adding a nuclear reaction network
This commit is contained in:
533
src/network/private/network.cpp
Normal file
533
src/network/private/network.cpp
Normal file
@@ -0,0 +1,533 @@
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <stdexcept>
|
||||
#include <array>
|
||||
#include <numbers>
|
||||
#include <utility>
|
||||
|
||||
#include <boost/numeric/odeint.hpp>
|
||||
#include <boost/phoenix/core.hpp>
|
||||
#include <boost/phoenix/operator.hpp>
|
||||
|
||||
#include "const.h"
|
||||
//#include "probe.h"
|
||||
//#include "config.h"
|
||||
//#include "quill/LogMacros.h"
|
||||
|
||||
/* Nuclear reaction network in cgs units based on Frank Timmes' "aprox8".
|
||||
At this time it does neither screening nor neutrino losses. It includes
|
||||
the following 8 isotopes:
|
||||
|
||||
h1
|
||||
he3
|
||||
he4
|
||||
c12
|
||||
n14
|
||||
o16
|
||||
ne20
|
||||
mg24
|
||||
|
||||
and the following nuclear reactions:
|
||||
|
||||
---pp chain---
|
||||
p(p,e+)d
|
||||
d(p,g)he3
|
||||
he3(he3,2p)he4
|
||||
|
||||
---CNO cycle---
|
||||
c12(p,g)n13 - n13 -> c13 + p -> n14
|
||||
n14(p,g)o15 - o15 + p -> c12 + he4
|
||||
n14(a,g)f18 - proceeds to ne20
|
||||
n15(p,a)c12 - / these two n15 reactions are \ CNO I
|
||||
n15(p,g)o16 - \ used to calculate a fraction / CNO II
|
||||
o16(p,g)f17 - f17 + e -> o17 and then o17 + p -> n14 + he4
|
||||
|
||||
---alpha captures---
|
||||
c12(a,g)o16
|
||||
triple alpha
|
||||
o16(a,g)ne20
|
||||
ne20(a,g)mg24
|
||||
c12(c12,a)ne20
|
||||
c12(o16,a)mg24
|
||||
|
||||
At present the rates are all evaluated using a fitting function.
|
||||
The coefficients to the fit are from reaclib.jinaweb.org .
|
||||
|
||||
*/
|
||||
|
||||
|
||||
// using namespace std;
|
||||
using namespace boost::numeric::odeint;
|
||||
namespace phoenix = boost::phoenix;
|
||||
|
||||
// these types are required by the Rosenbrock implicit solver
|
||||
typedef boost::numeric::ublas::vector< double > vector_type;
|
||||
typedef boost::numeric::ublas::matrix< double > matrix_type;
|
||||
|
||||
// this array is used only in the nuclear reaction rate evaluations
|
||||
typedef std::array<double,7> vec;
|
||||
|
||||
// only need a couple of constants
|
||||
Constants& constants = Constants::getInstance();
|
||||
const double avo = constants.get("N_a").value;
|
||||
const double clight = constants.get("c").value;
|
||||
|
||||
// identify the isotopes used in the network.
