feat(GridFire): major design changes

Switching to an Engine + solver design. Also brought xxHash and Eigen in. Working on QSE and Culling.
This commit is contained in:
2025-06-26 15:13:46 -04:00
parent dd03873bc9
commit cd191cff23
32 changed files with 2737 additions and 1441 deletions

View File

@@ -0,0 +1,33 @@
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2021 Yann Collet
BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at:
- xxHash homepage: https://www.xxhash.com
- xxHash source repository: https://github.com/Cyan4973/xxHash

View File

@@ -0,0 +1,355 @@
/*
BSD 2-Clause License
constexpr-xxh3 - C++20 constexpr implementation of the XXH3 64-bit variant of xxHash
Copyright (c) 2021-2023, chys <admin@chys.info> <chys87@github>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
This file uses code from Yann Collet's xxHash implementation.
Original xxHash copyright notice:
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2020 Yann Collet
*/
#pragma once
#include <cstddef>
#include <cstdint>
#include <iterator> // for std::data, std::size
#include <type_traits>
#include <utility>
namespace constexpr_xxh3 {
template <typename T>
concept ByteType = (std::is_integral_v<T> && sizeof(T) == 1)
#if defined __cpp_lib_byte && __cpp_lib_byte >= 201603
|| std::is_same_v<T, std::byte>
#endif
;
template <typename T>
concept BytePtrType = requires (T ptr) {
requires std::is_pointer_v<T>;
requires ByteType<std::remove_cvref_t<decltype(*ptr)>>;
};
template <typename T>
concept BytesType = requires (const T& bytes) {
{ std::data(bytes) };
requires BytePtrType<decltype(std::data(bytes))>;
// -> std::convertible_to is not supported widely enough
{ static_cast<size_t>(std::size(bytes)) };
};
inline constexpr uint32_t swap32(uint32_t x) noexcept {
return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) |
((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff);
}
template <typename T>
inline constexpr uint32_t readLE32(const T* ptr) noexcept {
return uint8_t(ptr[0]) | uint32_t(uint8_t(ptr[1])) << 8 |
uint32_t(uint8_t(ptr[2])) << 16 | uint32_t(uint8_t(ptr[3])) << 24;
}
inline constexpr uint64_t swap64(uint64_t x) noexcept {
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
template <typename T>
inline constexpr uint64_t readLE64(const T* ptr) noexcept {
return readLE32(ptr) | uint64_t(readLE32(ptr + 4)) << 32;
}
inline constexpr void writeLE64(uint8_t* dst, uint64_t v) noexcept {
for (int i = 0; i < 8; ++i) dst[i] = uint8_t(v >> (i * 8));
}
inline constexpr uint32_t PRIME32_1 = 0x9E3779B1U;
inline constexpr uint32_t PRIME32_2 = 0x85EBCA77U;
inline constexpr uint32_t PRIME32_3 = 0xC2B2AE3DU;
inline constexpr uint64_t PRIME64_1 = 0x9E3779B185EBCA87ULL;
inline constexpr uint64_t PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;
inline constexpr uint64_t PRIME64_3 = 0x165667B19E3779F9ULL;
inline constexpr uint64_t PRIME64_4 = 0x85EBCA77C2B2AE63ULL;
inline constexpr uint64_t PRIME64_5 = 0x27D4EB2F165667C5ULL;
inline constexpr size_t SECRET_DEFAULT_SIZE = 192;
inline constexpr size_t SECRET_SIZE_MIN = 136;
inline constexpr uint8_t kSecret[SECRET_DEFAULT_SIZE]{
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c,
0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb,
0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e,
0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6,
0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb,
0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97,
0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7,
0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31,
0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 0xea, 0xc5, 0xac, 0x83,
0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26,
0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc,
0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f,
0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
inline constexpr std::pair<uint64_t, uint64_t> mult64to128(
uint64_t lhs, uint64_t rhs) noexcept {
uint64_t lo_lo = uint64_t(uint32_t(lhs)) * uint32_t(rhs);
uint64_t hi_lo = (lhs >> 32) * uint32_t(rhs);
uint64_t lo_hi = uint32_t(lhs) * (rhs >> 32);
uint64_t hi_hi = (lhs >> 32) * (rhs >> 32);
uint64_t cross = (lo_lo >> 32) + uint32_t(hi_lo) + lo_hi;
uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
uint64_t lower = (cross << 32) | uint32_t(lo_lo);
return {lower, upper};
}
inline constexpr uint64_t mul128_fold64(uint64_t lhs, uint64_t rhs) noexcept {
#if defined __GNUC__ && __WORDSIZE >= 64
// It appears both GCC and Clang support evaluating __int128 as constexpr
auto product = static_cast<unsigned __int128>(lhs) * rhs;
return uint64_t(product >> 64) ^ uint64_t(product);
#else
auto product = mult64to128(lhs, rhs);
return product.first ^ product.second;
#endif
}
inline constexpr uint64_t XXH64_avalanche(uint64_t h) noexcept {
h = (h ^ (h >> 33)) * PRIME64_2;
h = (h ^ (h >> 29)) * PRIME64_3;
return h ^ (h >> 32);
}
inline constexpr uint64_t XXH3_avalanche(uint64_t h) noexcept {
h = (h ^ (h >> 37)) * 0x165667919E3779F9ULL;
return h ^ (h >> 32);
}
inline constexpr uint64_t rrmxmx(uint64_t h, uint64_t len) noexcept {
h ^= ((h << 49) | (h >> 15)) ^ ((h << 24) | (h >> 40));
h *= 0x9FB21C651E98DF25ULL;
h ^= (h >> 35) + len;
h *= 0x9FB21C651E98DF25ULL;
return h ^ (h >> 28);
}
template <typename T, typename S>
constexpr uint64_t mix16B(const T* input, const S* secret,
uint64_t seed) noexcept {
return mul128_fold64(readLE64(input) ^ (readLE64(secret) + seed),
readLE64(input + 8) ^ (readLE64(secret + 8) - seed));
}
inline constexpr size_t STRIPE_LEN = 64;
inline constexpr size_t SECRET_CONSUME_RATE = 8;
inline constexpr size_t ACC_NB = STRIPE_LEN / sizeof(uint64_t);
template <typename T, typename S>
constexpr void accumulate_512(uint64_t* acc, const T* input,
const S* secret) noexcept {
for (size_t i = 0; i < ACC_NB; i++) {
uint64_t data_val = readLE64(input + 8 * i);
uint64_t data_key = data_val ^ readLE64(secret + i * 8);
acc[i ^ 1] += data_val;
acc[i] += uint32_t(data_key) * (data_key >> 32);
}
}
template <typename T, typename S>
constexpr uint64_t hashLong_64b_internal(const T* input, size_t len,
const S* secret,
size_t secretSize) noexcept {
uint64_t acc[ACC_NB]{PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1};
size_t nbStripesPerBlock = (secretSize - STRIPE_LEN) / SECRET_CONSUME_RATE;
size_t block_len = STRIPE_LEN * nbStripesPerBlock;
size_t nb_blocks = (len - 1) / block_len;
for (size_t n = 0; n < nb_blocks; n++) {
for (size_t i = 0; i < nbStripesPerBlock; i++)
accumulate_512(acc, input + n * block_len + i * STRIPE_LEN,
secret + i * SECRET_CONSUME_RATE);
for (size_t i = 0; i < ACC_NB; i++)
acc[i] = (acc[i] ^ (acc[i] >> 47) ^
readLE64(secret + secretSize - STRIPE_LEN + 8 * i)) *
PRIME32_1;
}
size_t nbStripes = ((len - 1) - (block_len * nb_blocks)) / STRIPE_LEN;
for (size_t i = 0; i < nbStripes; i++)
accumulate_512(acc, input + nb_blocks * block_len + i * STRIPE_LEN,
secret + i * SECRET_CONSUME_RATE);
accumulate_512(acc, input + len - STRIPE_LEN,
secret + secretSize - STRIPE_LEN - 7);
uint64_t result = len * PRIME64_1;
for (size_t i = 0; i < 4; i++)
result +=
mul128_fold64(acc[2 * i] ^ readLE64(secret + 11 + 16 * i),
acc[2 * i + 1] ^ readLE64(secret + 11 + 16 * i + 8));
return XXH3_avalanche(result);
}
template <typename T, typename S, typename HashLong>
constexpr uint64_t XXH3_64bits_internal(const T* input, size_t len,
uint64_t seed, const S* secret,
size_t secretLen,
HashLong f_hashLong) noexcept {
if (len == 0) {
return XXH64_avalanche(seed ^
(readLE64(secret + 56) ^ readLE64(secret + 64)));
} else if (len < 4) {
