< Maps indices of active species to indices in the full network.
|
||||
std::vector<size_t> m_speciesIndexMap;
|
||||
///< Maps indices of active reactions to indices in the full network.
|
||||
std::vector<size_t> m_reactionIndexMap;
|
||||
private:
|
||||
/**
|
||||
* @brief Constructs the species index map.
|
||||
*
|
||||
* @return A vector mapping defined species indices to full species indices.
|
||||
*
|
||||
* This method creates a map from the indices of the active species to the indices of the
|
||||
* corresponding species in the full network.
|
||||
*
|
||||
* @throws std::runtime_error If an active species is not found in the base engine's species list.
|
||||
*/
|
||||
std::vector<size_t> constructSpeciesIndexMap() const;
|
||||
|
||||
/**
|
||||
* @brief Constructs the reaction index map.
|
||||
*
|
||||
* @return A vector mapping defined reaction indices to full reaction indices.
|
||||
*
|
||||
* This method creates a map from the indices of the active reactions to the indices of the
|
||||
* corresponding reactions in the full network.
|
||||
*
|
||||
* @throws std::runtime_error If an active reaction is not found in the base engine's reaction list.
|
||||
*/
|
||||
std::vector<size_t> constructReactionIndexMap() const;
|
||||
|
||||
/**
|
||||
* @brief Maps a vector of culled abundances to a vector of full abundances.
|
||||
*
|
||||
* @param defined A vector of abundances for the active species.
|
||||
* @return A vector of abundances for the full network, with the abundances of the active
|
||||
* species copied from the defined vector.
|
||||
*/
|
||||
std::vector<double> mapViewToFull(const std::vector<double>& defined) const;
|
||||
|
||||
/**
|
||||
* @brief Maps a vector of full abundances to a vector of culled abundances.
|
||||
*
|
||||
* @param full A vector of abundances for the full network.
|
||||
* @return A vector of abundances for the active species, with the abundances of the active
|
||||
* species copied from the full vector.
|
||||
*/
|
||||
std::vector<double> mapFullToView(const std::vector<double>& full) const;
|
||||
|
||||
/**
|
||||
* @brief Maps a culled species index to a full species index.
|
||||
*
|
||||
* @param definedSpeciesIndex The index of the species in the defined species list.
|
||||
* @return The index of the corresponding species in the full network.
|
||||
*
|
||||
* @throws std::out_of_range If the defined index is out of bounds for the species index map.
|
||||
*/
|
||||
size_t mapViewToFullSpeciesIndex(size_t definedSpeciesIndex) const;
|
||||
|
||||
/**
|
||||
* @brief Maps a culled reaction index to a full reaction index.
|
||||
*
|
||||
* @param definedReactionIndex The index of the reaction in the defined reaction list.
|
||||
* @return The index of the corresponding reaction in the full network.
|
||||
*
|
||||
* @throws std::out_of_range If the defined index is out of bounds for the reaction index map.
|
||||
*/
|
||||
size_t mapViewToFullReactionIndex(size_t definedReactionIndex) const;
|
||||
|
||||
void validateNetworkState() const;
|
||||
|
||||
void collect(const std::vector<std::string>& peNames);
|
||||
|
||||
};
|
||||
|
||||
class FileDefinedEngineView final: public DefinedEngineView {
|
||||
public:
|
||||
explicit FileDefinedEngineView(
|
||||
DynamicEngine& baseEngine,
|
||||
const std::string& fileName,
|
||||
const io::NetworkFileParser& parser
|
||||
);
|
||||
std::string getNetworkFile() const { return m_fileName; }
|
||||
const io::NetworkFileParser& getParser() const { return m_parser; }
|
||||
private:
|
||||
using Config = fourdst::config::Config;
|
||||
using LogManager = fourdst::logging::LogManager;
|
||||
Config& m_config = Config::getInstance();
|
||||
quill::Logger* m_logger = LogManager::getInstance().getLogger("log");
|
||||
std::string m_fileName;
|
||||
///< Parser for the network file.
|
||||
const io::NetworkFileParser& m_parser;
|
||||
};
|
||||
}
|
||||
392
src/include/gridfire/engine/views/engine_multiscale.h
Normal file
392
src/include/gridfire/engine/views/engine_multiscale.h
Normal file
@@ -0,0 +1,392 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/engine/views/engine_view_abstract.h"
|
||||
#include "gridfire/engine/engine_graph.h"
|
||||
|
||||
#include "unsupported/Eigen/NonLinearOptimization"
|
||||
|
||||
namespace gridfire {
|
||||
struct QSECacheConfig {
|
||||
double T9_tol; ///< Absolute tolerance to produce the same hash for T9.
|
||||
double rho_tol; ///< Absolute tolerance to produce the same hash for rho.
|
||||
double Yi_tol; ///< Absolute tolerance to produce the same hash for species abundances.
|
||||
};
|
||||
|
||||
struct QSECacheKey {
|
||||
double m_T9;
|
||||
double m_rho;
|
||||
std::vector<double> m_Y; ///< Note that the ordering of Y must match the dynamic species indices in the view.
|
||||
|
||||
std::size_t m_hash = 0; ///< Precomputed hash value for this key.
|
||||
|
||||
// TODO: We should probably sort out how to adjust these from absolute to relative tolerances.
|
||||
QSECacheConfig m_cacheConfig = {
|
||||
1e-3, // Default tolerance for T9
|
||||
1e-1, // Default tolerance for rho
|
||||
1e-3 // Default tolerance for species abundances
|
||||
};
|
||||
|
||||
QSECacheKey(
|
||||
const double T9,
|
||||
const double rho,
|
||||
const std::vector<double>& Y
|
||||
);
|
||||
|
||||
size_t hash() const;
|
||||
|
||||
static long bin(double value, double tol);
|
||||
|
||||
bool operator==(const QSECacheKey& other) const;
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
// Needs to be in this order (splitting gridfire namespace up) to avoid some issues with forward declarations and the () operator.
|
||||
namespace std {
|
||||
template <>
|
||||
struct hash<gridfire::QSECacheKey> {
|
||||
/**
|
||||
* @brief Computes the hash of a QSECacheKey.
|
||||
* @param key The QSECacheKey to hash.
|
||||
* @return The pre-computed hash value of the key.
|
||||
*/
|
||||
size_t operator()(const gridfire::QSECacheKey& key) const noexcept {
|
||||
// The hash is pre-computed, so we just return it.
|
||||
return key.m_hash;
|
||||
}
|
||||
};
|
||||
} // namespace std
|
||||
|
||||
namespace gridfire {
|
||||
class MultiscalePartitioningEngineView final: public DynamicEngine, public EngineView<DynamicEngine> {
|
||||
typedef std::tuple<std::vector<fourdst::atomic::Species>, std::vector<size_t>, std::vector<fourdst::atomic::Species>, std::vector<size_t>> QSEPartition;
|
||||
public:
|
||||
explicit MultiscalePartitioningEngineView(GraphEngine& baseEngine);
|
||||
|
||||
[[nodiscard]] const std::vector<fourdst::atomic::Species> & getNetworkSpecies() const override;
|
||||
|
||||
[[nodiscard]] std::expected<StepDerivatives<double>, expectations::StaleEngineError> calculateRHSAndEnergy(
|
||||
const std::vector<double> &Y_full,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
void generateJacobianMatrix(
|
||||
const std::vector<double> &Y_full,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] double getJacobianMatrixEntry(
|
||||
int i_full,
|
||||
int j_full
|
||||
) const override;
|
||||
|
||||
void generateStoichiometryMatrix() override;
|
||||
|
||||
[[nodiscard]] int getStoichiometryMatrixEntry(
|
||||
int speciesIndex,
|
||||
int reactionIndex
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] double calculateMolarReactionFlow(
|
||||
const reaction::Reaction &reaction,
|
||||
const std::vector<double> &Y_full,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] const reaction::LogicalReactionSet & getNetworkReactions() const override;
|
||||
|
||||
void setNetworkReactions(
|
||||
const reaction::LogicalReactionSet &reactions
|
||||
) override;
|
||||
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesTimescales(
|
||||
const std::vector<double> &Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
[[nodiscard]] std::expected<std::unordered_map<fourdst::atomic::Species, double>, expectations::StaleEngineError> getSpeciesDestructionTimescales(
|
||||
const std::vector<double> &Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const override;
|
||||
|
||||
fourdst::composition::Composition update(
|
||||
const NetIn &netIn
|
||||
) override;
|
||||
|
||||
bool isStale(const NetIn& netIn) override;
|
||||
|
||||
void setScreeningModel(
|
||||
screening::ScreeningType model
|
||||
) override;
|
||||
|
||||
[[nodiscard]] screening::ScreeningType getScreeningModel() const override;
|
||||
|
||||
const DynamicEngine & getBaseEngine() const override;
|
||||
|
||||
std::vector<std::vector<size_t>> analyzeTimescalePoolConnectivity(
|
||||
const std::vector<std::vector<size_t>> ×cale_pools,
|
||||
const std::vector<double> &Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const;
|
||||
|
||||
void partitionNetwork(
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
);
|
||||
|
||||
void partitionNetwork(
|
||||
const NetIn& netIn
|
||||
);
|
||||
|
||||
void exportToDot(
|
||||
const std::string& filename,
|
||||
const std::vector<double>& Y,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const;
|
||||
|
||||
[[nodiscard]] int getSpeciesIndex(const fourdst::atomic::Species &species) const override;
|
||||
|
||||
[[nodiscard]] std::vector<double> mapNetInToMolarAbundanceVector(const NetIn &netIn) const override;
|
||||
|
||||
[[nodiscard]] PrimingReport primeEngine(const NetIn &netIn) override;
|
||||
|
||||
[[nodiscard]] std::vector<fourdst::atomic::Species> getFastSpecies() const;
|
||||
[[nodiscard]] const std::vector<fourdst::atomic::Species>& getDynamicSpecies() const;
|
||||
|
||||
fourdst::composition::Composition equilibrateNetwork(
|
||||
const std::vector<double> &Y,
|
||||
double T9,
|
||||
double rho
|
||||
);
|
||||
|
||||
fourdst::composition::Composition equilibrateNetwork(
|
||||
const NetIn &netIn
|
||||
);
|
||||
|
||||
|
||||
private:
|
||||
struct QSEGroup {
|
||||
std::set<size_t> species_indices; ///< Indices of all species in this group.
|
||||
bool is_in_equilibrium = false; ///< Flag set by flux analysis.
|
||||
std::set<size_t> algebraic_indices; ///< Indices of algebraic species in this group.
|
||||
std::set<size_t> seed_indices; ///< Indices of dynamic species in this group.
|
||||
double mean_timescale; ///< Mean timescale of the group.
|
||||
|
||||
bool operator<(const QSEGroup& other) const;
|
||||
bool operator>(const QSEGroup& other) const;
|
||||
bool operator==(const QSEGroup& other) const;
|
||||
bool operator!=(const QSEGroup& other) const;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const QSEGroup& group) {
|
||||
os << "QSEGroup(species_indices: [";
|
||||
int count = 0;
|
||||
for (const auto& idx : group.species_indices) {
|
||||
os << idx;
|
||||
if (count < group.species_indices.size() - 1) {
|
||||
os << ", ";
|
||||
}
|
||||
count++;
|
||||
}
|
||||
count = 0;
|
||||
os << "], is_in_equilibrium: " << group.is_in_equilibrium
|
||||
<< ", mean_timescale: " << group.mean_timescale
|
||||
<< " s, algebraic_indices: [";
|
||||
for (const auto& idx : group.algebraic_indices) {
|
||||
os << idx;
|
||||
if (count < group.algebraic_indices.size() - 1) {
|
||||
os << ", ";
|
||||
}
|
||||
count++;
|
||||
}
|
||||
count = 0;
|
||||
os << "], seed_indices: [";
|
||||
for (const auto& idx : group.seed_indices) {
|
||||
os << idx;
|
||||
if (count < group.seed_indices.size() - 1) {
|
||||
os << ", ";
|
||||
}
|
||||
count++;
|
||||
}
|
||||
os << "])";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
struct EigenFunctor {
|
||||
using InputType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
|
||||
using OutputType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
|
||||
using JacobianType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>;
|
||||
enum {
|
||||
InputsAtCompileTime = Eigen::Dynamic,
|
||||
ValuesAtCompileTime = Eigen::Dynamic
|
||||
};
|
||||
|
||||
MultiscalePartitioningEngineView* m_view;
|
||||
const std::vector<size_t>& m_qse_solve_indices;
|
||||
const std::vector<double>& m_Y_full_initial;
|
||||
const double m_T9;
|
||||
const double m_rho;
|
||||
const Eigen::VectorXd& m_Y_scale;
|
||||
|
||||
EigenFunctor(
|
||||
MultiscalePartitioningEngineView& view,
|
||||
const std::vector<size_t>& qse_solve_indices,
|
||||
const std::vector<double>& Y_full_initial,
|
||||
const double T9,
|
||||
const double rho,
|
||||
const Eigen::VectorXd& Y_scale
|
||||
) :
|
||||
m_view(&view),
|
||||
m_qse_solve_indices(qse_solve_indices),
|
||||
m_Y_full_initial(Y_full_initial),
|
||||
m_T9(T9),
|
||||
m_rho(rho),
|
||||
m_Y_scale(Y_scale) {}
|
||||
|
||||
[[nodiscard]] int values() const { return m_qse_solve_indices.size(); }
|
||||
[[nodiscard]] int inputs() const { return m_qse_solve_indices.size(); }
|
||||
|
||||
int operator()(const InputType& v_qse, OutputType& f_qse) const;
|
||||
int df(const InputType& v_qse, JacobianType& J_qse) const;
|
||||
};
|
||||
|
||||
|
||||
struct CacheStats {
|
||||
enum class operators {
|
||||
CalculateRHSAndEnergy,
|
||||
GenerateJacobianMatrix,
|
||||
CalculateMolarReactionFlow,
|
||||
GetSpeciesTimescales,
|
||||
GetSpeciesDestructionTimescales,
|
||||
Other,
|
||||
All
|
||||
};
|
||||
|
||||
std::map<operators, std::string> operatorsNameMap = {
|
||||
{operators::CalculateRHSAndEnergy, "calculateRHSAndEnergy"},
|
||||
{operators::GenerateJacobianMatrix, "generateJacobianMatrix"},
|
||||
{operators::CalculateMolarReactionFlow, "calculateMolarReactionFlow"},
|
||||
{operators::GetSpeciesTimescales, "getSpeciesTimescales"},
|
||||
{operators::GetSpeciesDestructionTimescales, "getSpeciesDestructionTimescales"},
|
||||
{operators::Other, "other"}
|
||||
};
|
||||
|
||||
size_t m_hit = 0;
|
||||
size_t m_miss = 0;
|
||||
|
||||
std::map<operators, size_t> m_operatorHits = {
|
||||
{operators::CalculateRHSAndEnergy, 0},
|
||||
{operators::GenerateJacobianMatrix, 0},
|
||||
{operators::CalculateMolarReactionFlow, 0},
|
||||
{operators::GetSpeciesTimescales, 0},
|
||||
{operators::GetSpeciesDestructionTimescales, 0},
|
||||
{operators::Other, 0}
|
||||
};
|
||||
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const CacheStats& stats) {
|
||||
os << "CacheStats(hit: " << stats.m_hit << ", miss: " << stats.m_miss << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
void hit(const operators op=operators::Other) {
|
||||
if (op==operators::All) {
|
||||
throw std::invalid_argument("Cannot use 'All' as an operator for hit/miss.");
|
||||
}
|
||||
m_hit++;
|
||||
m_operatorHits[op]++;
|
||||
}
|
||||
void miss(const operators op=operators::Other) {
|
||||
if (op==operators::All) {
|
||||
throw std::invalid_argument("Cannot use 'All' as an operator for hit/miss.");
|
||||
}
|
||||
m_miss++;
|
||||
m_operatorHits[op]++;
|
||||
}
|
||||
|
||||
[[nodiscard]] size_t hits(const operators op=operators::All) const {
|
||||
if (op==operators::All) {
|
||||
return m_hit;
|
||||
}
|
||||
return m_operatorHits.at(op);
|
||||
}
|
||||
[[nodiscard]] size_t misses(const operators op=operators::All) const {
|
||||
if (op==operators::All) {
|
||||
return m_miss;
|
||||
}
|
||||
return m_operatorHits.at(op);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
private:
|
||||
quill::Logger* m_logger = LogManager::getInstance().getLogger("log");
|
||||
GraphEngine& m_baseEngine; ///< The base engine to which this view delegates calculations.
|
||||
std::vector<QSEGroup> m_qse_groups; ///< The list of identified equilibrium groups.
|
||||
std::vector<fourdst::atomic::Species> m_dynamic_species; ///< The simplified set of species presented to the solver.
|
||||
std::vector<size_t> m_dynamic_species_indices; ///< Indices mapping the dynamic species back to the master engine's list.
|
||||
std::vector<fourdst::atomic::Species> m_algebraic_species; ///< Species that are algebraic in the QSE groups.
|
||||
std::vector<size_t> m_algebraic_species_indices; ///< Indices of algebraic species in the full network.
|
||||
|
||||
std::vector<size_t> m_activeSpeciesIndices; ///< Indices of active species in the full network.
|
||||
std::vector<size_t> m_activeReactionIndices; ///< Indices of active reactions in the full network.
|
||||
|
||||
// TODO: Enhance the hashing for the cache to consider not just T and rho but also the current abundance in some careful way that automatically ignores small changes (i.e. network should only be repartitioned sometimes)
|
||||
std::unordered_map<QSECacheKey, std::vector<double>> m_qse_abundance_cache; ///< Cache for QSE abundances based on T9 and rho.
|
||||
mutable CacheStats m_cacheStats; ///< Statistics for the QSE abundance cache.
|
||||
|
||||
|
||||
|
||||
|
||||
private:
|
||||
std::vector<std::vector<size_t>> partitionByTimescale(
|
||||
const std::vector<double> &Y_full,
|
||||
double T9,
|
||||
double rho
|
||||
) const;
|
||||
|
||||
std::unordered_map<size_t, std::vector<size_t>> buildConnectivityGraph(
|
||||
const std::unordered_set<size_t> &fast_reaction_indices
|
||||
) const;
|
||||
|
||||
std::vector<QSEGroup> validateGroupsWithFluxAnalysis(
|
||||
const std::vector<QSEGroup> &candidate_groups,
|
||||
const std::vector<double>& Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const;
|
||||
|
||||
std::vector<double> solveQSEAbundances(
|
||||
const std::vector<double> &Y_full,
|
||||
double T9,
|
||||
double rho
|
||||
);
|
||||
|
||||
size_t identifyMeanSlowestPool(
|
||||
const std::vector<std::vector<size_t>>& pools,
|
||||
const std::vector<double> &Y,
|
||||
double T9,
|
||||
double rho
|
||||
) const;
|
||||
|
||||
std::unordered_map<size_t, std::vector<size_t>> buildConnectivityGraph(
|
||||
const std::vector<size_t>& species_pool
|
||||
) const;
|
||||
|
||||
std::vector<QSEGroup> constructCandidateGroups(
|
||||
const std::vector<std::vector<size_t>>& candidate_pools,
|
||||
const std::vector<double>& Y,
|
||||
double T9, double rho
|
||||
) const;
|
||||
};
|
||||
}
|
||||
|
||||
35
src/include/gridfire/engine/views/engine_priming.h
Normal file
35
src/include/gridfire/engine/views/engine_priming.h
Normal file
@@ -0,0 +1,35 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/engine/views/engine_defined.h"
|
||||
|
||||
#include "gridfire/network.h"
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
#include "fourdst/composition/atomicSpecies.h"
|
||||
#include "fourdst/composition/composition.h"
|
||||
|
||||
#include "quill/Logger.h"
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
namespace gridfire {
|
||||
|
||||
class NetworkPrimingEngineView final : public DefinedEngineView {
|
||||
public:
|
||||
NetworkPrimingEngineView(const std::string& primingSymbol, DynamicEngine& baseEngine);
|
||||
NetworkPrimingEngineView(const fourdst::atomic::Species& primingSpecies, DynamicEngine& baseEngine);
|
||||
|
||||
|
||||
private:
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||||
fourdst::atomic::Species m_primingSpecies; ///< The priming species, if specified.
|
||||
private:
|
||||
std::vector<std::string> constructPrimingReactionSet(
|
||||
const fourdst::atomic::Species& primingSpecies,
|
||||
const DynamicEngine& baseEngine
|
||||
) const;
|
||||
};
|
||||
|
||||
}
|
||||
98
src/include/gridfire/engine/views/engine_view_abstract.h
Normal file
98
src/include/gridfire/engine/views/engine_view_abstract.h
Normal file
@@ -0,0 +1,98 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
|
||||
/**
|
||||
* @file engine_view_abstract.h
|
||||
* @brief Abstract interfaces for engine "views" in GridFire.
|
||||
*
|
||||
* This header defines the abstract base classes and concepts for "views" of reaction network engines.
|
||||
* The primary purpose of an EngineView is to enable dynamic or adaptive network topologies
|
||||
* (such as species/reaction culling, masking, or remapping) without modifying the underlying
|
||||
* physics engine or its implementation. Engine views act as a flexible interface layer,
|
||||
* allowing the network structure to be changed at runtime while preserving the core
|
||||
* physics and solver logic in the base engine.
|
||||
*
|
||||
* Typical use cases include:
|
||||
* - Adaptive or reduced networks for computational efficiency.
|
||||
* - Dynamic masking or culling of species/reactions based on runtime criteria.
|
||||
* - Providing a filtered or remapped view of the network for integration or analysis.
|
||||
* - Supporting dynamic network reconfiguration in multi-zone or multi-physics contexts.
|
||||
*
|
||||
* The base engine types referenced here are defined in @ref engine_abstract.h.
|
||||
*
|
||||
* @author
|
||||
* Emily M. Boudreaux
|
||||
*/
|
||||
|
||||
namespace gridfire {
|
||||
|
||||
/**
|
||||
* @brief Concept for types allowed as engine bases in EngineView.
|
||||
*
|
||||
* This concept restricts template parameters to types derived from either
|
||||
* gridfire::Engine or gridfire::DynamicEngine, as defined in engine_abstract.h.
|
||||
*
|
||||
* Example usage:
|
||||
* @code
|
||||
* static_assert(EngineType<MyEngine>);
|
||||
* @endcode
|
||||
*/
|
||||
template<typename EngineT>
|
||||
concept EngineType = std::is_base_of_v<Engine, EngineT> || std::is_base_of_v<DynamicEngine, EngineT>;
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for a "view" of a reaction network engine.
|
||||
*
|
||||
* @tparam EngineT The engine type being viewed (must satisfy EngineType).
|
||||
*
|
||||
* EngineView provides an interface for accessing an underlying engine instance,
|
||||
* while presenting a potentially modified or reduced network structure to the user.
|
||||
* This enables dynamic or adaptive network topologies (e.g., culling, masking, or
|
||||
* remapping of species and reactions) without altering the core physics engine.
|
||||
*
|
||||
* Intended usage: Derive from this class to implement a custom view or wrapper
|
||||
* that manages a dynamic or adaptive network structure, delegating core calculations
|
||||
* to the base engine. The contract is that getBaseEngine() must return a reference
|
||||
* to the underlying engine instance, which remains responsible for the full physics.
|
||||
*
|
||||
* Example (see also AdaptiveEngineView):
|
||||
* @code
|
||||
* class MyAdaptiveView : public gridfire::EngineView<DynamicEngine> {
|
||||
* public:
|
||||
* MyAdaptiveView(DynamicEngine& engine) : engine_(engine) {}
|
||||
* const DynamicEngine& getBaseEngine() const override { return engine_; }
|
||||
* // Implement dynamic masking/culling logic...
|
||||
* private:
|
||||
* DynamicEngine& engine_;
|
||||
* };
|
||||
* @endcode
|
||||
*
|
||||
* @see gridfire::AdaptiveEngineView for a concrete example of dynamic culling.
|
||||
*/
|
||||
template<EngineType EngineT>
|
||||
class EngineView {
|
||||
public:
|
||||
/**
|
||||
* @brief Virtual destructor.
|
||||
*/
|
||||
virtual ~EngineView() = default;
|
||||
|
||||
/**
|
||||
* @brief Access the underlying engine instance.
|
||||
*
|
||||
* @return Const reference to the underlying engine.
|
||||
*
|
||||
* This method must be implemented by derived classes to provide access
|
||||
* to the base engine. The returned reference should remain valid for the
|
||||
* lifetime of the EngineView.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* const DynamicEngine& engine = myView.getBaseEngine();
|
||||
* @endcode
|
||||
*/
|
||||
virtual const EngineT& getBaseEngine() const = 0;
|
||||
};
|
||||
|
||||
}
|
||||
7
src/include/gridfire/engine/views/engine_views.h
Normal file
7
src/include/gridfire/engine/views/engine_views.h
Normal file
@@ -0,0 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/views/engine_adaptive.h"
|
||||
#include "gridfire/engine/views/engine_defined.h"
|
||||
#include "gridfire/engine/views/engine_multiscale.h"
|
||||
#include "gridfire/engine/views/engine_priming.h"
|
||||
#include "gridfire/engine/views/engine_view_abstract.h"
|
||||
112
src/include/gridfire/exceptions/error_engine.h
Normal file
112
src/include/gridfire/exceptions/error_engine.h
Normal file
@@ -0,0 +1,112 @@
|
||||
#pragma once
|
||||
|
||||
#include <exception>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
|
||||
namespace gridfire::exceptions {
|
||||
class EngineError : public std::exception {};
|
||||
|
||||
class StaleEngineTrigger final : public EngineError {
|
||||
public:
|
||||
struct state {
|
||||
double m_T9;
|
||||
double m_rho;
|
||||
std::vector<double> m_Y;
|
||||
double m_t;
|
||||
int m_total_steps;
|
||||
double m_eps_nuc;
|
||||
};
|
||||
explicit StaleEngineTrigger(const state &s)
|
||||
: m_state(s) {}
|
||||
|
||||
const char* what() const noexcept override{
|
||||
return "Engine reports stale state. This means that the caller should trigger a update of the engine state before continuing with the integration. If you as an end user are seeing this error, it is likely a bug in the code that should be reported. Please provide the input parameters and the context in which this error occurred. Thank you for your help!";
|
||||
}
|
||||
|
||||
state getState() const {
|
||||
return m_state;
|
||||
}
|
||||
|
||||
size_t numSpecies() const {
|
||||
return m_state.m_Y.size();
|
||||
}
|
||||
|
||||
size_t totalSteps() const {
|
||||
return m_state.m_total_steps;
|
||||
}
|
||||
|
||||
double energy() const {
|
||||
return m_state.m_eps_nuc;
|
||||
}
|
||||
|
||||
double getMolarAbundance(const size_t index) const {
|
||||
if (index > m_state.m_Y.size() - 1) {
|
||||
throw std::out_of_range("Index out of bounds for molar abundance vector.");
|
||||
}
|
||||
return m_state.m_Y[index];
|
||||
}
|
||||
|
||||
double temperature() const {
|
||||
return m_state.m_T9 * 1e9; // Convert T9 back to Kelvin
|
||||
}
|
||||
|
||||
double density() const {
|
||||
return m_state.m_rho;
|
||||
}
|
||||
private:
|
||||
state m_state;
|
||||
|
||||
};
|
||||
|
||||
class StaleEngineError final : public EngineError {
|
||||
public:
|
||||
explicit StaleEngineError(const std::string& message)
|
||||
: m_message(message) {}
|
||||
|
||||
const char* what() const noexcept override {
|
||||
return m_message.c_str();
|
||||
}
|
||||
|
||||
private:
|
||||
std::string m_message;
|
||||
};
|
||||
|
||||
class FailedToPartitionEngineError final : public EngineError {
|
||||
public:
|
||||
explicit FailedToPartitionEngineError(const std::string& message)
|
||||
: m_message(message) {}
|
||||
|
||||
const char* what() const noexcept override {
|
||||
return m_message.c_str();
|
||||
}
|
||||
private:
|
||||
std::string m_message;
|
||||
};
|
||||
|
||||
class NetworkResizedError final : public EngineError {
|
||||
public:
|
||||
explicit NetworkResizedError(const std::string& message)
|
||||
: m_message(message) {}
|
||||
|
||||
const char* what() const noexcept override {
|
||||
return m_message.c_str();
|
||||
}
|
||||
private:
|
||||
std::string m_message;
|
||||
};
|
||||
|
||||
class UnableToSetNetworkReactionsError final : public EngineError {
|
||||
public:
|
||||
explicit UnableToSetNetworkReactionsError(const std::string& message)
|
||||
: m_message(message) {}
|
||||
|
||||
const char* what() const noexcept override {
|
||||
return m_message.c_str();
|
||||
}
|
||||
|
||||
private:
|
||||
std::string m_message;
|
||||
};
|
||||
|
||||
}
|
||||
3
src/include/gridfire/exceptions/exceptions.h
Normal file
3
src/include/gridfire/exceptions/exceptions.h
Normal file
@@ -0,0 +1,3 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/exceptions/error_engine.h"
|
||||
3
src/include/gridfire/expectations/expectations.h
Normal file
3
src/include/gridfire/expectations/expectations.h
Normal file
@@ -0,0 +1,3 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/expectations/expected_engine.h"
|
||||
59
src/include/gridfire/expectations/expected_engine.h
Normal file
59
src/include/gridfire/expectations/expected_engine.h
Normal file
@@ -0,0 +1,59 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
|
||||
namespace gridfire::expectations {
|
||||
enum class EngineErrorTypes {
|
||||
FAILURE,
|
||||
INDEX,
|
||||
STALE
|
||||
};
|
||||
|
||||
enum class StaleEngineErrorTypes {
|
||||
SYSTEM_RESIZED
|
||||
};
|
||||
|
||||
// TODO: rename this to EngineExpectation or something similar
|
||||
struct EngineError {
|
||||
std::string m_message;
|
||||
const EngineErrorTypes type = EngineErrorTypes::FAILURE;
|
||||
|
||||
explicit EngineError(const std::string &message, const EngineErrorTypes type)
|
||||
: m_message(message), type(type) {}
|
||||
|
||||
virtual ~EngineError() = default;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const EngineError& e) {
|
||||
os << "EngineError: " << e.m_message;
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
struct EngineIndexError : EngineError {
|
||||
int m_index;
|
||||
|
||||
explicit EngineIndexError(const int index)
|
||||
: EngineError("Index error occurred", EngineErrorTypes::INDEX), m_index(index) {}
|
||||
friend std::ostream& operator<<(std::ostream& os, const EngineIndexError& e) {
|
||||
os << "EngineIndexError: " << e.m_message << " at index " << e.m_index;
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
struct StaleEngineError : EngineError {
|
||||
StaleEngineErrorTypes staleType;
|
||||
|
||||
explicit StaleEngineError(const StaleEngineErrorTypes sType)
|
||||
: EngineError("Stale engine error occurred", EngineErrorTypes::STALE), staleType(sType) {}
|
||||
|
||||
explicit operator std::string() const {
|
||||
switch (staleType) {
|
||||
case (StaleEngineErrorTypes::SYSTEM_RESIZED):
|
||||
return "StaleEngineError: System resized, please update the engine.";
|
||||
default:
|
||||
return "StaleEngineError: Unknown stale error type.";
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
3
src/include/gridfire/io/io.h
Normal file
3
src/include/gridfire/io/io.h
Normal file
@@ -0,0 +1,3 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/io/network_file.h"
|
||||
151
src/include/gridfire/io/network_file.h
Normal file
151
src/include/gridfire/io/network_file.h
Normal file
@@ -0,0 +1,151 @@
|
||||
#pragma once
|
||||
|
||||
#include "fourdst/config/config.h"
|
||||
#include "fourdst/logging/logging.h"
|
||||
|
||||
#include "quill/Logger.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace gridfire::io {
|
||||
typedef std::vector<std::string> ParsedNetworkData;
|
||||
|
||||
/**
|
||||
* @class NetworkFileParser
|
||||
* @brief An abstract base class for network file parsers.
