refactor(GridFireEquiv): Cleaned up

Cleaned up old validation code
This commit is contained in:
2025-11-27 10:06:13 -05:00
parent ef53575c0d
commit 90cfe81d0b
5 changed files with 0 additions and 24804 deletions

View File

@@ -1,95 +0,0 @@
from fourdst.composition import Composition
from gridfire.type import NetIn
from gridfire.policy import MainSequencePolicy
from gridfire.solver import CVODESolverStrategy
from enum import Enum
from typing import Dict, Union, SupportsFloat
import json
import dicttoxml
def init_composition() -> Composition:
Y = [7.0262E-01, 9.7479E-06, 6.8955E-02, 2.5000E-04, 7.8554E-05, 6.0144E-04, 8.1031E-05, 2.1513E-05]
S = ["H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"]
return Composition(S, Y)
def init_netIn(temp: float, rho: float, time: float, comp: Composition) -> NetIn:
netIn = NetIn()
netIn.temperature = temp
netIn.density = rho
netIn.tMax = time
netIn.dt0 = 1e-12
netIn.composition = comp
return netIn
class StepData(Enum):
TIME = 0
DT = 1
COMP = 2
CONTRIB = 3
class StepLogger:
def __init__(self):
self.num_steps: int = 0
self.step_data: Dict[int, Dict[StepData, Union[SupportsFloat, Dict[str, SupportsFloat]]]] = {}
def log_step(self, context):
engine = context.engine
self.step_data[self.num_steps] = {}
self.step_data[self.num_steps][StepData.TIME] = context.t
self.step_data[self.num_steps][StepData.DT] = context.dt
comp_data: Dict[str, SupportsFloat] = {}
for species in engine.getNetworkSpecies():
sid = engine.getSpeciesIndex(species)
comp_data[species.name()] = context.state[sid]
self.step_data[self.num_steps][StepData.COMP] = comp_data
self.num_steps += 1
def to_json (self, filename: str):
serializable_data = {
stepNum: {
StepData.TIME.name: step[StepData.TIME],
StepData.DT.name: step[StepData.DT],
StepData.COMP.name: step[StepData.COMP],
}
for stepNum, step in self.step_data.items()
}
with open(filename, 'w') as f:
json.dump(serializable_data, f, indent=4)
def to_xml(self, filename: str):
serializable_data = {
stepNum: {
StepData.TIME.name: step[StepData.TIME],
StepData.DT.name: step[StepData.DT],
StepData.COMP.name: step[StepData.COMP],
}
for stepNum, step in self.step_data.items()
}
xml_data = dicttoxml.dicttoxml(serializable_data, custom_root='StepLog', attr_type=False)
with open(filename, 'wb') as f:
f.write(xml_data)
def main(temp: float, rho: float, time: float):
comp = init_composition()
netIn = init_netIn(temp, rho, time, comp)
policy = MainSequencePolicy(comp)
engine = policy.construct()
solver = CVODESolverStrategy(engine)
step_logger = StepLogger()
solver.set_callback(lambda context: step_logger.log_step(context))
solver.evaluate(netIn, False)
step_logger.to_xml("log_data.xml")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Simple python example of GridFire usage")
parser.add_argument("-t", "--temp", type=float, help="Temperature in K", default=1.5e7)
parser.add_argument("-r", "--rho", type=float, help="Density in g/cm^3", default=1.5e2)
parser.add_argument("--tMax", type=float, help="Time in s", default=3.1536 * 1e17)
args = parser.parse_args()
main(args.temp, args.rho, args.tMax)