uint64_t keyed = ((uint32_t(uint8_t(input[0])) << 16) |
(uint32_t(uint8_t(input[len >> 1])) << 24) |
uint8_t(input[len - 1]) | (uint32_t(len) << 8)) ^
((readLE32(secret) ^ readLE32(secret + 4)) + seed);
return XXH64_avalanche(keyed);
} else if (len <= 8) {
uint64_t keyed =
(readLE32(input + len - 4) + (uint64_t(readLE32(input)) << 32)) ^
((readLE64(secret + 8) ^ readLE64(secret + 16)) -
(seed ^ (uint64_t(swap32(uint32_t(seed))) << 32)));
return rrmxmx(keyed, len);
} else if (len <= 16) {
uint64_t input_lo =
readLE64(input) ^
((readLE64(secret + 24) ^ readLE64(secret + 32)) + seed);
uint64_t input_hi =
readLE64(input + len - 8) ^
((readLE64(secret + 40) ^ readLE64(secret + 48)) - seed);
uint64_t acc =
len + swap64(input_lo) + input_hi + mul128_fold64(input_lo, input_hi);
return XXH3_avalanche(acc);
} else if (len <= 128) {
uint64_t acc = len * PRIME64_1;
size_t secret_off = 0;
for (size_t i = 0, j = len; j > i; i += 16, j -= 16) {
acc += mix16B(input + i, secret + secret_off, seed);
acc += mix16B(input + j - 16, secret + secret_off + 16, seed);
secret_off += 32;
}
return XXH3_avalanche(acc);
} else if (len <= 240) {
uint64_t acc = len * PRIME64_1;
for (size_t i = 0; i < 128; i += 16)
acc += mix16B(input + i, secret + i, seed);
acc = XXH3_avalanche(acc);
for (size_t i = 128; i < len / 16 * 16; i += 16)
acc += mix16B(input + i, secret + (i - 128) + 3, seed);
acc += mix16B(input + len - 16, secret + SECRET_SIZE_MIN - 17, seed);
return XXH3_avalanche(acc);
} else {
return f_hashLong(input, len, seed, secret, secretLen);
}
}
template <BytesType Bytes>
constexpr size_t bytes_size(const Bytes& bytes) noexcept {
return std::size(bytes);
}
template <ByteType T, size_t N>
constexpr size_t bytes_size(T (&)[N]) noexcept {
return (N ? N - 1 : 0);
}
/// Basic interfaces
template <ByteType T>
consteval uint64_t XXH3_64bits_const(const T* input, size_t len) noexcept {
return XXH3_64bits_internal(
input, len, 0, kSecret, sizeof(kSecret),
[](const T* input, size_t len, uint64_t, const void*,
size_t) constexpr noexcept {
return hashLong_64b_internal(input, len, kSecret, sizeof(kSecret));
});
}
template <ByteType T, ByteType S>
consteval uint64_t XXH3_64bits_withSecret_const(const T* input, size_t len,
const S* secret,
size_t secretSize) noexcept {
return XXH3_64bits_internal(
input, len, 0, secret, secretSize,
[](const T* input, size_t len, uint64_t, const S* secret,
size_t secretLen) constexpr noexcept {
return hashLong_64b_internal(input, len, secret, secretLen);
});
}
template <ByteType T>
consteval uint64_t XXH3_64bits_withSeed_const(const T* input, size_t len,
uint64_t seed) noexcept {
if (seed == 0) return XXH3_64bits_const(input, len);
return XXH3_64bits_internal(
input, len, seed, kSecret, sizeof(kSecret),
[](const T* input, size_t len, uint64_t seed, const void*,
size_t) constexpr noexcept {
uint8_t secret[SECRET_DEFAULT_SIZE];
for (size_t i = 0; i < SECRET_DEFAULT_SIZE; i += 16) {
writeLE64(secret + i, readLE64(kSecret + i) + seed);
writeLE64(secret + i + 8, readLE64(kSecret + i + 8) - seed);
}
return hashLong_64b_internal(input, len, secret, sizeof(secret));
});
}
/// Convenient interfaces
template <BytesType Bytes>
consteval uint64_t XXH3_64bits_const(const Bytes& input) noexcept {
return XXH3_64bits_const(std::data(input), bytes_size(input));
}
template <BytesType Bytes, BytesType Secret>
consteval uint64_t XXH3_64bits_withSecret_const(const Bytes& input,
const Secret& secret) noexcept {
return XXH3_64bits_withSecret_const(std::data(input), bytes_size(input),
std::data(secret), bytes_size(secret));
}
template <BytesType Bytes>
consteval uint64_t XXH3_64bits_withSeed_const(const Bytes& input,
uint64_t seed) noexcept {
return XXH3_64bits_withSeed_const(std::data(input), bytes_size(input), seed);
}
} // namespace constexpr_xxh3