|
||||
*
|
||||
* This class defines the interface for parsing files that contain
|
||||
* reaction network definitions. Derived classes must implement the `parse`
|
||||
* method to handle specific file formats.
|
||||
*/
|
||||
class NetworkFileParser {
|
||||
public:
|
||||
/**
|
||||
* @brief Virtual destructor for the base class.
|
||||
*/
|
||||
virtual ~NetworkFileParser() = default;
|
||||
|
||||
/**
|
||||
* @brief Parses a network file and returns the parsed data.
|
||||
*
|
||||
* This is a pure virtual function that must be implemented by derived
|
||||
* classes. It takes a filename as input and returns a `ParsedNetworkData`
|
||||
* struct containing the information extracted from the file.
|
||||
*
|
||||
* @param filename The path to the network file to parse.
|
||||
* @return A `ParsedNetworkData` struct containing the parsed reaction data.
|
||||
*
|
||||
* @throws std::runtime_error If the file cannot be opened or a parsing
|
||||
* error occurs.
|
||||
*
|
||||
* @b Usage
|
||||
* @code
|
||||
* std::unique_ptr<NetworkFileParser> parser = std::make_unique<SimpleReactionListFileParser>();
|
||||
* try {
|
||||
* ParsedNetworkData data = parser->parse("my_reactions.txt");
|
||||
* for (const auto& reaction_name : data.reactionPENames) {
|
||||
* // ... process reaction name
|
||||
* }
|
||||
* } catch (const std::runtime_error& e) {
|
||||
* // ... handle error
|
||||
* }
|
||||
* @endcode
|
||||
*/
|
||||
[[nodiscard]] virtual ParsedNetworkData parse(const std::string& filename) const = 0;
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* @class SimpleReactionListFileParser
|
||||
* @brief A parser for simple text files containing a list of reactions.
|
||||
*
|
||||
* This parser reads a file where each line contains a single reaction name.
|
||||
* It supports comments (lines starting with '#') and ignores empty lines.
|
||||
*
|
||||
* @implements NetworkFileParser
|
||||
*/
|
||||
class SimpleReactionListFileParser final : public NetworkFileParser {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a SimpleReactionListFileParser.
|
||||
*
|
||||
* @post The parser is initialized and ready to parse files.
|
||||
*/
|
||||
explicit SimpleReactionListFileParser();
|
||||
/**
|
||||
* @brief Parses a simple reaction list file.
|
||||
*
|
||||
* This method reads the specified file line by line. It trims whitespace
|
||||
* from each line, ignores lines that are empty or start with a '#'
|
||||
* comment character, and stores the remaining lines as reaction names.
|
||||
*
|
||||
* @param filename The path to the simple reaction list file.
|
||||
* @return A `ParsedNetworkData` struct containing the list of reaction names.
|
||||
*
|
||||
* @throws std::runtime_error If the file cannot be opened for reading.
|
||||
*
|
||||
* @b Algorithm
|
||||
* 1. Opens the specified file.
|
||||
* 2. Reads the file line by line.
|
||||
* 3. For each line, it removes any trailing comments (starting with '#').
|
||||
* 4. Trims leading and trailing whitespace.
|
||||
* 5. If the line is not empty, it is added to the list of reaction names.
|
||||
* 6. Returns the populated `ParsedNetworkData` struct.
|
||||
*
|
||||
* @b Usage
|
||||
* @code
|
||||
* SimpleReactionListFileParser parser;
|
||||
* ParsedNetworkData data = parser.parse("reactions.txt");
|
||||
* @endcode
|
||||
*/
|
||||
ParsedNetworkData parse(const std::string& filename) const override;
|
||||
private:
|
||||
using Config = fourdst::config::Config;
|
||||
using LogManager = fourdst::logging::LogManager;
|
||||
Config& m_config = Config::getInstance();
|
||||
quill::Logger* m_logger = LogManager::getInstance().getLogger("log");
|
||||
};
|
||||
|
||||
/**
|
||||
* @class MESANetworkFileParser
|
||||
* @brief A parser for MESA-format network files.
|
||||
*
|
||||
* This class is designed to parse reaction network files that follow the
|
||||
* format used by the MESA stellar evolution code.
|
||||
*
|
||||
* @implements NetworkFileParser
|
||||
*/
|
||||
class MESANetworkFileParser final : public NetworkFileParser {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a MESANetworkFileParser.
|
||||
*
|
||||
* @param filename The path to the MESA network file. This may be used
|
||||
* to pre-configure the parser.
|
||||
*
|
||||
* @post The parser is initialized with the context of the given file.
|
||||
*/
|
||||
explicit MESANetworkFileParser(const std::string& filename);
|
||||
/**
|
||||
* @brief Parses a MESA-format network file.
|
||||
*
|
||||
* This method will read and interpret the structure of a MESA network
|
||||
* file to extract the list of reactions.
|
||||
*
|
||||
* @param filename The path to the MESA network file.
|
||||
* @return A `ParsedNetworkData` struct containing the list of reaction names.
|
||||
*
|
||||
* @throws std::runtime_error If the file cannot be opened or if it
|
||||
* contains formatting errors.
|
||||
*/
|
||||
ParsedNetworkData parse(const std::string& filename) const override;
|
||||
private:
|
||||
using Config = fourdst::config::Config;
|
||||
using LogManager = fourdst::logging::LogManager;
|
||||
Config& m_config = Config::getInstance();
|
||||
quill::Logger* m_logger = LogManager::getInstance().getLogger("log");
|
||||
|
||||
std::string m_filename;
|
||||
};
|
||||
}
|
||||
108
src/include/gridfire/network.h
Normal file
108
src/include/gridfire/network.h
Normal file
@@ -0,0 +1,108 @@
|
||||
/* ***********************************************************************
|
||||
//
|
||||
// Copyright (C) 2025 -- The 4D-STAR Collaboration
|
||||
// File Authors: Emily Boudreaux, Aaron Dotter
|
||||
// Last Modified: March 21, 2025
|
||||
//
|
||||
// 4DSSE is free software; you can use it and/or modify
|
||||
// it under the terms and restrictions the GNU General Library Public
|
||||
// License version 3 (GPLv3) as published by the Free Software Foundation.
|
||||
//
|
||||
// 4DSSE is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
// See the GNU Library General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Library General Public License
|
||||
// along with this software; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
// *********************************************************************** */
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
#include "fourdst/config/config.h"
|
||||
#include "fourdst/composition/species.h"
|
||||
#include "fourdst/composition/composition.h"
|
||||
#include "fourdst/constants/const.h"
|
||||
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
|
||||
#include "quill/Logger.h"
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
|
||||
namespace gridfire {
|
||||
|
||||
|
||||
enum NetworkFormat {
|
||||
APPROX8, ///< Approx8 nuclear reaction network format.
|
||||
REACLIB, ///< General REACLIB nuclear reaction network format.
|
||||
UNKNOWN,
|
||||
};
|
||||
|
||||
static inline std::unordered_map<NetworkFormat, std::string> FormatStringLookup = {
|
||||
{APPROX8, "Approx8"},
|
||||
{REACLIB, "REACLIB"},
|
||||
{UNKNOWN, "Unknown"}
|
||||
};
|
||||
|
||||
struct NetIn {
|
||||
fourdst::composition::Composition composition; ///< Composition of the network
|
||||
double tMax; ///< Maximum time
|
||||
double dt0; ///< Initial time step
|
||||
double temperature; ///< Temperature in Kelvin
|
||||
double density; ///< Density in g/cm^3
|
||||
double energy; ///< Energy in ergs
|
||||
double culling = 0.0; ///< Culling threshold for reactions (default is 0.0, meaning no culling)
|
||||
|
||||
std::vector<double> MolarAbundance() const;
|
||||
};
|
||||
|
||||
struct NetOut {
|
||||
fourdst::composition::Composition composition; ///< Composition of the network after evaluation
|
||||
int num_steps; ///< Number of steps taken in the evaluation
|
||||
double energy; ///< Energy in ergs after evaluation
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const NetOut& netOut) {
|
||||
os << "NetOut(composition=" << netOut.composition << ", num_steps=" << netOut.num_steps << ", energy=" << netOut.energy << ")";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
class Network {
|
||||
public:
|
||||
explicit Network(const NetworkFormat format = NetworkFormat::APPROX8);
|
||||
virtual ~Network() = default;
|
||||
|
||||
[[nodiscard]] NetworkFormat getFormat() const;
|
||||
NetworkFormat setFormat(const NetworkFormat format);
|
||||
|
||||
/**
|
||||
* @brief Evaluate the network based on the input parameters.
|
||||
*
|
||||
* @param netIn Input parameters for the network evaluation.
|
||||
* @return NetOut Output results from the network evaluation.
|
||||
*/
|
||||
virtual NetOut evaluate(const NetIn &netIn) = 0;
|
||||
|
||||
virtual bool isStiff() const { return m_stiff; }
|
||||
virtual void setStiff(const bool stiff) { m_stiff = stiff; }
|
||||
|
||||
protected:
|
||||
fourdst::config::Config& m_config; ///< Configuration instance
|
||||
fourdst::logging::LogManager& m_logManager; ///< Log manager instance
|
||||
quill::Logger* m_logger; ///< Logger instance
|
||||
|
||||
NetworkFormat m_format; ///< Format of the network
|
||||
fourdst::constant::Constants& m_constants;
|
||||
|
||||
bool m_stiff = false; ///< Flag indicating if the network is stiff
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // namespace nuclearNetwork
|
||||
@@ -0,0 +1,33 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/partition/partition_abstract.h"
|
||||
#include "gridfire/partition/partition_types.h"
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include <memory>
|
||||
|
||||
|
||||
namespace gridfire::partition {
|
||||
class CompositePartitionFunction final : public PartitionFunction {
|
||||
public:
|
||||
explicit CompositePartitionFunction(const std::vector<BasePartitionType>& partitionFunctions);
|
||||
CompositePartitionFunction(const CompositePartitionFunction& other);
|
||||
[[nodiscard]] double evaluate(int z, int a, double T9) const override;
|
||||
[[nodiscard]] double evaluateDerivative(int z, int a, double T9) const override;
|
||||
[[nodiscard]] bool supports(int z, int a) const override;
|
||||
[[nodiscard]] std::string type() const override;
|
||||
[[nodiscard]] std::unique_ptr<PartitionFunction> clone() const override {
|
||||
return std::make_unique<CompositePartitionFunction>(*this);
|
||||
}
|
||||
private:
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||||
std::vector<std::unique_ptr<PartitionFunction>> m_partitionFunctions; ///< Set of partition functions to use in the composite partition function.