|
||||
const int ih1=0;
|
||||
const int ihe3=1;
|
||||
const int ihe4=2;
|
||||
const int ic12=3;
|
||||
const int in14=4;
|
||||
const int io16=5;
|
||||
const int ine20=6;
|
||||
const int img24=7;
|
||||
|
||||
// physical variables; this routine currently does not need to call EOS
|
||||
// since the temperature and density are assumed constant during the burn
|
||||
const int itemp=img24+1;
|
||||
const int iden =itemp+1;
|
||||
const int iener=iden+1;
|
||||
|
||||
// number of isotopes and number of variables
|
||||
const int niso=img24+1; // number of isotopes
|
||||
const int nvar=iener+1; // number of variables
|
||||
|
||||
// atomic stuff
|
||||
std::array<int,niso> aion = {1,3,4,12,14,16,20,24};
|
||||
//std::array<int,niso> zion = {1,2,2, 6, 7, 8,10,12};
|
||||
//std::array<double,niso> bion = {0,7.71819,28.29603,92.16294,104.65998,127.62093,160.64788,198.25790};
|
||||
//nion = aion - zion #neutrons
|
||||
//mion = nion*mn + zion*mp - bion*mev2gr #mass
|
||||
std::array<double,niso> mion = {1.67262164e-24, 5.00641157e-24, 6.64465545e-24, 1.99209977e-23,
|
||||
2.32462686e-23, 2.65528858e-23, 3.31891077e-23, 3.98171594e-23};
|
||||
|
||||
//helper functions
|
||||
// a function to multilpy two arrays and then sum the resulting elements: sum(a*b)
|
||||
double sum_product( const vec &a, const vec &b){
|
||||
if (a.size() != b.size()){
|
||||
throw std::runtime_error("Error: array size mismatch in sum_product");
|
||||
}
|
||||
|
||||
double sum=0;
|
||||
for (size_t i=0; i < a.size(); i++) {
|
||||
sum += a[i] * b[i];
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
// the fit to the nuclear reaction rates is of the form:
|
||||
// exp( a0 + a1/T9 + a2/T9^(1/3) + a3*T9^(1/3) + a4*T9 + a5*T9^(5/3) + log(T9) )
|
||||
// this function returns an array of the T9 terms in that order, where T9 is the temperatures in GigaKelvin
|
||||
vec get_T9_array(const double &T) {
|
||||
vec arr;
|
||||
double T9=1e-9*T;
|
||||
double T913=pow(T9,1./3.);
|
||||
arr[0]=1;
|
||||
arr[1]=1/T9;
|
||||
arr[2]=1/T913;
|
||||
arr[3]=T913;
|
||||
arr[4]=T9;
|
||||
arr[5]=pow(T9,5./3.);
|
||||
arr[6]=log(T9);
|
||||
return arr;
|
||||
}
|
||||
|
||||
// this function uses the two preceding functions to evaluate the rate given the T9 array and the coefficients
|
||||
double rate_fit(const vec &T9, const vec &coef){return exp(sum_product(T9,coef));}
|
||||
|
||||
// p + p -> d; this, like some of the other rates, this is a composite of multiple fits
|
||||
double pp_rate(const vec &T9) {
|
||||
vec a1 = {-34.78630, 0,-3.511930, 3.100860, -0.1983140, 1.262510e-2, -1.025170};
|
||||
vec a2 = { -4.364990e+1,-2.460640e-3,-2.750700,-4.248770e-1,1.598700e-2,-6.908750e-4,-2.076250e-1};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2);
|
||||
}
|
||||
|
||||
// p + d -> he3
|
||||
double dp_rate(const vec &T9) {
|
||||