View File

@@ -0,0 +1,202 @@
// //////////////////////////////////////////////////////////
// xxhash64.h
// Copyright (c) 2016 Stephan Brumme. All rights reserved.
// see http://create.stephan-brumme.com/disclaimer.html
//
#pragma once
#include <stdint.h> // for uint32_t and uint64_t
/// XXHash (64 bit), based on Yann Collet's descriptions, see http://cyan4973.github.io/xxHash/
/** How to use:
uint64_t myseed = 0;
XXHash64 myhash(myseed);
myhash.add(pointerToSomeBytes, numberOfBytes);
myhash.add(pointerToSomeMoreBytes, numberOfMoreBytes); // call add() as often as you like to ...
// and compute hash:
uint64_t result = myhash.hash();
// or all of the above in one single line:
uint64_t result2 = XXHash64::hash(mypointer, numBytes, myseed);
Note: my code is NOT endian-aware !
**/
class XXHash64
{
public:
/// create new XXHash (64 bit)
/** @param seed your seed value, even zero is a valid seed **/
explicit XXHash64(uint64_t seed)
{
state[0] = seed + Prime1 + Prime2;
state[1] = seed + Prime2;
state[2] = seed;
state[3] = seed - Prime1;
bufferSize = 0;
totalLength = 0;
}
/// add a chunk of bytes
/** @param input pointer to a continuous block of data
@param length number of bytes
@return false if parameters are invalid / zero **/
bool add(const void* input, uint64_t length)
{
// no data ?
if (!input || length == 0)
return false;
totalLength += length;
// byte-wise access
const unsigned char* data = (const unsigned char*)input;
// unprocessed old data plus new data still fit in temporary buffer ?
if (bufferSize + length < MaxBufferSize)
{
// just add new data
while (length-- > 0)
buffer[bufferSize++] = *data++;
return true;
}
// point beyond last byte
const unsigned char* stop = data + length;
const unsigned char* stopBlock = stop - MaxBufferSize;
// some data left from previous update ?
if (bufferSize > 0)
{
// make sure temporary buffer is full (16 bytes)
while (bufferSize < MaxBufferSize)
buffer[bufferSize++] = *data++;
// process these 32 bytes (4x8)
process(buffer, state[0], state[1], state[2], state[3]);
}
// copying state to local variables helps optimizer A LOT
uint64_t s0 = state[0], s1 = state[1], s2 = state[2], s3 = state[3];
// 32 bytes at once
while (data <= stopBlock)
{
// local variables s0..s3 instead of state[0]..state[3] are much faster
process(data, s0, s1, s2, s3);
data += 32;
}
// copy back
state[0] = s0; state[1] = s1; state[2] = s2; state[3] = s3;
// copy remainder to temporary buffer
bufferSize = stop - data;
for (uint64_t i = 0; i < bufferSize; i++)
buffer[i] = data[i];
// done
return true;
}
/// get current hash
/** @return 64 bit XXHash **/
uint64_t hash() const
{
// fold 256 bit state into one single 64 bit value
uint64_t result;
if (totalLength >= MaxBufferSize)
{
result = rotateLeft(state[0], 1) +
rotateLeft(state[1], 7) +
rotateLeft(state[2], 12) +
rotateLeft(state[3], 18);
result = (result ^ processSingle(0, state[0])) * Prime1 + Prime4;