|
||||
private:
|
||||
std::unique_ptr<PartitionFunction> selectPartitionFunction(const BasePartitionType type) const;
|
||||
};
|
||||
}
|
||||
8
src/include/gridfire/partition/partition.h
Normal file
8
src/include/gridfire/partition/partition.h
Normal file
@@ -0,0 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/partition/partition_types.h"
|
||||
#include "gridfire/partition/partition_abstract.h"
|
||||
#include "gridfire/partition/partition_ground.h"
|
||||
#include "gridfire/partition/partition_rauscher_thielemann.h"
|
||||
#include "gridfire/partition/rauscher_thielemann_partition_data_record.h"
|
||||
#include "gridfire/partition/composite/partition_composite.h"
|
||||
16
src/include/gridfire/partition/partition_abstract.h
Normal file
16
src/include/gridfire/partition/partition_abstract.h
Normal file
@@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
namespace gridfire::partition {
|
||||
class PartitionFunction {
|
||||
public:
|
||||
virtual ~PartitionFunction() = default;
|
||||
[[nodiscard]] virtual double evaluate(int z, int a, double T9) const = 0;
|
||||
[[nodiscard]] virtual double evaluateDerivative(int z, int a, double T9) const = 0;
|
||||
[[nodiscard]] virtual bool supports(int z, int a) const = 0;
|
||||
[[nodiscard]] virtual std::string type() const = 0;
|
||||
[[nodiscard]] virtual std::unique_ptr<PartitionFunction> clone() const = 0;
|
||||
};
|
||||
}
|
||||
42
src/include/gridfire/partition/partition_ground.h
Normal file
42
src/include/gridfire/partition/partition_ground.h
Normal file
@@ -0,0 +1,42 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/partition/partition_abstract.h"
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <memory>
|
||||
|
||||
#include "quill/Logger.h"
|
||||
|
||||
namespace gridfire::partition {
|
||||
class GroundStatePartitionFunction final : public PartitionFunction {
|
||||
public:
|
||||
GroundStatePartitionFunction();
|
||||
double evaluate(
|
||||
const int z,
|
||||
const int a,
|
||||
const double T9
|
||||
) const override;
|
||||
double evaluateDerivative(
|
||||
const int z,
|
||||
const int a,
|
||||
const double T9
|
||||
) const override;
|
||||
bool supports(
|
||||
const int z,
|
||||
const int a
|
||||
) const override;
|
||||
std::string type() const override { return "GroundState"; }
|
||||
std::unique_ptr<PartitionFunction> clone() const override {
|
||||
return std::make_unique<GroundStatePartitionFunction>(*this);
|
||||
}
|
||||
private:
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||||
std::unordered_map<int, double> m_ground_state_spin;
|
||||
static constexpr int make_key(
|
||||
const int z,
|
||||
const int a);
|
||||
};
|
||||
|
||||
}
|
||||
@@ -0,0 +1,60 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/partition/partition_abstract.h"
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <array>
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
|
||||
namespace gridfire::partition {
|
||||
class RauscherThielemannPartitionFunction final : public PartitionFunction {
|
||||
public:
|
||||
RauscherThielemannPartitionFunction();
|
||||
double evaluate(int z, int a, double T9) const override;
|
||||
double evaluateDerivative(int z, int a, double T9) const override;
|
||||
bool supports(int z, int a) const override;
|
||||
std::string type() const override { return "RauscherThielemann"; }
|
||||
private:
|
||||
enum Bounds {
|
||||
FRONT,
|
||||
BACK,
|
||||
MIDDLE
|
||||
};
|
||||
private:
|
||||
struct IsotopeData {
|
||||
double ground_state_spin;
|
||||
std::array<double, 24> normalized_g_values;
|
||||
};
|
||||
struct InterpolationPoints {
|
||||
double T9_high;
|
||||
double G_norm_high;
|
||||
double T9_low;
|
||||
double G_norm_low;
|
||||
};
|
||||
struct IdentifiedIsotope {
|
||||
Bounds bound;
|
||||
const IsotopeData& data;
|
||||
size_t upperIndex;
|
||||
size_t lowerIndex;
|
||||
};
|
||||
std::unique_ptr<PartitionFunction> clone() const override {
|
||||
return std::make_unique<RauscherThielemannPartitionFunction>(*this);
|
||||
}
|
||||
private:
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||||
std::unordered_map<int, IsotopeData> m_partitionData;
|
||||
private:
|
||||
static InterpolationPoints get_interpolation_points(
|
||||
const size_t upper_index,
|
||||
const size_t lower_index,
|
||||
const std::array<double, 24>& normalized_g_values
|
||||
);
|
||||
IdentifiedIsotope find(int z, int a, double T9) const;
|
||||
static constexpr int make_key(int z, int a);
|
||||
};
|
||||
}
|
||||
21
src/include/gridfire/partition/partition_types.h
Normal file
21
src/include/gridfire/partition/partition_types.h
Normal file
@@ -0,0 +1,21 @@
|
||||
#pragma once
|
||||
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
|
||||
namespace gridfire::partition {
|
||||
enum BasePartitionType {
|
||||
RauscherThielemann, ///< Rauscher-Thielemann partition function
|
||||
GroundState, ///< Ground state partition function
|
||||
};
|
||||
|
||||
inline std::unordered_map<BasePartitionType, std::string> basePartitionTypeToString = {
|
||||
{RauscherThielemann, "RauscherThielemann"},
|
||||
{GroundState, "GroundState"}
|
||||
};
|
||||
|
||||
inline std::unordered_map<std::string, BasePartitionType> stringToBasePartitionType = {
|
||||
{"RauscherThielemann", RauscherThielemann},
|
||||
{"GroundState", GroundState}
|
||||
};
|
||||
}
|
||||
69897
src/include/gridfire/partition/rauscher_thielemann_partition_data.h
Normal file
69897
src/include/gridfire/partition/rauscher_thielemann_partition_data.h
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,14 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
namespace gridfire::partition::record {
|
||||
#pragma pack(push, 1)
|
||||
struct RauscherThielemannPartitionDataRecord {
|
||||
uint32_t z; ///< Atomic number
|
||||
uint32_t a; ///< Mass number
|
||||
double ground_state_spin; ///< Ground state spin
|
||||
double normalized_g_values[24]; ///< Normalized g-values for the first 24 energy levels
|
||||
};
|
||||
#pragma pack(pop)
|
||||
}
|
||||
19
src/include/gridfire/reaction/reaclib.h
Normal file
19
src/include/gridfire/reaction/reaclib.h
Normal file
@@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
|
||||
namespace gridfire::reaclib {
|
||||
|
||||
static bool s_initialized = false;
|
||||
|
||||
/**
|
||||
* @brief Provides global access to the fully initialized REACLIB reaction set.
|
||||
*
|
||||
* This function uses a singleton pattern to ensure the reaction data is loaded
|
||||
* from the embedded binary only once, the very first time it is requested.
|
||||
*
|
||||
* @return A constant reference to the application-wide reaction set.
|
||||
*/
|
||||
const reaction::LogicalReactionSet& get_all_reactions();
|
||||
|
||||
} // namespace gridfire::reaclib
|
||||
743
src/include/gridfire/reaction/reaction.h
Normal file
743
src/include/gridfire/reaction/reaction.h
Normal file
@@ -0,0 +1,743 @@
|
||||
#pragma once
|
||||
|
||||
#include <string_view>
|
||||
|
||||
#include "fourdst/composition/atomicSpecies.h"
|
||||
#include "fourdst/logging/logging.h"
|
||||
#include "quill/Logger.h"
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <unordered_set>
|
||||
|
||||
|
||||
#include "cppad/cppad.hpp"
|
||||
#include "xxhash64.h"
|
||||
|
||||
/**
|
||||
* @file reaction.h
|
||||
* @brief Defines classes for representing and managing nuclear reactions.
|
||||
*
|
||||
* This file contains the core data structures for handling nuclear reactions,
|
||||
* including individual reactions from specific sources (`Reaction`), collections
|
||||
* of reactions (`ReactionSet`), and logical reactions that aggregate rates from
|
||||
* multiple sources (`LogicalReaction`, `LogicalReactionSet`).
|
||||
*/
|
||||
namespace gridfire::reaction {
|
||||
/**
|
||||
* @struct RateCoefficientSet
|
||||
* @brief Holds the seven coefficients for the REACLIB rate equation.
|
||||
*
|
||||
* This struct stores the parameters (a0-a6) used to calculate reaction rates
|
||||
* as a function of temperature.
|
||||
*/
|
||||
struct RateCoefficientSet {
|
||||
double a0; ///< Coefficient a0
|
||||
double a1; ///< Coefficient a1
|
||||
double a2; ///< Coefficient a2
|
||||
double a3; ///< Coefficient a3
|
||||
double a4; ///< Coefficient a4
|
||||
double a5; ///< Coefficient a5
|
||||
double a6; ///< Coefficient a6
|
||||
|
||||
/**
|
||||
* @brief Overloads the stream insertion operator for easy printing.
|
||||
* @param os The output stream.
|
||||
* @param r The RateCoefficientSet to print.
|
||||
* @return The output stream.
|
||||
*/
|
||||
friend std::ostream& operator<<(std::ostream& os, const RateCoefficientSet& r) {
|
||||
os << "[" << r.a0 << ", " << r.a1 << ", " << r.a2 << ", "
|
||||
<< r.a3 << ", " << r.a4 << ", " << r.a5 << ", " << r.a6 << "]";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @class Reaction
|
||||
* @brief Represents a single nuclear reaction from a specific data source.
|
||||
*
|
||||
* This class encapsulates all properties of a single nuclear reaction as defined
|
||||
* in formats like REACLIB, including reactants, products, Q-value, and rate
|
||||
* coefficients from a particular evaluation (source).
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* // Assuming species and rate coefficients are defined
|
||||
* Reaction p_gamma_d(
|
||||
* "H_1_H_1_to_H_2", "p(p,g)d", 1, {H_1, H_1}, {H_2}, 5.493, "st08", rate_coeffs
|
||||
* );
|
||||
* double rate = p_gamma_d.calculate_rate(0.1); // T9 = 0.1
|
||||
* @endcode
|
||||
*/
|
||||
class Reaction {
|
||||
public:
|
||||
/**
|
||||
* @brief Virtual destructor.
|
||||
*/
|
||||
virtual ~Reaction() = default;
|
||||
|
||||
/**
|
||||
* @brief Constructs a Reaction object.
|
||||
* @param id A unique identifier for the reaction.
|
||||
* @param peName The name in (projectile, ejectile) notation (e.g., "p(p,g)d").
|
||||
* @param chapter The REACLIB chapter number, defining reaction structure.
|
||||
* @param reactants A vector of reactant species.
|
||||
* @param products A vector of product species.
|
||||
* @param qValue The Q-value of the reaction in MeV.
|
||||
* @param label The source label for the rate data (e.g., "wc12", "st08").
|
||||
* @param sets The set of rate coefficients.
|
||||
* @param reverse True if this is a reverse reaction rate.
|
||||
*/
|
||||
Reaction(
|
||||
const std::string_view id,
|
||||
const std::string_view peName,
|
||||
const int chapter,
|
||||
const std::vector<fourdst::atomic::Species> &reactants,
|
||||
const std::vector<fourdst::atomic::Species> &products,
|
||||
const double qValue,
|
||||
const std::string_view label,
|
||||
const RateCoefficientSet &sets,
|
||||
const bool reverse = false);
|
||||
|
||||
/**
|
||||
* @brief Calculates the reaction rate for a given temperature.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @return The calculated reaction rate.
|
||||
*/
|
||||
[[nodiscard]] virtual double calculate_rate(const double T9) const;
|
||||
|
||||
/**
|
||||
* @brief Calculates the reaction rate for a given temperature using CppAD types.
|
||||
* @param T9 The temperature in units of 10^9 K, as a CppAD::AD<double>.
|
||||
* @return The calculated reaction rate, as a CppAD::AD<double>.
|
||||
*/
|
||||
[[nodiscard]] virtual CppAD::AD<double> calculate_rate(const CppAD::AD<double> T9) const;
|
||||
|
||||
[[nodiscard]] virtual double calculate_forward_rate_log_derivative(const double T9) const;
|
||||
|
||||
/**
|
||||
* @brief Gets the reaction name in (projectile, ejectile) notation.
|
||||
* @return The reaction name (e.g., "p(p,g)d").
|
||||
*/
|
||||
[[nodiscard]] virtual std::string_view peName() const { return m_peName; }
|
||||
|
||||
/**
|
||||
* @brief Gets the REACLIB chapter number.
|
||||
* @return The chapter number.
|
||||
*/
|
||||
[[nodiscard]] int chapter() const { return m_chapter; }
|
||||
|
||||
/**
|
||||
* @brief Gets the source label for the rate data.
|
||||
* @return The source label (e.g., "wc12w", "st08").
|
||||
*/
|
||||
[[nodiscard]] std::string_view sourceLabel() const { return m_sourceLabel; }
|
||||
|
||||
/**
|
||||
* @brief Gets the set of rate coefficients.
|
||||
* @return A const reference to the RateCoefficientSet.
|
||||
*/
|
||||
[[nodiscard]] const RateCoefficientSet& rateCoefficients() const { return m_rateCoefficients; }
|
||||
|
||||
/**
|
||||
* @brief Checks if the reaction involves a given species as a reactant or product.
|
||||
* @param species The species to check for.
|
||||
* @return True if the species is involved, false otherwise.
|
||||
*/
|
||||
[[nodiscard]] bool contains(const fourdst::atomic::Species& species) const;
|
||||
|
||||
/**
|
||||
* @brief Checks if the reaction involves a given species as a reactant.
|
||||
* @param species The species to check for.
|
||||
* @return True if the species is a reactant, false otherwise.
|
||||
*/
|
||||
[[nodiscard]] bool contains_reactant(const fourdst::atomic::Species& species) const;
|
||||
|
||||
/**
|
||||
* @brief Checks if the reaction involves a given species as a product.
|
||||
* @param species The species to check for.
|
||||
* @return True if the species is a product, false otherwise.
|
||||
*/
|
||||
[[nodiscard]] bool contains_product(const fourdst::atomic::Species& species) const;
|
||||
|
||||
/**
|
||||
* @brief Gets a set of all unique species involved in the reaction.
|
||||
* @return An unordered_set of all reactant and product species.
|
||||
*/
|
||||
[[nodiscard]] std::unordered_set<fourdst::atomic::Species> all_species() const;
|
||||
|
||||
/**
|
||||
* @brief Gets a set of all unique reactant species.
|
||||
* @return An unordered_set of reactant species.
|
||||
*/
|
||||
[[nodiscard]] std::unordered_set<fourdst::atomic::Species> reactant_species() const;
|
||||
|
||||
/**
|
||||
* @brief Gets a set of all unique product species.
|
||||
* @return An unordered_set of product species.
|
||||
*/
|
||||
[[nodiscard]] std::unordered_set<fourdst::atomic::Species> product_species() const;
|
||||
|
||||
/**
|
||||
* @brief Gets the number of unique species involved in the reaction.
|
||||
* @return The count of unique species.
|
||||
*/
|
||||
[[nodiscard]] size_t num_species() const;
|
||||
|
||||
/**
|
||||
* @brief Calculates the stoichiometric coefficient for a given species.
|
||||
* @param species The species for which to find the coefficient.
|
||||
* @return The stoichiometric coefficient (negative for reactants, positive for products).
|
||||
*/
|
||||
[[nodiscard]] int stoichiometry(const fourdst::atomic::Species& species) const;
|
||||
|
||||
/**
|
||||
* @brief Gets a map of all species to their stoichiometric coefficients.
|
||||
* @return An unordered_map from species to their integer coefficients.
|
||||
*/
|
||||
[[nodiscard]] std::unordered_map<fourdst::atomic::Species, int> stoichiometry() const;
|
||||
|
||||
/**
|
||||
* @brief Gets the unique identifier of the reaction.
|
||||
* @return The reaction ID.
|
||||
*/
|
||||
[[nodiscard]] std::string_view id() const { return m_id; }
|
||||
|
||||
/**
|
||||
* @brief Gets the Q-value of the reaction.
|
||||
* @return The Q-value in whatever units the reaction was defined in (usually MeV).
|
||||
*/
|
||||
[[nodiscard]] double qValue() const { return m_qValue; }
|
||||
|
||||
/**
|
||||
* @brief Gets the vector of reactant species.
|
||||
* @return A const reference to the vector of reactants.
|
||||
*/
|
||||
[[nodiscard]] const std::vector<fourdst::atomic::Species>& reactants() const { return m_reactants; }
|
||||
|
||||
/**
|
||||
* @brief Gets the vector of product species.
|
||||
* @return A const reference to the vector of products.
|
||||
*/
|
||||
[[nodiscard]] const std::vector<fourdst::atomic::Species>& products() const { return m_products; }
|
||||
|
||||
/**
|
||||
* @brief Checks if this is a reverse reaction rate.
|
||||
* @return True if it is a reverse rate, false otherwise.
|
||||
*/
|
||||
[[nodiscard]] bool is_reverse() const { return m_reverse; }
|
||||
|
||||
/**
|
||||
* @brief Calculates the excess energy from the mass difference of reactants and products.
|
||||
* @return The excess energy in MeV.
|
||||
*/
|
||||
[[nodiscard]] double excess_energy() const;
|
||||
|
||||
/**
|
||||
* @brief Compares this reaction with another for equality based on their IDs.
|
||||
* @param other The other Reaction to compare with.
|
||||
* @return True if the reaction IDs are the same.
|
||||
*/
|
||||
bool operator==(const Reaction& other) const { return m_id == other.m_id; }
|
||||
|
||||
/**
|
||||
* @brief Compares this reaction with another for inequality.
|
||||
* @param other The other Reaction to compare with.
|
||||
* @return True if the reactions are not equal.
|
||||
*/
|
||||
bool operator!=(const Reaction& other) const { return !(*this == other); }
|
||||
|
||||
/**
|
||||
* @brief Computes a hash for the reaction based on its ID.
|
||||
* @param seed The seed for the hash function.
|
||||
* @return A 64-bit hash value.
|
||||
* @details Uses the XXHash64 algorithm on the reaction's ID string.
|
||||
*/
|
||||
[[nodiscard]] uint64_t hash(uint64_t seed = 0) const;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const Reaction& r) {
|
||||
return os << "(Reaction:" << r.m_id << ")";
|
||||
}
|
||||
|
||||
protected:
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||||
std::string m_id; ///< Unique identifier for the reaction (e.g., "h1+h1=>h2+e+nu").
|
||||
std::string m_peName; ///< Name of the reaction in (projectile, ejectile) notation (e.g. "p(p,g)d").
|
||||
int m_chapter; ///< Chapter number from the REACLIB database, defining the reaction structure.
|
||||
double m_qValue = 0.0; ///< Q-value of the reaction in MeV.
|
||||
std::vector<fourdst::atomic::Species> m_reactants; ///< Reactants of the reaction.
|
||||
std::vector<fourdst::atomic::Species> m_products; ///< Products of the reaction.
|
||||
std::string m_sourceLabel; ///< Source label for the rate data (e.g., "wc12w", "st08").
|
||||
RateCoefficientSet m_rateCoefficients; ///< The seven rate coefficients.
|
||||
bool m_reverse = false; ///< Flag indicating if this is a reverse reaction rate.
|
||||
private:
|
||||
/**
|
||||
* @brief Template implementation for calculating the reaction rate.
|
||||
* @tparam T The numeric type (double or CppAD::AD<double>).
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @return The calculated reaction rate.
|
||||
* @details The rate is calculated using the standard REACLIB formula:
|
||||
* `rate = exp(a0 + a1/T9 + a2/T9^(1/3) + a3*T9^(1/3) + a4*T9 + a5*T9^(5/3) + a6*ln(T9))`
|
||||
*/
|
||||
template <typename T>
|
||||
[[nodiscard]] T calculate_rate(const T T9) const {
|
||||
const T T913 = CppAD::pow(T9, 1.0/3.0);
|
||||
const T T953 = CppAD::pow(T9, 5.0/3.0);
|
||||
const T logT9 = CppAD::log(T9);
|
||||
const T exponent = m_rateCoefficients.a0 +
|
||||
m_rateCoefficients.a1 / T9 +
|
||||
m_rateCoefficients.a2 / T913 +
|
||||
m_rateCoefficients.a3 * T913 +
|
||||
m_rateCoefficients.a4 * T9 +
|
||||
m_rateCoefficients.a5 * T953 +
|
||||
m_rateCoefficients.a6 * logT9;
|
||||
return CppAD::exp(exponent);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @class LogicalReaction
|
||||
* @brief Represents a "logical" reaction that aggregates rates from multiple sources.
|
||||
*
|
||||
* A LogicalReaction shares the same reactants and products but combines rates
|
||||
* from different evaluations (e.g., "wc12" and "st08" for the same physical
|
||||
* reaction). The total rate is the sum of the individual rates.
|
||||
* It inherits from Reaction, using the properties of the first provided reaction
|
||||
* as its base properties (reactants, products, Q-value, etc.).
|
||||
*/
|
||||
class LogicalReaction final : public Reaction {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a LogicalReaction from a vector of `Reaction` objects.
|
||||
* @param reactions A vector of reactions that represent the same logical process.
|
||||
* @throws std::runtime_error if the provided reactions have inconsistent Q-values.
|
||||
*/
|
||||
explicit LogicalReaction(const std::vector<Reaction> &reactions);
|
||||
|
||||
/**
|
||||
* @brief Adds another `Reaction` source to this logical reaction.
|
||||
* @param reaction The reaction to add.
|
||||
* @throws std::runtime_error if the reaction has a different `peName`, a duplicate
|
||||
* source label, or an inconsistent Q-value.
|
||||
*/
|
||||
void add_reaction(const Reaction& reaction);
|
||||
|
||||
/**
|
||||
* @brief Gets the number of source rates contributing to this logical reaction.
|
||||
* @return The number of aggregated rates.
|
||||
*/
|
||||
[[nodiscard]] size_t size() const { return m_rates.size(); }
|
||||
|
||||
/**
|
||||
* @brief Gets the list of source labels for the aggregated rates.
|
||||
* @return A vector of source label strings.
|
||||
*/
|
||||
[[nodiscard]] std::vector<std::string> sources() const { return m_sources; }
|
||||
|
||||
/**
|
||||
* @brief Calculates the total reaction rate by summing all source rates.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @return The total calculated reaction rate.
|
||||
*/
|
||||
[[nodiscard]] double calculate_rate(const double T9) const override;
|
||||
|
||||
[[nodiscard]] virtual double calculate_forward_rate_log_derivative(const double T9) const override;
|
||||
|
||||
/**
|
||||
* @brief Calculates the total reaction rate using CppAD types.
|
||||
* @param T9 The temperature in units of 10^9 K, as a CppAD::AD<double>.
|
||||
* @return The total calculated reaction rate, as a CppAD::AD<double>.
|
||||
*/
|
||||
[[nodiscard]] CppAD::AD<double> calculate_rate(const CppAD::AD<double> T9) const override;
|
||||
|
||||
/** @name Iterators
|
||||
* Provides iterators to loop over the rate coefficient sets.
|
||||
*/
|
||||
///@{
|
||||
auto begin() { return m_rates.begin(); }
|
||||
[[nodiscard]] auto begin() const { return m_rates.cbegin(); }
|
||||
auto end() { return m_rates.end(); }
|
||||
[[nodiscard]] auto end() const { return m_rates.cend(); }
|
||||
///@}
|
||||
///
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const LogicalReaction& r) {
|
||||
os << "(LogicalReaction: " << r.id() << ", reverse: " << r.is_reverse() << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<std::string> m_sources; ///< List of source labels.
|
||||
std::vector<RateCoefficientSet> m_rates; ///< List of rate coefficient sets from each source.
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Template implementation for calculating the total reaction rate.
|
||||
* @tparam T The numeric type (double or CppAD::AD<double>).
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @return The total calculated reaction rate.
|
||||
* @details This method iterates through all stored `RateCoefficientSet`s,
|
||||
* calculates the rate for each, and returns their sum.
|
||||
*/
|
||||
template <typename T>
|
||||
[[nodiscard]] T calculate_rate(const T T9) const {
|
||||
T sum = static_cast<T>(0.0);
|
||||
const T T913 = CppAD::pow(T9, 1.0/3.0);
|
||||
const T T953 = CppAD::pow(T9, 5.0/3.0);
|
||||
const T logT9 = CppAD::log(T9);
|
||||
// ReSharper disable once CppUseStructuredBinding
|
||||
for (const auto& rate : m_rates) {
|
||||
const T exponent = rate.a0 +
|
||||
rate.a1 / T9 +
|
||||
rate.a2 / T913 +
|
||||
rate.a3 * T913 +
|
||||
rate.a4 * T9 +
|
||||
rate.a5 * T953 +
|
||||
rate.a6 * logT9;
|
||||
sum += CppAD::exp(exponent);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename ReactionT>
|
||||
class TemplatedReactionSet final {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a ReactionSet from a vector of reactions.
|
||||
* @param reactions The initial vector of Reaction objects.
|
||||
*/
|
||||
explicit TemplatedReactionSet(std::vector<ReactionT> reactions);
|
||||
|
||||
TemplatedReactionSet();
|
||||
|
||||
/**
|
||||
* @brief Copy constructor.
|
||||
* @param other The ReactionSet to copy.
|
||||
*/
|
||||
TemplatedReactionSet(const TemplatedReactionSet<ReactionT>& other);
|
||||
|
||||
/**
|
||||
* @brief Copy assignment operator.
|
||||
* @param other The ReactionSet to assign from.
|
||||
* @return A reference to this ReactionSet.
|
||||
*/
|
||||
TemplatedReactionSet<ReactionT>& operator=(const TemplatedReactionSet<ReactionT>& other);
|
||||
|
||||
/**
|
||||
* @brief Adds a reaction to the set.
|
||||
* @param reaction The Reaction to add.
|
||||
*/
|
||||
void add_reaction(ReactionT reaction);
|
||||
|
||||
/**
|
||||
* @brief Removes a reaction from the set.
|
||||
* @param reaction The Reaction to remove.
|
||||
*/
|
||||
void remove_reaction(const ReactionT& reaction);
|
||||
|
||||
/**
|
||||
* @brief Checks if the set contains a reaction with the given ID.
|
||||
* @param id The ID of the reaction to find.
|
||||
* @return True if the reaction is in the set, false otherwise.
|
||||
*/
|
||||
[[nodiscard]] bool contains(const std::string_view& id) const;
|
||||
|
||||
/**
|
||||
* @brief Checks if the set contains the given reaction.
|
||||
* @param reaction The Reaction to find.
|
||||
* @return True if the reaction is in the set, false otherwise.
|
||||
*/
|
||||
[[nodiscard]] bool contains(const Reaction& reaction) const;
|
||||
|
||||
/**
|
||||
* @brief Gets the number of reactions in the set.
|
||||
* @return The size of the set.
|
||||
*/
|
||||
[[nodiscard]] size_t size() const { return m_reactions.size(); }
|
||||
|
||||
/**
|
||||
* @brief Removes all reactions from the set.
|
||||
*/
|
||||
void clear();
|
||||
|
||||
/**
|
||||
* @brief Checks if any reaction in the set involves the given species.
|
||||
* @param species The species to check for.
|
||||
* @return True if the species is involved in any reaction.
|
||||
*/
|
||||
[[nodiscard]] bool contains_species(const fourdst::atomic::Species& species) const;
|
||||
|
||||
/**
|
||||
* @brief Checks if any reaction in the set contains the given species as a reactant.
|
||||
* @param species The species to check for.
|
||||
* @return True if the species is a reactant in any reaction.
|
||||
*/
|
||||
[[nodiscard]] bool contains_reactant(const fourdst::atomic::Species& species) const;
|
||||
|
||||
/**
|
||||
* @brief Checks if any reaction in the set contains the given species as a product.
|
||||
* @param species The species to check for.
|
||||
* @return True if the species is a product in any reaction.
|
||||
*/
|
||||
[[nodiscard]] bool contains_product(const fourdst::atomic::Species& species) const;
|
||||
|
||||
/**
|
||||
* @brief Accesses a reaction by its index.
|
||||
* @param index The index of the reaction to access.
|
||||
* @return A const reference to the Reaction.
|
||||
* @throws std::out_of_range if the index is out of bounds.
|
||||
*/
|
||||
[[nodiscard]] const ReactionT& operator[](size_t index) const;
|
||||
|
||||
/**
|
||||
* @brief Accesses a reaction by its ID.
|
||||
* @param id The ID of the reaction to access.
|
||||
* @return A const reference to the Reaction.
|
||||
* @throws std::out_of_range if no reaction with the given ID exists.
|
||||
*/
|
||||
[[nodiscard]] const ReactionT& operator[](const std::string_view& id) const;
|
||||
|
||||
/**
|
||||
* @brief Compares this set with another for equality.
|
||||
* @param other The other ReactionSet to compare with.
|
||||
* @return True if the sets are equal (same size and hash).
|
||||
*/
|
||||
bool operator==(const TemplatedReactionSet& other) const;
|
||||
|
||||
/**
|
||||
* @brief Compares this set with another for inequality.
|
||||
* @param other The other ReactionSet to compare with.
|
||||
* @return True if the sets are not equal.
|
||||
*/
|
||||
bool operator!=(const TemplatedReactionSet& other) const;
|
||||
|
||||
/**
|
||||
* @brief Computes a hash for the entire set.
|
||||
* @param seed The seed for the hash function.
|
||||
* @return A 64-bit hash value.
|
||||
* @details The algorithm computes the hash of each individual reaction,
|
||||
* sorts the hashes, and then computes a final hash over the sorted list
|
||||
* of hashes. This ensures the hash is order-independent.
|
||||
*/
|
||||
[[nodiscard]] uint64_t hash(uint64_t seed = 0) const;
|
||||
|
||||
/** @name Iterators
|
||||
* Provides iterators to loop over the reactions in the set.
|
||||
*/
|
||||
///@{
|
||||
auto begin() { return m_reactions.begin(); }
|
||||
[[nodiscard]] auto begin() const { return m_reactions.cbegin(); }
|
||||
auto end() { return m_reactions.end(); }
|
||||
[[nodiscard]] auto end() const { return m_reactions.cend(); }
|
||||
///@}
|
||||
///
|
||||
friend std::ostream& operator<<(std::ostream& os, const TemplatedReactionSet<ReactionT>& r) {
|
||||
os << "(ReactionSet: [";
|
||||
int counter = 0;
|
||||
for (const auto& reaction : r.m_reactions) {
|
||||
os << reaction;
|
||||
if (counter < r.m_reactions.size() - 2) {
|
||||
os << ", ";
|
||||
} else if (counter == r.m_reactions.size() - 2) {
|
||||
os << " and ";
|
||||
}
|
||||
++counter;
|
||||
}
|
||||
os << "])";
|
||||
return os;
|
||||
}
|
||||
|
||||
[[nodiscard]] std::unordered_set<fourdst::atomic::Species> getReactionSetSpecies() const;
|
||||
private:
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||||
std::vector<ReactionT> m_reactions;
|
||||
std::string m_id;
|
||||
std::unordered_map<std::string, ReactionT> m_reactionNameMap; ///< Maps reaction IDs to Reaction objects for quick lookup.
|
||||
|
||||
};
|
||||
|
||||
using ReactionSet = TemplatedReactionSet<Reaction>; ///< A set of reactions, typically from a single source like REACLIB.
|
||||
using LogicalReactionSet = TemplatedReactionSet<LogicalReaction>; ///< A set of logical reactions.
|
||||
|
||||
LogicalReactionSet packReactionSetToLogicalReactionSet(const ReactionSet& reactionSet);
|
||||
|
||||
template <typename ReactionT>
|
||||
TemplatedReactionSet<ReactionT>::TemplatedReactionSet(
|
||||
std::vector<ReactionT> reactions
|
||||
) :
|
||||
m_reactions(std::move(reactions)) {
|
||||
if (m_reactions.empty()) {
|
||||
return; // Case where the reactions will be added later.
|
||||
}
|
||||
m_reactionNameMap.reserve(reactions.size());
|
||||
for (const auto& reaction : m_reactions) {
|
||||
m_id += reaction.id();
|
||||
m_reactionNameMap.emplace(reaction.id(), reaction);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename ReactionT>
|
||||
TemplatedReactionSet<ReactionT>::TemplatedReactionSet() {}
|
||||
|
||||
template <typename ReactionT>
|
||||
TemplatedReactionSet<ReactionT>::TemplatedReactionSet(const TemplatedReactionSet<ReactionT> &other) {
|
||||
m_reactions.reserve(other.m_reactions.size());
|
||||
for (const auto& reaction_ptr: other.m_reactions) {
|
||||
m_reactions.push_back(reaction_ptr);
|
||||
}
|
||||
|
||||
m_reactionNameMap.reserve(other.m_reactionNameMap.size());
|
||||
for (const auto& reaction_ptr : m_reactions) {
|
||||
m_reactionNameMap.emplace(reaction_ptr.id(), reaction_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
TemplatedReactionSet<ReactionT>& TemplatedReactionSet<ReactionT>::operator=(const TemplatedReactionSet<ReactionT> &other) {
|
||||
if (this != &other) {
|
||||
TemplatedReactionSet temp(other);
|
||||
std::swap(m_reactions, temp.m_reactions);
|
||||
std::swap(m_reactionNameMap, temp.m_reactionNameMap);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
void TemplatedReactionSet<ReactionT>::add_reaction(ReactionT reaction) {
|
||||
m_reactions.emplace_back(reaction);
|
||||
m_id += m_reactions.back().id();
|
||||
m_reactionNameMap.emplace(m_reactions.back().id(), m_reactions.back());
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
void TemplatedReactionSet<ReactionT>::remove_reaction(const ReactionT& reaction) {
|
||||
if (!m_reactionNameMap.contains(std::string(reaction.id()))) {
|
||||
return;
|
||||
}
|
||||
|
||||
m_reactionNameMap.erase(std::string(reaction.id()));
|
||||
|
||||
std::erase_if(m_reactions, [&reaction](const Reaction& r) {
|
||||
return r == reaction;
|
||||
});
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
bool TemplatedReactionSet<ReactionT>::contains(const std::string_view& id) const {
|
||||
for (const auto& reaction : m_reactions) {
|
||||
if (reaction.id() == id) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
bool TemplatedReactionSet<ReactionT>::contains(const Reaction& reaction) const {
|
||||
for (const auto& r : m_reactions) {
|
||||
if (r == reaction) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
void TemplatedReactionSet<ReactionT>::clear() {
|
||||
m_reactions.clear();
|
||||
m_reactionNameMap.clear();
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
bool TemplatedReactionSet<ReactionT>::contains_species(const fourdst::atomic::Species& species) const {
|
||||
for (const auto& reaction : m_reactions) {
|
||||
if (reaction.contains(species)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
bool TemplatedReactionSet<ReactionT>::contains_reactant(const fourdst::atomic::Species& species) const {
|
||||
for (const auto& r : m_reactions) {
|
||||
if (r.contains_reactant(species)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
bool TemplatedReactionSet<ReactionT>::contains_product(const fourdst::atomic::Species& species) const {
|
||||
for (const auto& r : m_reactions) {
|
||||
if (r.contains_product(species)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
const ReactionT& TemplatedReactionSet<ReactionT>::operator[](const size_t index) const {
|
||||
if (index >= m_reactions.size()) {
|
||||
m_logger -> flush_log();
|
||||
throw std::out_of_range("Index" + std::to_string(index) + " out of range for ReactionSet of size " + std::to_string(m_reactions.size()) + ".");
|
||||
}
|
||||
return m_reactions[index];
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
const ReactionT& TemplatedReactionSet<ReactionT>::operator[](const std::string_view& id) const {
|
||||
if (auto it = m_reactionNameMap.find(std::string(id)); it != m_reactionNameMap.end()) {
|
||||
return it->second;
|
||||
}
|
||||
m_logger -> flush_log();
|
||||
throw std::out_of_range("Species " + std::string(id) + " does not exist in ReactionSet.");
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
bool TemplatedReactionSet<ReactionT>::operator==(const TemplatedReactionSet<ReactionT>& other) const {
|
||||
if (size() != other.size()) {
|
||||
return false;
|
||||
}
|
||||
return hash() == other.hash();
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
bool TemplatedReactionSet<ReactionT>::operator!=(const TemplatedReactionSet<ReactionT>& other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
|
||||
template <typename ReactionT>
|
||||
uint64_t TemplatedReactionSet<ReactionT>::hash(uint64_t seed) const {
|
||||
if (m_reactions.empty()) {
|
||||
return XXHash64::hash(nullptr, 0, seed);
|
||||
}
|
||||
std::vector<uint64_t> individualReactionHashes;
|
||||
individualReactionHashes.reserve(m_reactions.size());
|
||||
for (const auto& reaction : m_reactions) {
|
||||
individualReactionHashes.push_back(reaction.hash(seed));
|
||||
}
|
||||
|
||||
std::ranges::sort(individualReactionHashes);
|
||||
|
||||
const auto data = static_cast<const void*>(individualReactionHashes.data());
|
||||
const size_t sizeInBytes = individualReactionHashes.size() * sizeof(uint64_t);
|
||||
return XXHash64::hash(data, sizeInBytes, seed);
|
||||
}
|
||||
|
||||
template<typename ReactionT>
|
||||
std::unordered_set<fourdst::atomic::Species> TemplatedReactionSet<ReactionT>::getReactionSetSpecies() const {
|
||||
std::unordered_set<fourdst::atomic::Species> species;
|
||||
for (const auto& reaction : m_reactions) {
|
||||
const auto reactionSpecies = reaction.all_species();
|
||||
species.insert(reactionSpecies.begin(), reactionSpecies.end());
|
||||
}
|
||||
return species;
|
||||
}
|
||||
}
|
||||
|
||||
181934
src/include/gridfire/reaction/reactions_data.h
Normal file
181934
src/include/gridfire/reaction/reactions_data.h
Normal file
File diff suppressed because it is too large
Load Diff
6
src/include/gridfire/screening/screening.h
Normal file
6
src/include/gridfire/screening/screening.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/screening/screening_types.h"
|
||||
#include "gridfire/screening/screening_abstract.h"
|
||||
#include "gridfire/screening/screening_bare.h"
|
||||
#include "gridfire/screening/screening_weak.h"
|
||||
108
src/include/gridfire/screening/screening_abstract.h
Normal file
108
src/include/gridfire/screening/screening_abstract.h
Normal file
@@ -0,0 +1,108 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
|
||||
#include "fourdst/composition/atomicSpecies.h"
|
||||
|
||||
#include "cppad/cppad.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace gridfire::screening {
|
||||
/**
|
||||
* @class ScreeningModel
|
||||
* @brief An abstract base class for plasma screening models.
|
||||
*
|
||||
* This class defines the interface for models that calculate the enhancement
|
||||
* factor for nuclear reaction rates due to the electrostatic screening of
|
||||
* interacting nuclei by the surrounding plasma. Concrete implementations of
|
||||
* this class will provide specific screening prescriptions (e.g., WEAK,
|
||||
* BARE, STRONG, etc.).
|
||||
*
|
||||
* The interface provides methods for calculating screening factors for both
|
||||
* standard double-precision inputs and for CppAD's automatic differentiation
|
||||
* types, allowing the screening contributions to be included in Jacobian
|
||||
* calculations.
|
||||
*/
|
||||
class ScreeningModel {
|
||||
public:
|
||||
/// @brief Alias for CppAD Automatic Differentiation type for double precision.
|
||||
using ADDouble = CppAD::AD<double>;
|
||||
/**
|
||||
* @brief Virtual destructor.
|
||||
*
|
||||
* Ensures that derived class destructors are called correctly.
|
||||
*/
|
||||
virtual ~ScreeningModel() = default;
|
||||
|
||||
/**
|
||||
* @brief Calculates screening factors for a set of reactions.
|
||||
*
|
||||
* This is a pure virtual function that must be implemented by derived
|
||||
* classes. It computes the screening enhancement factor for each reaction
|
||||
* in the provided set based on the given plasma conditions.
|
||||
*
|
||||
* @param reactions The set of logical reactions in the network.
|
||||
* @param species A vector of all atomic species involved in the network.
|
||||
* @param Y A vector of the molar abundances (mol/g) for each species.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @param rho The plasma density in g/cm^3.
|
||||
* @return A vector of screening factors (dimensionless), one for each reaction
|
||||
* in the `reactions` set, in the same order.
|
||||
*
|
||||
* @b Pre-conditions
|
||||
* - The size of the `Y` vector must match the size of the `species` vector.
|
||||
* - `T9` and `rho` must be positive.
|
||||
*
|
||||
* @b Post-conditions
|
||||
* - The returned vector will have the same size as the `reactions` set.
|
||||
* - Each element in the returned vector will be >= 1.0.
|
||||
*
|
||||
* @b Usage
|
||||
* @code
|
||||
* // Assume 'model' is a std::unique_ptr<ScreeningModel> to a concrete implementation
|
||||
* // and other parameters (reactions, species, Y, T9, rho) are initialized.
|
||||
* std::vector<double> screening_factors = model->calculateScreeningFactors(
|
||||
* reactions, species, Y, T9, rho
|
||||
* );
|
||||
* for (size_t i = 0; i < reactions.size(); ++i) {
|
||||
* // ... use screening_factors[i] ...
|
||||
* }
|
||||
* @endcode
|
||||
*/
|
||||
virtual std::vector<double> calculateScreeningFactors(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<double>& Y,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const = 0;
|
||||
|
||||
/**
|
||||
* @brief Calculates screening factors using CppAD types for automatic differentiation.
|
||||
*
|
||||
* This is a pure virtual function that provides an overload of
|
||||
* `calculateScreeningFactors` for use with CppAD. It allows the derivatives
|
||||
* of the screening factors with respect to abundances, temperature, and
|
||||
* density to be computed automatically.
|
||||
*
|
||||
* @param reactions The set of logical reactions in the network.
|
||||
* @param species A vector of all atomic species involved in the network.
|
||||
* @param Y A vector of the molar abundances (mol/g) for each species, as AD types.
|
||||
* @param T9 The temperature in units of 10^9 K, as an AD type.
|
||||
* @param rho The plasma density in g/cm^3, as an AD type.
|
||||
* @return A vector of screening factors (dimensionless), as AD types.
|
||||
*
|
||||
* @b Note
|
||||
* This method is essential for including the effects of screening in the
|
||||
* Jacobian matrix of the reaction network.
|
||||
*/
|
||||
virtual std::vector<ADDouble> calculateScreeningFactors(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<ADDouble>& Y,
|
||||
const ADDouble T9,
|
||||
const ADDouble rho
|
||||
) const = 0;
|
||||
};
|
||||
}
|
||||
135
src/include/gridfire/screening/screening_bare.h
Normal file
135
src/include/gridfire/screening/screening_bare.h
Normal file
@@ -0,0 +1,135 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/screening/screening_abstract.h"
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
|
||||
#include "cppad/cppad.hpp"
|
||||
|
||||
namespace gridfire::screening {
|
||||
/**
|
||||
* @class BareScreeningModel
|
||||
* @brief A screening model that applies no screening effect.
|
||||
*
|
||||
* This class implements the `ScreeningModel` interface but returns a
|
||||
* screening factor of 1.0 for all reactions, regardless of the plasma
|
||||
* conditions. It represents the case of bare, unscreened nuclei and serves
|
||||
* as a baseline or can be used when screening effects are negligible or
|
||||
* intentionally ignored.
|
||||
*
|
||||
* @implements ScreeningModel
|
||||
*/
|
||||
class BareScreeningModel final : public ScreeningModel {
|
||||
/// @brief Alias for CppAD Automatic Differentiation type for double precision.
|
||||
using ADDouble = CppAD::AD<double>;
|
||||
public:
|
||||
/**
|
||||
* @brief Calculates screening factors, which are always 1.0.
|
||||
*
|
||||
* This implementation returns a vector of screening factors where every
|
||||
* element is 1.0, effectively applying no screening correction to the
|
||||
* reaction rates.
|
||||
*
|
||||
* @param reactions The set of logical reactions in the network.
|
||||
* @param species A vector of all atomic species (unused).
|
||||
* @param Y A vector of the molar abundances (unused).
|
||||
* @param T9 The temperature (unused).
|
||||
* @param rho The plasma density (unused).
|
||||
* @return A vector of doubles, with each element being 1.0, of the same
|
||||
* size as the `reactions` set.
|
||||
*
|
||||
* @b Algorithm
|
||||
* The function simply creates and returns a `std::vector<double>` of the
|
||||
* same size as the input `reactions` set, with all elements initialized to 1.0.
|
||||
*
|
||||
* @b Usage
|
||||
* @code
|
||||
* BareScreeningModel bare_model;
|
||||
* // ... (initialize reactions, species, Y, T9, rho)
|
||||
* std::vector<double> factors = bare_model.calculateScreeningFactors(
|
||||
* reactions, species, Y, T9, rho
|
||||
* );
|
||||
* // 'factors' will contain [1.0, 1.0, ...]
|
||||
* @endcode
|
||||
*/
|
||||
[[nodiscard]] std::vector<double> calculateScreeningFactors(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<double>& Y,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Calculates screening factors for AD types, which are always 1.0.
|
||||
*
|
||||
* This implementation returns a vector of AD-typed screening factors where
|
||||
* every element is 1.0. This is the automatic differentiation-compatible
|
||||
* version.
|
||||
*
|
||||
* @param reactions The set of logical reactions in the network.
|
||||
* @param species A vector of all atomic species (unused).
|
||||
* @param Y A vector of the molar abundances as AD types (unused).
|
||||
* @param T9 The temperature as an AD type (unused).
|
||||
* @param rho The plasma density as an AD type (unused).
|
||||
* @return A vector of ADDouble, with each element being 1.0, of the same
|
||||
* size as the `reactions` set.
|
||||
*/
|
||||
[[nodiscard]] std::vector<ADDouble> calculateScreeningFactors(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<ADDouble>& Y,
|
||||
const ADDouble T9,
|
||||
const ADDouble rho
|
||||
) const override;
|
||||
private:
|
||||
/**
|
||||
* @brief Template implementation for calculating screening factors.
|
||||
*
|
||||
* This private helper function contains the core logic for both the `double`
|
||||
* and `ADDouble` versions of `calculateScreeningFactors`. It is templated
|
||||
* to handle both numeric types seamlessly.
|
||||
*
|
||||
* @tparam T The numeric type, either `double` or `CppAD::AD<double>`.
|
||||
* @param reactions The set of reactions for which to calculate factors.
|
||||
* @param species A vector of all atomic species (unused).
|
||||
* @param Y A vector of molar abundances (unused).
|
||||
* @param T9 The temperature (unused).
|
||||
* @param rho The density (unused).
|
||||
* @return A vector of type `T` with all elements initialized to 1.0.
|
||||
*/
|
||||
template <typename T>
|
||||
[[nodiscard]] std::vector<T> calculateFactors_impl(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<T>& Y,
|
||||
const T T9,
|
||||
const T rho
|
||||
) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Template implementation for the bare screening model.
|
||||
*
|
||||
* This function provides the actual implementation for `calculateFactors_impl`.
|
||||
* It creates a vector of the appropriate numeric type (`T`) and size, and
|
||||
* initializes all its elements to 1.0, representing no screening.
|
||||
*
|
||||
* @tparam T The numeric type, either `double` or `CppAD::AD<double>`.
|
||||
* @param reactions The set of reactions, used to determine the size of the output vector.
|
||||
* @param species Unused parameter.
|
||||
* @param Y Unused parameter.
|
||||
* @param T9 Unused parameter.
|
||||
* @param rho Unused parameter.
|
||||
* @return A `std::vector<T>` of the same size as `reactions`, with all elements set to 1.0.
|
||||
*/
|
||||
template<typename T>
|
||||
std::vector<T> BareScreeningModel::calculateFactors_impl(
|
||||
const reaction::LogicalReactionSet &reactions,
|
||||
const std::vector<fourdst::atomic::Species> &species,
|
||||
const std::vector<T> &Y,
|
||||
const T T9,
|
||||
const T rho
|
||||
) const {
|
||||
return std::vector<T>(reactions.size(), T(1.0)); // Bare screening returns 1.0 for all reactions
|
||||
}
|
||||
}
|
||||
70
src/include/gridfire/screening/screening_types.h
Normal file
70
src/include/gridfire/screening/screening_types.h
Normal file
@@ -0,0 +1,70 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/screening/screening_abstract.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace gridfire::screening {
|
||||
/**
|
||||
* @enum ScreeningType
|
||||
* @brief Enumerates the available plasma screening models.
|
||||
*
|
||||
* This enum provides a set of identifiers for the different screening
|
||||
* prescriptions that can be used in the reaction rate calculations.
|
||||
*/
|
||||
enum class ScreeningType {
|
||||
BARE, ///< No screening applied. The screening factor is always 1.0.
|
||||
/**
|
||||
* @brief Weak screening model (Salpeter, 1954).
|
||||
*
|
||||
* This model is suitable for non-degenerate, non-relativistic plasmas
|
||||
* where the electrostatic potential energy between ions is small compared
|
||||
* to their thermal kinetic energy. The screening enhancement factor is
|
||||
* calculated as `exp(H_12)`.
|
||||
*
|
||||
* @b Algorithm
|
||||
* 1. A composition-dependent term, `ζ = ∑(Z_i^2 + Z_i) * Y_i`, is calculated,
|
||||
* where Z_i is the charge and Y_i is the molar abundance of each species.
|
||||
* 2. A prefactor is computed: `prefactor = 0.188 * sqrt(ρ / T₇³) * sqrt(ζ)`,
|
||||
* where ρ is the density and T₇ is the temperature in 10^7 K.
|
||||
* 3. For a reaction between two nuclei with charges Z₁ and Z₂, the enhancement
|
||||
* term is `H_12 = prefactor * Z₁ * Z₂`.
|
||||
* 4. The final screening factor is `exp(H_12)`.
|
||||
* A special calculation is performed for the triple-alpha reaction.
|
||||
*/
|
||||
WEAK,
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A factory function to select and create a screening model.
|
||||
*
|
||||
* This function returns a `std::unique_ptr` to a concrete implementation of
|
||||
* the `ScreeningModel` abstract base class, based on the specified `ScreeningType`.
|
||||
* This allows for easy switching between different screening prescriptions at runtime.
|
||||
*
|
||||
* @param type The `ScreeningType` enum value specifying which model to create.
|
||||
* @return A `std::unique_ptr<ScreeningModel>` holding an instance of the
|
||||
* requested screening model.
|
||||
*
|
||||
* @b Algorithm
|
||||
* The function uses a `switch` statement to determine which concrete model to
|
||||
* instantiate. If the provided `type` does not match a known case, it defaults
|
||||
* to creating a `BareScreeningModel` to ensure safe behavior.
|
||||
*
|
||||
* @b Post-conditions
|
||||
* - A non-null `std::unique_ptr<ScreeningModel>` is always returned.
|
||||
*
|
||||
* @b Usage
|
||||
* @code
|
||||
* // Select the weak screening model
|
||||
* auto screening_model = gridfire::screening::selectScreeningModel(gridfire::screening::ScreeningType::WEAK);
|
||||
*
|
||||
* // Use the model to calculate screening factors
|
||||
* // (assuming other parameters are initialized)
|
||||
* std::vector<double> factors = screening_model->calculateScreeningFactors(
|
||||
* reactions, species, Y, T9, rho
|
||||
* );
|
||||
* @endcode
|
||||
*/
|
||||
std::unique_ptr<ScreeningModel> selectScreeningModel(ScreeningType type);
|
||||
}
|
||||
213
src/include/gridfire/screening/screening_weak.h
Normal file
213
src/include/gridfire/screening/screening_weak.h
Normal file
@@ -0,0 +1,213 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/screening/screening_abstract.h"
|
||||
#include "gridfire/reaction/reaction.h"
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
#include "quill/Logger.h"
|
||||
#include "quill/LogMacros.h"
|
||||
|
||||
#include "cppad/cppad.hpp"
|
||||
|
||||
namespace gridfire::screening {
|
||||
/**
|
||||
* @class WeakScreeningModel
|
||||
* @brief Implements the weak screening model based on the Debye-Hückel approximation.
|
||||
*
|
||||
* This class provides a concrete implementation of the `ScreeningModel`
|
||||
* interface for the weak screening regime, following the formulation of
|
||||
* Salpeter (1954). This approach applies the Debye-Hückel theory to model the
|
||||
* electrostatic shielding of nuclei in a plasma. It is applicable to
|
||||
* non-degenerate, non-relativistic plasmas where thermal energy dominates
|
||||
* the electrostatic potential energy.
|
||||
*
|
||||
* @implements ScreeningModel
|
||||
*/
|
||||
class WeakScreeningModel final : public ScreeningModel {
|
||||
public:
|
||||
/**
|
||||
* @brief Calculates weak screening factors for a set of reactions.
|
||||
*
|
||||
* This method computes the screening enhancement factor for each reaction
|
||||
* based on the Salpeter (1954) formula.
|
||||
*
|
||||
* @param reactions The set of logical reactions in the network.
|
||||
* @param species A vector of all atomic species involved in the network.
|
||||
* @param Y A vector of the molar abundances (mol/g) for each species.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @param rho The plasma density in g/cm^3.
|
||||
* @return A vector of screening factors (dimensionless), one for each reaction.
|
||||
*
|
||||
* @b Usage
|
||||
* @code
|
||||
* WeakScreeningModel weak_model;
|
||||
* // ... (initialize reactions, species, Y, T9, rho)
|
||||
* std::vector<double> factors = weak_model.calculateScreeningFactors(
|
||||
* reactions, species, Y, T9, rho
|
||||
* );
|
||||
* @endcode
|
||||
*/
|
||||
[[nodiscard]] std::vector<double> calculateScreeningFactors(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<double>& Y,
|
||||
const double T9,
|
||||
const double rho
|
||||
) const override;
|
||||
|
||||
/**
|
||||
* @brief Calculates weak screening factors using CppAD types.
|
||||
*
|
||||
* This is the automatic differentiation-compatible version of the method.
|
||||
* It allows the derivatives of the screening factors to be computed with
|
||||
* respect to plasma conditions.
|
||||
*
|
||||
* @param reactions The set of logical reactions in the network.
|
||||
* @param species A vector of all atomic species involved in the network.
|
||||
* @param Y A vector of the molar abundances as AD types.
|
||||
* @param T9 The temperature as an AD type.
|
||||
* @param rho The plasma density as an AD type.
|
||||
* @return A vector of screening factors as AD types.
|
||||
*/
|
||||
[[nodiscard]] std::vector<CppAD::AD<double>> calculateScreeningFactors(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<CppAD::AD<double>>& Y,
|
||||
const CppAD::AD<double> T9,
|
||||
const CppAD::AD<double> rho
|
||||
) const override;
|
||||
private:
|
||||
/// @brief Logger instance for recording trace and debug information.
|
||||
quill::Logger* m_logger = fourdst::logging::LogManager::getInstance().getLogger("log");
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Template implementation for calculating weak screening factors.
|
||||
*
|
||||
* This private helper function contains the core logic for calculating
|
||||
* weak screening factors. It is templated to handle both `double` and
|
||||
* `CppAD::AD<double>` numeric types, avoiding code duplication.
|
||||
*
|
||||
* @tparam T The numeric type, either `double` or `CppAD::AD<double>`.
|
||||
* @param reactions The set of reactions.
|
||||
* @param species A vector of all species in the network.
|
||||
* @param Y A vector of molar abundances.
|
||||
* @param T9 The temperature in 10^9 K.
|
||||
* @param rho The density in g/cm^3.
|
||||
* @return A vector of screening factors of type `T`.
|
||||
*/
|
||||
template <typename T>
|
||||
[[nodiscard]] std::vector<T> calculateFactors_impl(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<T>& Y,
|
||||
const T T9,
|
||||
const T rho
|
||||
) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Core implementation of the weak screening calculation (Debye-Hückel model).
|
||||
*
|
||||
* This function calculates the screening factor `exp(H_12)` for each reaction,
|
||||
* based on the Debye-Hückel approximation as formulated by Salpeter (1954).
|
||||
*
|
||||
* @tparam T The numeric type (`double` or `CppAD::AD<double>`).
|
||||
* @param reactions The set of reactions to be screened.
|
||||
* @param species The list of all species in the network.
|
||||
* @param Y The molar abundances of the species.
|
||||
* @param T9 The temperature in 10^9 K.
|
||||
* @param rho The density in g/cm^3.
|
||||
* @return A vector of screening factors, one for each reaction.
|
||||
*
|
||||
* @b Algorithm
|
||||
* 1. **Low-Temperature Cutoff**: If T9 is below a small threshold (1e-9),
|
||||
* screening is effectively turned off to prevent numerical instability.
|
||||
* 2. **Zeta Factor (ζ)**: A composition-dependent term is calculated:
|
||||
* `ζ = ∑(Z_i² + Z_i) * Y_i`, where Z_i is the charge and Y_i is the
|
||||
* molar abundance of species i.
|
||||
* 3. **Prefactor**: A key prefactor is computed:
|
||||
* `prefactor = 0.188 * sqrt(ρ / T₇³) * sqrt(ζ)`,
|
||||
* where T₇ is the temperature in units of 10^7 K.
|
||||
* 4. **Screening Term (H_12)**: For each reaction, the term H_12 is calculated:
|
||||
* - For a two-body reaction (reactants Z₁ and Z₂): `H_12 = prefactor * Z₁ * Z₂`.
|
||||
* - For the triple-alpha reaction (3 * He4): `H_12 = 3 * (prefactor * Z_α * Z_α)`.
|
||||
* - For one-body reactions (decays), H_12 is 0, so the factor is 1.
|
||||
* 5. **Capping**: The value of H_12 is capped at 2.0 to prevent excessively large
|
||||
* and unphysical screening factors (exp(2) ≈ 7.4).