vec a1 = {7.528980, 0, -3.720800, 0.8717820, 0, 0,-0.6666670};
|
||||
vec a2 = {8.935250, 0, -3.720800, 0.1986540, 0, 0, 0.3333330};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2);
|
||||
}
|
||||
|
||||
// he3 + he3 -> he4 + 2p
|
||||
double he3he3_rate(const vec &T9){
|
||||
vec a = {2.477880e+01,0,-12.27700,-0.1036990,-6.499670e-02,1.681910e-02,-6.666670e-01};
|
||||
return rate_fit(T9,a);
|
||||
}
|
||||
|
||||
// he3(he3,2p)he4
|
||||
double he3he4_rate(const vec &T9){
|
||||
vec a1 = {1.560990e+01,0.000000e+00,-1.282710e+01,-3.082250e-02,-6.546850e-01,8.963310e-02,-6.666670e-01};
|
||||
vec a2 = {1.770750e+01,0.000000e+00,-1.282710e+01,-3.812600e+00,9.422850e-02,-3.010180e-03,1.333330e+00};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2);
|
||||
}
|
||||
|
||||
// he4 + he4 + he4 -> c12
|
||||
double triple_alpha_rate(const vec &T9){
|
||||
vec a1 = {-9.710520e-01,0.000000e+00,-3.706000e+01,2.934930e+01,-1.155070e+02,-1.000000e+01,-1.333330e+00};
|
||||
vec a2 = {-1.178840e+01,-1.024460e+00,-2.357000e+01,2.048860e+01,-1.298820e+01,-2.000000e+01,-2.166670e+00};
|
||||
vec a3 = {-2.435050e+01,-4.126560e+00,-1.349000e+01,2.142590e+01,-1.347690e+00,8.798160e-02,-1.316530e+01};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3);
|
||||
}
|
||||
|
||||
// c12 + p -> n13
|
||||
double c12p_rate(const vec &T9){
|
||||
vec a1={1.714820e+01,0.000000e+00,-1.369200e+01,-2.308810e-01,4.443620e+00,-3.158980e+00,-6.666670e-01};
|
||||
vec a2={1.754280e+01,-3.778490e+00,-5.107350e+00,-2.241110e+00,1.488830e-01,0.000000e+00,-1.500000e+00};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2);
|
||||
}
|
||||
|
||||
// c12 + he4 -> o16
|
||||
double c12a_rate(const vec &T9){
|
||||
vec a1={6.965260e+01,-1.392540e+00,5.891280e+01,-1.482730e+02,9.083240e+00,-5.410410e-01,7.035540e+01};
|
||||
vec a2={2.546340e+02,-1.840970e+00,1.034110e+02,-4.205670e+02,6.408740e+01,-1.246240e+01,1.373030e+02};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2);
|
||||
}
|
||||
|
||||
// n14(p,g)o15 - o15 + p -> c12 + he4
|
||||
double n14p_rate(const vec &T9){
|
||||
vec a1={1.701000e+01,0.000000e+00,-1.519300e+01,-1.619540e-01,-7.521230e+00,-9.875650e-01,-6.666670e-01};
|
||||
vec a2={2.011690e+01,0.000000e+00,-1.519300e+01,-4.639750e+00,9.734580e+00,-9.550510e+00,3.333330e-01};
|
||||
vec a3={7.654440e+00,-2.998000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
vec a4={6.735780e+00,-4.891000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,6.820000e-02};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4);
|
||||
}
|
||||
|
||||
// n14(a,g)f18 assumed to go on to ne20
|
||||
double n14a_rate(const vec &T9){
|
||||
vec a1={2.153390e+01,0.000000e+00,-3.625040e+01,0.000000e+00,0.000000e+00,-5.000000e+00,-6.666670e-01};
|
||||
vec a2={1.968380e-01,-5.160340e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
vec a3={1.389950e+01,-1.096560e+01,-5.622700e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3);
|
||||
}
|
||||
|
||||
// n15(p,a)c12 (CNO I)
|
||||
double n15pa_rate(const vec &T9){
|
||||
vec a1 = {2.747640e+01,0.000000e+00,-1.525300e+01,1.593180e+00,2.447900e+00,-2.197080e+00,-6.666670e-01};
|
||||
vec a2 = {-4.873470e+00,-2.021170e+00,0.000000e+00,3.084970e+01,-8.504330e+00,-1.544260e+00,-1.500000e+00};
|
||||
vec a3 = {2.089720e+01,-7.406000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
vec a4 = {-6.575220e+00,-1.163800e+00,0.000000e+00,2.271050e+01,-2.907070e+00,2.057540e-01,-1.500000e+00};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4);
|
||||
}
|
||||
|
||||
// n15(p,g)o16 (CNO II)
|
||||
double n15pg_rate(const vec &T9){
|
||||
vec a1 = {2.001760e+01,0.000000e+00,-1.524000e+01,3.349260e-01,4.590880e+00,-4.784680e+00,-6.666670e-01};
|
||||
vec a2 = {6.590560e+00,-2.923150e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
vec a3 = {1.454440e+01,-1.022950e+01,0.000000e+00,0.000000e+00,4.590370e-02,0.000000e+00,-1.500000e+00};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3);
|
||||
}
|
||||
|
||||
double n15pg_frac(const vec &T9){
|
||||
double f1=n15pg_rate(T9);
|
||||
double f2=n15pa_rate(T9);
|
||||
return f1/(f1+f2);
|
||||
}
|
||||
|
||||
// o16(p,g)f17 then f17 -> o17(p,a)n14
|
||||
double o16p_rate(const vec &T9){
|
||||
vec a={1.909040e+01,0.000000e+00,-1.669600e+01,-1.162520e+00,2.677030e-01,-3.384110e-02,-6.666670e-01};
|
||||
return rate_fit(T9,a);
|
||||
}
|
||||
|
||||
// o16(a,g)ne20
|
||||
double o16a_rate(const vec &T9){
|
||||
vec a1={2.390300e+01,0.000000e+00,-3.972620e+01,-2.107990e-01,4.428790e-01,-7.977530e-02,-6.666670e-01};
|
||||
vec a2={3.885710e+00,-1.035850e+01,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
vec a3={9.508480e+00,-1.276430e+01,0.000000e+00,-3.659250e+00,7.142240e-01,-1.075080e-03,-1.500000e+00};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3);
|
||||
}
|
||||
|
||||
// ne20(a,g)mg24
|
||||
double ne20a_rate(const vec &T9){
|
||||
vec a1={2.450580e+01,0.000000e+00,-4.625250e+01,5.589010e+00,7.618430e+00,-3.683000e+00,-6.666670e-01};
|
||||
vec a2={-3.870550e+01,-2.506050e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
vec a3={1.983070e+00,-9.220260e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00};
|
||||
vec a4={-8.798270e+00,-1.278090e+01,0.000000e+00,1.692290e+01,-2.573250e+00,2.089970e-01,-1.500000e+00};
|
||||
return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4);
|
||||
}
|
||||
|
||||
// c12(c12,a)ne20
|
||||
double c12c12_rate(const vec &T9){
|
||||
vec a={6.128630e+01,0.000000e+00,-8.416500e+01,-1.566270e+00,-7.360840e-02,-7.279700e-02,-6.666670e-01};
|
||||
return rate_fit(T9,a);
|
||||
}
|
||||
|
||||
// c12(o16,a)mg24
|
||||
double c12o16_rate(const vec &T9){
|
||||
vec a={4.853410e+01,3.720400e-01,-1.334130e+02,5.015720e+01,-3.159870e+00,1.782510e-02,-2.370270e+01};
|
||||
return rate_fit(T9,a);
|
||||
}
|
||||
|
||||
|
||||
// for Boost ODE solvers either a struct or a class is required
|
||||
|
||||
// a Jacobian matrix for implicit solvers
|
||||
struct Jacobian {
|
||||
|
||||
void operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt )
|
||||
{
|
||||
// EOS
|
||||
vec T9=get_T9_array(y[itemp]);
|
||||
|
||||
// evaluate rates once per call
|
||||
double rpp=pp_rate(T9);
|
||||
double r33=he3he3_rate(T9);
|
||||
double r34=he3he4_rate(T9);
|
||||
double r3a=triple_alpha_rate(T9);
|
||||
double rc12p=c12p_rate(T9);
|
||||
double rc12a=c12a_rate(T9);
|
||||
double rn14p=n14p_rate(T9);
|
||||
double rn14a=n14a_rate(T9);
|
||||
double ro16p=o16p_rate(T9);
|
||||
double ro16a=o16a_rate(T9);
|
||||
double rne20a=ne20a_rate(T9);
|
||||
double r1212=c12c12_rate(T9);
|
||||
double r1216=c12o16_rate(T9);
|
||||
|
||||
double pfrac=n15pg_frac(T9);
|
||||
double afrac=1-pfrac;
|
||||
|
||||
double yh1 = y[ ih1];
|
||||
double yhe3 = y[ ihe3];
|
||||
double yhe4 = y[ ihe4];
|
||||
double yc12 = y[ ic12];
|
||||
double yn14 = y[ in14];
|
||||
double yo16 = y[ io16];
|
||||
double yne20 = y[ine20];
|
||||
|
||||
// zero all elements to begin
|
||||
for (int i=0; i < nvar; i++) {
|
||||
for (int j=0; j < nvar; j++) { J(i,j)=0.0; }}
|
||||
|
||||
// h1 jacobian elements
|
||||
J(ih1,ih1) = -3*yh1*rpp - 2*yc12*rc12p -2*yn14*rn14p -2*yo16*ro16p;
|
||||
J(ih1,ihe3) = 2*yhe3*r33 - yhe4*r34;
|
||||
J(ih1,ihe4) = -yhe3*r34;
|
||||
J(ih1,ic12) = -2*yh1*rc12p;
|
||||
J(ih1,in14) = -2*yh1*rn14p;
|
||||
J(ih1,io16) = -2*yh1*ro16p;
|
||||
|
||||
// he3 jacobian elements
|
||||
J(ihe3,ih1) = yh1*rpp;
|
||||
J(ihe3,ihe3) = -2*yhe3*r33 - yhe4*r34;
|
||||
J(ihe3,ihe4) = -yhe3*r34;
|
||||
|
||||
// he4 jacobian elements
|
||||
J(ihe4,ih1) = yn14*afrac*rn14p + yo16*ro16p;
|
||||
J(ihe4,ihe3) = yhe3*r33 - yhe4*r34;
|
||||
J(ihe4,ihe4) = yhe3*r34 - 1.5*yhe4*yhe4*r3a - yc12*rc12a - 1.5*yn14*rn14a - yo16*ro16a - yne20*rne20a;
|
||||
J(ihe4,ic12) = -yhe4*rc12a + yc12*r1212 + yo16*r1216;
|
||||
J(ihe4,in14) = yh1*afrac*rn14p - 1.5*yhe4*rn14a;
|
||||
J(ihe4,io16) = yh1*ro16p - yhe4*ro16a + yc12*r1216;
|
||||
J(ihe4,ine20) = -yhe4*rne20a;
|
||||
|
||||
// c12 jacobian elements
|
||||
J(ic12,ih1) = -yc12*rc12p + yn14*afrac*rn14p;
|
||||
J(ic12,ihe4) = 0.5*yhe4*yhe4*r3a - yhe4*rc12a;
|
||||
J(ic12,ic12) = -yh1*rc12p - yhe4*rc12a - yo16*r1216 - 2*yc12*r1212;
|
||||
J(ic12,in14) = yh1*yn14*afrac*rn14p;
|
||||
J(ic12,io16) = -yc12*r1216;
|
||||
|
||||
// n14 jacobian elements
|
||||
J(in14,ih1) = yc12*rc12p - yn14*rn14p + yo16*ro16p;
|
||||
J(in14,ihe4) = -yn14*rn14a;
|
||||
J(in14,ic12) = yh1*rc12p;
|
||||
J(in14,in14) = -yh1*rn14p - yhe4*rn14a;
|
||||
J(in14,io16) = yo16*ro16p;
|
||||
|
||||
// o16 jacobian elements
|
||||
J(io16,ih1) = yn14*pfrac*rn14p - yo16*ro16p;
|
||||
J(io16,ihe4) = yc12*rc12a - yo16*ro16a;
|
||||
J(io16,ic12) = yhe4*rc12a - yo16*r1216;
|
||||
J(io16,in14) = yh1*pfrac*rn14p;
|
||||
J(io16,io16) = yh1*ro16p - yc12*r1216 -yhe4*ro16a;
|
||||
|
||||
// ne20 jacobian elements
|
||||
J(ine20,ihe4) = yn14*rn14a + yo16*ro16a - yne20*rne20a;
|
||||
J(ine20,ic12) = yc12*r1212;
|
||||
J(ine20,in14) = yhe4*rn14a;
|
||||
J(ine20,io16) = yo16*ro16a;
|
||||
J(ine20,ine20) = -yhe4*rne20a;
|
||||
|
||||
// mg24 jacobian elements
|
||||
J(img24,ihe4) = yne20*rne20a;
|
||||
J(img24,ic12) = yo16*r1216;
|
||||
J(img24,io16) = yc12*r1216;
|
||||
J(img24,ine20) = yhe4*rne20a;
|
||||
|
||||
// energy accounting
|
||||
for (int j=0; j<niso; j++) {
|
||||
for (int i=0; i<niso; i++) { J(iener,j) += J(i,j)*mion[i]; }
|
||||
J(iener,j) *= avo*clight*clight;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct ODE {
|
||||
|
||||
void operator() ( const vector_type &y, vector_type &dydt, double /* t */)
|
||||
{
|
||||
|
||||
// EOS
|
||||
double T=y[itemp];
|
||||
double den=y[iden];
|
||||
vec T9=get_T9_array(T);
|
||||
|
||||
// rates
|
||||
double rpp=den*pp_rate(T9);
|
||||
double r33=den*he3he3_rate(T9);
|
||||
double r34=den*he3he4_rate(T9);
|
||||
double r3a=den*den*triple_alpha_rate(T9);
|
||||
double rc12p=den*c12p_rate(T9);
|
||||
double rc12a=den*c12a_rate(T9);
|
||||
double rn14p=den*n14p_rate(T9);
|
||||
double rn14a=n14a_rate(T9);
|
||||
double ro16p=den*o16p_rate(T9);
|
||||
double ro16a=den*o16a_rate(T9);
|
||||
double rne20a=den*ne20a_rate(T9);
|
||||
double r1212=den*c12c12_rate(T9);
|
||||
double r1216=den*c12o16_rate(T9);
|
||||
|
||||
double pfrac=n15pg_frac(T9);
|
||||
double afrac=1-pfrac;
|
||||
|
||||
double yh1 = y[ ih1];
|
||||
double yhe3 = y[ ihe3];
|
||||
double yhe4 = y[ ihe4];
|
||||
double yc12 = y[ ic12];
|
||||
double yn14 = y[ in14];
|
||||
double yo16 = y[ io16];
|
||||
double yne20 = y[ine20];
|
||||
|
||||
dydt[ih1] = -1.5*yh1*yh1*rpp;
|
||||
dydt[ih1] += yhe3*yhe3*r33;
|
||||
dydt[ih1] += -yhe3*yhe4*r34;
|
||||
dydt[ih1] += -2*yh1*yc12*rc12p;
|
||||
dydt[ih1] += -2*yh1*yn14*rn14p;
|
||||
dydt[ih1] += -2*yh1*yo16*ro16p;
|
||||
|
||||
dydt[ihe3] = 0.5*yh1*yh1*rpp;
|
||||
dydt[ihe3] += -yhe3*yhe3*r33;
|
||||
dydt[ihe3] += -yhe3*yhe4*r34;
|
||||
|
||||
dydt[ihe4] = 0.5*yhe3*yhe3*r33;
|
||||
dydt[ihe4] += yhe3*yhe4*r34;
|
||||
dydt[ihe4] += -yhe4*yc12*rc12a;
|
||||
dydt[ihe4] += yh1*yn14*afrac*rn14p;
|
||||
dydt[ihe4] += yh1*yo16*ro16p;
|
||||
dydt[ihe4] += -0.5*yhe4*yhe4*yhe4*r3a;
|
||||
dydt[ihe4] += -yhe4*yo16*ro16a;
|
||||
dydt[ihe4] += 0.5*yc12*yc12*r1212;
|
||||
dydt[ihe4] += yc12*yo16*r1216;
|
||||
dydt[ihe4] += -yhe4*yne20*rne20a;
|
||||
|
||||
dydt[ic12] = (1./6.)*yhe4*yhe4*yhe4*r3a;
|
||||
dydt[ic12] += -yhe4*yc12*rc12a;
|
||||
dydt[ic12] += -yh1*yc12*rc12p;
|
||||
dydt[ic12] += yh1*yn14*afrac*rn14p;
|
||||
dydt[ic12] += -yc12*yc12*r1212;
|
||||
dydt[ic12] += -yc12*yo16*r1216;
|
||||
|
||||
dydt[in14] = yh1*yc12*rc12p;
|