result = (result ^ processSingle(0, state[1])) * Prime1 + Prime4;
result = (result ^ processSingle(0, state[2])) * Prime1 + Prime4;
result = (result ^ processSingle(0, state[3])) * Prime1 + Prime4;
}
else
{
// internal state wasn't set in add(), therefore original seed is still stored in state2
result = state[2] + Prime5;
}
result += totalLength;
// process remaining bytes in temporary buffer
const unsigned char* data = buffer;
// point beyond last byte
const unsigned char* stop = data + bufferSize;
// at least 8 bytes left ? => eat 8 bytes per step
for (; data + 8 <= stop; data += 8)
result = rotateLeft(result ^ processSingle(0, *(uint64_t*)data), 27) * Prime1 + Prime4;
// 4 bytes left ? => eat those
if (data + 4 <= stop)
{
result = rotateLeft(result ^ (*(uint32_t*)data) * Prime1, 23) * Prime2 + Prime3;
data += 4;
}
// take care of remaining 0..3 bytes, eat 1 byte per step
while (data != stop)
result = rotateLeft(result ^ (*data++) * Prime5, 11) * Prime1;
// mix bits
result ^= result >> 33;
result *= Prime2;
result ^= result >> 29;
result *= Prime3;
result ^= result >> 32;
return result;
}
/// combine constructor, add() and hash() in one static function (C style)
/** @param input pointer to a continuous block of data
@param length number of bytes
@param seed your seed value, e.g. zero is a valid seed
@return 64 bit XXHash **/
static uint64_t hash(const void* input, uint64_t length, uint64_t seed)
{
XXHash64 hasher(seed);
hasher.add(input, length);
return hasher.hash();
}
private:
/// magic constants :-)
static const uint64_t Prime1 = 11400714785074694791ULL;
static const uint64_t Prime2 = 14029467366897019727ULL;
static const uint64_t Prime3 = 1609587929392839161ULL;
static const uint64_t Prime4 = 9650029242287828579ULL;
static const uint64_t Prime5 = 2870177450012600261ULL;
/// temporarily store up to 31 bytes between multiple add() calls
static const uint64_t MaxBufferSize = 31+1;
uint64_t state[4];
unsigned char buffer[MaxBufferSize];
uint64_t bufferSize;
uint64_t totalLength;
/// rotate bits, should compile to a single CPU instruction (ROL)
static inline uint64_t rotateLeft(uint64_t x, unsigned char bits)
{
return (x << bits) | (x >> (64 - bits));
}
/// process a single 64 bit value
static inline uint64_t processSingle(uint64_t previous, uint64_t input)
{
return rotateLeft(previous + input * Prime2, 31) * Prime1;
}
/// process a block of 4x4 bytes, this is the main part of the XXHash32 algorithm
static inline void process(const void* data, uint64_t& state0, uint64_t& state1, uint64_t& state2, uint64_t& state3)
{
const uint64_t* block = (const uint64_t*) data;
state0 = processSingle(state0, block[0]);
state1 = processSingle(state1, block[1]);
state2 = processSingle(state2, block[2]);
state3 = processSingle(state3, block[3]);
}
};

View File

@@ -0,0 +1,4 @@
xxhash_dep = declare_dependency(
include_directories: include_directories('include')
)