|
||||
* 6. **Final Factor**: The screening factor for the reaction is `exp(H_12)`.
|
||||
*/
|
||||
template <typename T>
|
||||
std::vector<T> WeakScreeningModel::calculateFactors_impl(
|
||||
const reaction::LogicalReactionSet& reactions,
|
||||
const std::vector<fourdst::atomic::Species>& species,
|
||||
const std::vector<T>& Y,
|
||||
const T T9,
|
||||
const T rho
|
||||
) const {
|
||||
LOG_TRACE_L3(
|
||||
m_logger,
|
||||
"Calculating weak screening factors for {} reactions...",
|
||||
reactions.size()
|
||||
);
|
||||
// --- CppAD Safe low temp checking ---
|
||||
const T zero(0.0);
|
||||
const T one(1.0);
|
||||
const T low_temp_threshold(1e-9);
|
||||
|
||||
const T low_T_flag = CppAD::CondExpLt(T9, low_temp_threshold, zero, one);
|
||||
|
||||
// --- Calculate composition-dependent terms ---
|
||||
// ζ = ∑(Z_i^2 + Z_i) * X_i / A_i
|
||||
// This simplifies somewhat to ζ = ∑ (Z_i^2 + Z_i) * Y_i
|
||||
// Where Y_i is the molar abundance (mol/g)
|
||||
T zeta(0.0);
|
||||
for (size_t i = 0; i < species.size(); ++i) {
|
||||
const T Z = species[i].m_z;
|
||||
zeta += (Z * Z + Z) * Y[i];
|
||||
}
|
||||
|
||||
// --- Constant prefactors ---
|
||||
const T T7 = T9 * static_cast<T>(100.00);
|
||||
const T T7_safe = CppAD::CondExpLe(T7, low_temp_threshold, low_temp_threshold, T7);
|
||||
const T prefactor = static_cast<T>(0.188) * CppAD::sqrt(rho / (T7_safe * T7_safe * T7_safe)) * CppAD::sqrt(zeta);
|
||||
|
||||
// --- Loop through reactions and calculate screening factors for each ---
|
||||
std::vector<T> factors;
|
||||
factors.reserve(reactions.size());
|
||||
for (const auto& reaction : reactions) {
|
||||
T H_12(0.0); // screening abundance term
|
||||
const auto& reactants = reaction.reactants();
|
||||
const bool isTripleAlpha = (
|
||||
reactants.size() == 3 &&
|
||||
reactants[0].m_z == 2 &&
|
||||
reactants[1].m_z == 2 &&
|
||||
reactants[2].m_z == 2 &&
|
||||
reactants[0] == reactants[1] &&
|
||||
reactants[1] == reactants[2]
|
||||
);
|
||||
if (reactants.size() == 2) {
|
||||
LOG_TRACE_L3(m_logger, "Calculating screening factor for reaction: {}", reaction.peName());
|
||||
const T Z1 = static_cast<T>(reactants[0].m_z);
|
||||
const T Z2 = static_cast<T>(reactants[1].m_z);
|
||||
H_12 = prefactor * Z1 * Z2;
|
||||
}
|
||||
else if (isTripleAlpha) {
|
||||
LOG_TRACE_L3(m_logger, "Special case for triple alpha process in reaction: {}", reaction.peName());
|
||||
// Special case for triple alpha process
|
||||
const T Z_alpha = static_cast<T>(2.0);
|
||||
const T H_alpha_alpha = prefactor * Z_alpha * Z_alpha;
|
||||
H_12 = static_cast<T>(3.0) * H_alpha_alpha; // Triple alpha process
|
||||
}
|
||||
// For 1 body reactions H_12 remains 0 so e^H_12 will be 1.0 (screening does not apply)
|
||||
// Aside from triple alpha, all other astrophysically relevant reactions are 2-body in the weak screening regime
|
||||
|
||||
H_12 *= low_T_flag; // Apply low temperature flag to screening factor
|
||||
H_12 = CppAD::CondExpGe(H_12, static_cast<T>(2.0), static_cast<T>(2.0), H_12); // Caps the screening factor at 10 to avoid numerical issues
|
||||
factors.push_back(CppAD::exp(H_12));
|
||||
// std::cout << "Screening factor: " << reaction.peName() << " : " << factors.back() << "(" << H_12 << ")" << std::endl;
|
||||
}
|
||||
return factors;
|
||||
}
|
||||
|
||||
}
|
||||
183
src/include/gridfire/solver/solver.h
Normal file
183
src/include/gridfire/solver/solver.h
Normal file
@@ -0,0 +1,183 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/engine_graph.h"
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "../engine/views/engine_adaptive.h"
|
||||
#include "gridfire/network.h"
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
#include "fourdst/config/config.h"
|
||||
|
||||
#include "quill/Logger.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace gridfire::solver {
|
||||
/**
|
||||
* @class NetworkSolverStrategy
|
||||
* @brief Abstract base class for network solver strategies.
|
||||
*
|
||||
* This class defines the interface for network solver strategies, which are responsible
|
||||
* for integrating the reaction network ODEs over a given timestep. It is templated on the
|
||||
* engine type to allow for different engine implementations to be used with the same solver.
|
||||
*
|
||||
* @tparam EngineT The type of engine to use with this solver strategy. Must inherit from Engine.
|
||||
*/
|
||||
template <typename EngineT>
|
||||
class NetworkSolverStrategy {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for the NetworkSolverStrategy.
|
||||
* @param engine The engine to use for evaluating the network.
|
||||
*/
|
||||
explicit NetworkSolverStrategy(EngineT& engine) : m_engine(engine) {};
|
||||
|
||||
/**
|
||||
* @brief Virtual destructor.
|
||||
*/
|
||||
virtual ~NetworkSolverStrategy() = default;
|
||||
|
||||
/**
|
||||
* @brief Evaluates the network for a given timestep.
|
||||
* @param netIn The input conditions for the network.
|
||||
* @return The output conditions after the timestep.
|
||||
*/
|
||||
virtual NetOut evaluate(const NetIn& netIn) = 0;
|
||||
protected:
|
||||
EngineT& m_engine; ///< The engine used by this solver strategy.
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Type alias for a network solver strategy that uses a DynamicEngine.
|
||||
*/
|
||||
using DynamicNetworkSolverStrategy = NetworkSolverStrategy<DynamicEngine>;
|
||||
|
||||
/**
|
||||
* @class DirectNetworkSolver
|
||||
* @brief A network solver that directly integrates the reaction network ODEs.
|
||||
*
|
||||
* This solver uses a Runge-Kutta method to directly integrate the reaction network
|
||||
* ODEs. It is simpler than the QSENetworkSolver, but it can be less efficient for
|
||||
* stiff networks with disparate timescales.
|
||||
*
|
||||
* @implements DynamicNetworkSolverStrategy
|
||||
*/
|
||||
class DirectNetworkSolver final : public DynamicNetworkSolverStrategy {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for the DirectNetworkSolver.
|
||||
* @param engine The dynamic engine to use for evaluating the network.
|
||||
*/
|
||||
using DynamicNetworkSolverStrategy::DynamicNetworkSolverStrategy;
|
||||
|
||||
/**
|
||||
* @brief Evaluates the network for a given timestep using direct integration.
|
||||
* @param netIn The input conditions for the network.
|
||||
* @return The output conditions after the timestep.
|
||||
*/
|
||||
NetOut evaluate(const NetIn& netIn) override;
|
||||
private:
|
||||
/**
|
||||
* @struct RHSFunctor
|
||||
* @brief Functor for calculating the right-hand side of the ODEs.
|
||||
*
|
||||
* This functor is used by the ODE solver to calculate the time derivatives of the
|
||||
* species abundances. It takes the current abundances as input and returns the
|
||||
* time derivatives.
|
||||
*/
|
||||
struct RHSManager {
|
||||
DynamicEngine& m_engine; ///< The engine used to evaluate the network.
|
||||
const double m_T9; ///< Temperature in units of 10^9 K.
|
||||
const double m_rho; ///< Density in g/cm^3.
|
||||
|
||||
mutable double m_cached_time;
|
||||
mutable std::optional<StepDerivatives<double>> m_cached_result;
|
||||
|
||||
mutable double m_last_observed_time = 0.0; ///< Last time the state was observed.
|
||||
|
||||
|
||||
quill::Logger* m_logger = LogManager::getInstance().newFileLogger("integration.log", "GridFire"); ///< Logger instance.
|
||||
mutable int m_num_steps = 0;
|
||||
mutable double m_last_step_time = 1e-20;
|
||||
|
||||
/**
|
||||
* @brief Constructor for the RHSFunctor.
|
||||
* @param engine The engine used to evaluate the network.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
*/
|
||||
RHSManager(
|
||||
DynamicEngine& engine,
|
||||
const double T9,
|
||||
const double rho
|
||||
) :
|
||||
m_engine(engine),
|
||||
m_T9(T9),
|
||||
m_rho(rho),
|
||||
m_cached_time(0) {}
|
||||
|
||||
/**
|
||||
* @brief Calculates the time derivatives of the species abundances.
|
||||
* @param Y Vector of current abundances.
|
||||
* @param dYdt Vector to store the time derivatives.
|
||||
* @param t Current time.
|
||||
*/
|
||||
void operator()(
|
||||
const boost::numeric::ublas::vector<double>& Y,
|
||||
boost::numeric::ublas::vector<double>& dYdt,
|
||||
double t
|
||||
) const;
|
||||
|
||||
void observe(const boost::numeric::ublas::vector<double>& state, double t) const;
|
||||
void compute_and_cache(const boost::numeric::ublas::vector<double>& state, double t) const;
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* @struct JacobianFunctor
|
||||
* @brief Functor for calculating the Jacobian matrix.
|
||||
*
|
||||
* This functor is used by the ODE solver to calculate the Jacobian matrix of the
|
||||
* ODEs. It takes the current abundances as input and returns the Jacobian matrix.
|
||||
*/
|
||||
struct JacobianFunctor {
|
||||
DynamicEngine& m_engine; ///< The engine used to evaluate the network.
|
||||
const double m_T9; ///< Temperature in units of 10^9 K.
|
||||
const double m_rho; ///< Density in g/cm^3.
|
||||
|
||||
/**
|
||||
* @brief Constructor for the JacobianFunctor.
|
||||
* @param engine The engine used to evaluate the network.
|
||||
* @param T9 Temperature in units of 10^9 K.
|
||||
* @param rho Density in g/cm^3.
|
||||
*/
|
||||
JacobianFunctor(
|
||||
DynamicEngine& engine,
|
||||
const double T9,
|
||||
const double rho
|
||||
) :
|
||||
m_engine(engine),
|
||||
m_T9(T9),
|
||||
m_rho(rho) {}
|
||||
|
||||
/**
|
||||
* @brief Calculates the Jacobian matrix.
|
||||
* @param Y Vector of current abundances.
|
||||
* @param J Matrix to store the Jacobian matrix.
|
||||
* @param t Current time.
|
||||
* @param dfdt Vector to store the time derivatives (not used).
|
||||
*/
|
||||
void operator()(
|
||||
const boost::numeric::ublas::vector<double>& Y,
|
||||
boost::numeric::ublas::matrix<double>& J,
|
||||
double t,
|
||||
boost::numeric::ublas::vector<double>& dfdt
|
||||
) const;
|
||||
|
||||
};
|
||||
|
||||
private:
|
||||
quill::Logger* m_logger = LogManager::getInstance().getLogger("log"); ///< Logger instance.
|
||||
Config& m_config = Config::getInstance(); ///< Configuration instance.
|
||||
};
|
||||
}
|
||||
65
src/include/gridfire/utils/logging.h
Normal file
65
src/include/gridfire/utils/logging.h
Normal file
@@ -0,0 +1,65 @@
|
||||
#pragma once
|
||||
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace gridfire::utils {
|
||||
/**
|
||||
* @brief Formats a map of nuclear species timescales into a human-readable string.
|
||||
*
|
||||
* This function takes a reaction network engine and the current plasma
|
||||
* conditions to calculate the characteristic timescales for each species.
|
||||
* It then formats this information into a neatly aligned ASCII table, which
|
||||
* is suitable for logging or printing to the console.
|
||||
*
|
||||
* @param engine A constant reference to a `DynamicEngine` object, used to
|
||||
* calculate the species timescales.
|
||||
* @param Y A vector of the molar abundances (mol/g) for each species.
|
||||
* @param T9 The temperature in units of 10^9 K.
|
||||
* @param rho The plasma density in g/cm^3.
|
||||
* @return A std::string containing the formatted table of species and their
|
||||
* timescales.
|
||||
*
|
||||
* @b Pre-conditions
|
||||
* - The `engine` must be in a valid state.
|
||||
* - The size of the `Y` vector must be consistent with the number of species
|
||||
* expected by the `engine`.
|
||||
*
|
||||
* @b Algorithm
|
||||
* 1. Calls the `getSpeciesTimescales` method on the provided `engine` to get
|
||||
* the timescale for each species under the given conditions.
|
||||
* 2. Determines the maximum length of the species names to dynamically set the
|
||||
* width of the "Species" column for proper alignment.
|
||||
* 3. Uses a `std::ostringstream` to build the output string.
|
||||
* 4. Constructs a header for the table with titles "Species" and "Timescale (s)".
|
||||
* 5. Iterates through the map of timescales, adding a row to the table for
|
||||
* each species.
|
||||
* 6. Timescales are formatted in scientific notation with 3 digits of precision.
|
||||
* 7. Special handling is included to print "inf" for infinite timescales.
|
||||
* 8. The final string, including header and footer lines, is returned.
|
||||
*
|
||||
* @b Usage
|
||||
* @code
|
||||
* // Assume 'my_engine' is a valid DynamicEngine object and Y, T9, rho are initialized.
|
||||
* std::string log_output = gridfire::utils::formatNuclearTimescaleLogString(my_engine, Y, T9, rho);
|
||||
* std::cout << log_output;
|
||||
*
|
||||
* // Example Output:
|
||||
* // == Timescales (s) ==
|
||||
* // Species Timescale (s)
|
||||
* // ==========================
|
||||
* // h1 1.234e+05
|
||||
* // he4 inf
|
||||
* // c12 8.765e-02
|
||||
* // ==========================
|
||||
* @endcode
|
||||
*/
|
||||
std::string formatNuclearTimescaleLogString(
|
||||
const DynamicEngine& engine,
|
||||
const std::vector<double>& Y,
|
||||
const double T9,
|
||||
const double rho
|
||||
);
|
||||
}
|
||||
Reference in New Issue
Block a user