||||
dydt[in14] += -yh1*yn14*rn14p;
|
||||
dydt[in14] += yh1*yo16*ro16p;
|
||||
dydt[in14] += -yhe4*yn14*rn14a;
|
||||
|
||||
dydt[io16] = yhe4*yc12*rc12a;
|
||||
dydt[io16] += yh1*yn14*pfrac*rn14p;
|
||||
dydt[io16] += -yh1*yo16*ro16p;
|
||||
dydt[io16] += -yc12*yo16*r1216;
|
||||
dydt[io16] += -yhe4*yo16*ro16a;
|
||||
|
||||
dydt[ine20] = 0.5*yc12*yc12*r1212;
|
||||
dydt[ine20] += yhe4*yn14*rn14a;
|
||||
dydt[ine20] += yhe4*yo16*ro16a;
|
||||
dydt[ine20] += -yhe4*yne20*rne20a;
|
||||
|
||||
dydt[img24] = yc12*yo16*r1216;
|
||||
dydt[img24] += yhe4*yne20*rne20a;
|
||||
|
||||
dydt[itemp] = 0.;
|
||||
dydt[iden] = 0.;
|
||||
|
||||
// energy accounting
|
||||
double enuc = 0.;
|
||||
for (int i=0; i<niso; i++) { enuc += mion[i]*dydt[i]; }
|
||||
dydt[iener] = enuc*avo*clight*clight;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// main program
|
||||
|
||||
|
||||
int main() {
|
||||
|
||||
vector_type y(nvar,0.);
|
||||
|
||||
// initialize the system using a solar composition;
|
||||
// initial temp is 10^7 K and density is 100 g/cc
|
||||
y[ih1]= 0.708;
|
||||
y[ihe3]=2.94e-5;
|
||||
y[ihe4]=0.276;
|
||||
y[ic12]=0.003;
|
||||
y[in14]=0.0011;
|
||||
y[io16]=9.62e-3;
|
||||
y[ine20]=1.62e-3;
|
||||
y[img24]=5.16e-4;
|
||||
|
||||
y[itemp]=1e7;
|
||||
y[iden]=1e2;
|
||||
y[iener]=0.0;
|
||||
|
||||
// set duration and initial step size; solvers will adjust
|
||||
double tmax=3.15e17;
|
||||
double dt0=1e10;
|
||||
|
||||
//converts mass fraction to number fraction
|
||||
double ysum=0;
|
||||
for (int i=0; i < niso; i++) {
|
||||
y[i] /= aion[i];
|
||||
ysum+= y[i];
|
||||
}
|
||||
for (int i=0; i < niso; i++) {y[i] /= ysum;}
|
||||
|
||||
|
||||
|
||||
int stiff=0; // 1 means use Rosenbrock implicit method;
|
||||
// 0 means use explicit 5th order Dormand-Prince Runge-Kutta
|
||||
|
||||
size_t num_of_steps=0;
|
||||
if ( stiff ) {
|
||||
std::cout << " *** Implicit Rosenbrock method *** " << std::endl;
|
||||
|
||||
num_of_steps = integrate_const( make_dense_output<rosenbrock4<double>>(1.0e-6,1.0e-6) ,
|
||||
std::make_pair( ODE(), Jacobian() ), y, 0.0, tmax, dt0);
|
||||
|
||||
} else {
|
||||
std::cout << " *** Explicit RK Dormand-Prince *** " << std::endl;
|
||||
|
||||
num_of_steps = integrate_const( make_dense_output<runge_kutta_dopri5<vector_type>>(1.0e-6, 1.0e-6),
|
||||
ODE(), y, 0.0, tmax, dt0);
|
||||
|
||||
}
|
||||
|
||||
//convert number fraction to mass fraction
|
||||
ysum=0;
|
||||
for (int i=0; i < niso; i++) {
|
||||
y[i] *= aion[i];
|
||||
ysum+= y[i];
|
||||
}
|
||||
for (int i=0; i < niso; i++) {y[i] /= ysum;}
|
||||
|
||||
std::cout << " H1: " << y[ih1] << std::endl;
|
||||
std::cout << " He4: " << y[ihe4] << std::endl;
|
||||
std::cout << "energy: " << y[iener] << std::endl;
|
||||
std::cout << " steps: " << num_of_steps << std::endl;
|
||||
return 0;
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user