View File

@@ -1,122 +0,0 @@
# import numpy as np
# from scipy.integrate import solve_ivp
#
# import pp_chain_robust as network
#
#
# T = 1e7
# rho = 1.5e2
#
# Y0 = np.zeros(network.nnuc)
# Y0[network.jp] = 0.702583
# Y0[network.jhe3] = 9.74903e-6
# Y0[network.jhe4] = 0.068963
# Y0[network.jc12] = 0.000250029
# Y0[network.jn14] = 7.85632e-5
# Y0[network.jo16] = 0.00060151
# Y0[network.jne20] = 8.10399e-5
# Y0[network.jmg24] = 2.15159e-5
#
# t_start = 0.0
# t_end = 3.14e17
# t_span = (t_start, t_end)
#
# sol = solve_ivp(
# network.rhs,
# t_span=t_span,
# y0=Y0,
# method='Radau',
# jac=network.jacobian,
# args=(rho, T),
# dense_output=True,
# rtol=1e-8,
# atol=1e-8
# )
#
#
# with open("pynucastro_results.csv", 'w') as f:
# f.write("t,h1,h2,he3,he4,c12,n14,o16,ne20,mg24\n")
# for (t,h1,h2,he3,he4,c12,n14,o16,ne20,mg24) in zip(sol.t, sol.y[network.jp, :], sol.y[network.jd, :], sol.y[network.jhe3, :], sol.y[network.jhe4, :], sol.y[network.jc12, :], sol.y[network.jn14, :], sol.y[network.jo16, :], sol.y[network.jne20, :], sol.y[network.jmg24, :]):
# f.write(f"{t},{h1},{h2},{he3},{he4},{c12},{n14},{o16},{ne20},{mg24}\n")
import sys
from gridfire.engine import GraphEngine, MultiscalePartitioningEngineView, AdaptiveEngineView
from gridfire.solver import CVODESolverStrategy
from gridfire.type import NetIn
from fourdst.composition import Composition
from fourdst.atomic import species, Species
from datetime import datetime
from typing import List, Dict, Set, Tuple
X : list[float] = [0.708, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4]
symbols : list[str] = ["H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"]
comp = Composition()
comp.registerSymbol(symbols)
comp.setMassFraction(symbols, X)
comp.finalize(True)
print(f"Initial H-1 mass fraction {comp.getMassFraction("H-1")}")
netIn = NetIn()
netIn.composition = comp
netIn.temperature = 1.5e7
netIn.density = 1.6e2
netIn.tMax = 3e17
netIn.dt0 = 1e-12
baseEngine = GraphEngine(netIn.composition, 2)
baseEngine.setUseReverseReactions(False)
qseEngine = MultiscalePartitioningEngineView(baseEngine)
adaptiveEngine = AdaptiveEngineView(qseEngine)
solver = CVODESolverStrategy(adaptiveEngine)
data: List[Tuple[float, Dict[str, Tuple[float, float]]]] = []
def callback(context):
engine = context.engine
abundances: Dict[str, Tuple[float, float]] = {}
for species in engine.getNetworkSpecies():
sid = engine.getSpeciesIndex(species)
abundances[species.name()] = (species.mass(), context.state[sid])
data.append((context.t,abundances))
solver.set_callback(callback)
try:
results = solver.evaluate(netIn, False)
print(f"H-1 final molar abundance: {results.composition.getMolarAbundance("H-1"):0.3f}")
except:
print("Warning: solver did not converge", file=sys.stderr)
uniqueSpecies: Set[Tuple[str, float]] = set()
for t, timestep in data:
for (name, (mass, abundance)) in timestep.items():
uniqueSpecies.add((name, mass))
sortedUniqueSpecies = list(sorted(uniqueSpecies, key=lambda e: e[1]))
with open(f"gridfire_results_{datetime.now().strftime("%H-%M-%d_%m_%Y")}.csv", 'w') as f:
f.write('t,')
for i, (species,mass) in enumerate(sortedUniqueSpecies):
f.write(f"{species}")
if i < len(sortedUniqueSpecies)-1:
f.write(",")
f.write("\n")
for t, timestep in data:
f.write(f"{t},")
for i, (species, mass) in enumerate(sortedUniqueSpecies):
if timestep.get(species, None) is not None:
f.write(f"{timestep.get(species)[1]}")
else:
f.write(f"")
if i < len(sortedUniqueSpecies) - 1:
f.write(",")
f.write("\n")

View File

@@ -1,46 +0,0 @@
import pynucastro as pyna
from gridfire.engine import GraphEngine, MultiscalePartitioningEngineView, AdaptiveEngineView
from gridfire.type import NetIn
from fourdst.composition import Composition
symbols : list[str] = ["H-1", "He-3", "He-4", "C-12", "N-14", "O-16", "Ne-20", "Mg-24"]
X : list[float] = [0.708, 2.94e-5, 0.276, 0.003, 0.0011, 9.62e-3, 1.62e-3, 5.16e-4]
comp = Composition()
comp.registerSymbol(symbols)
comp.setMassFraction(symbols, X)
comp.finalize(True)
print(f"Initial H-1 mass fraction {comp.getMassFraction("H-1")}")
netIn = NetIn()
netIn.composition = comp
netIn.temperature = 1e7
netIn.density = 1.6e2
netIn.tMax = 1e-9
netIn.dt0 = 1e-12
baseEngine = GraphEngine(netIn.composition, 2)
equiv_species = baseEngine.getNetworkSpecies()
equiv_species = [x.name().replace("-","").lower() for x in equiv_species]
equiv_species = [x if x != 'h1' else 'p' for x in equiv_species]
equiv_species = [x if x != 'n1' else 'n' for x in equiv_species]
rl = pyna.ReacLibLibrary()
# equiv_species = ['p', 'd', 'he3', 'he4', 'c12', 'n14', 'o16', 'ne20', 'mg24']
full_lib = rl.linking_nuclei(equiv_species)
print(f"\nFound {len(full_lib.get_rates())} rates.")
net = pyna.PythonNetwork(libraries=[full_lib])
output_filename = "pp_chain_robust.py"
net.write_network(output_filename)
print(f"\nSuccessfully wrote robust PP-chain network to: {output_filename}")

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff