feat(priming): Priming now uses solver to initialize species abundances

Instead of a complex system of identifying dominate channels and
approximating abundances based on that, priming now simply ignites a
basic network at 1e7K for 1e-15s. This is an effective approach to prime
relevant species while being short enough to not change the abundance of
any fuel species.
This commit is contained in:
2025-11-14 10:55:03 -05:00
parent a9ef20f664
commit 5fd42db394
3 changed files with 106 additions and 376 deletions

View File

@@ -3,317 +3,79 @@
#include "fourdst/atomic/species.h"
#include "fourdst/composition/utils.h"
#include "gridfire/engine/views/engine_priming.h"
#include "gridfire/engine/procedures/construction.h"
#include "gridfire/solver/solver.h"
#include "gridfire/engine/engine_abstract.h"
#include "gridfire/network.h"
#include "gridfire/exceptions/error_solver.h"
#include "fourdst/logging/logging.h"
#include "gridfire/solver/strategies/CVODE_solver_strategy.h"
#include "quill/Logger.h"
#include "quill/LogMacros.h"
namespace {
bool isReactionIgnorable(
const gridfire::reaction::Reaction& reaction,
const std::optional<std::vector<gridfire::reaction::ReactionType>>& reactionsTypesToIgnore
) {
if (reactionsTypesToIgnore.has_value()) {
for (const auto& type : reactionsTypesToIgnore.value()) {
if (reaction.type() == type) {
return true;
}
}
}
return false;
}
}
namespace gridfire {
using fourdst::composition::Composition;
using fourdst::atomic::Species;
const reaction::Reaction* findDominantCreationChannel (
const DynamicEngine& engine,
const Species& species,
const Composition &comp,
const double T9,
const double rho,
const std::optional<std::vector<reaction::ReactionType>> &reactionsTypesToIgnore
) {
const reaction::Reaction* dominateReaction = nullptr;
double maxFlow = -1.0;
for (const auto& reaction : engine.getNetworkReactions()) {
if (isReactionIgnorable(*reaction, reactionsTypesToIgnore)) continue;
if (reaction->contains(species) && reaction->stoichiometry(species) > 0) {
const double flow = engine.calculateMolarReactionFlow(*reaction, comp, T9, rho);
if (flow > maxFlow) {
maxFlow = flow;
dominateReaction = reaction.get();
}
}
}
return dominateReaction;
}
/**
* @brief Primes absent species in the network to their equilibrium abundances using a robust, two-stage approach.
*
* @details This function implements a robust network priming algorithm that avoids the pitfalls of
* sequential, one-by-one priming. The previous, brittle method could allow an early priming
* reaction to consume all of a shared reactant, starving later reactions. This new, two-stage
* method ensures that all priming reactions are considered collectively, competing for the
* same limited pool of initial reactants in a physically consistent manner.
*
* The algorithm proceeds in three main stages:
* 1. **Calculation Stage:** It first loops through all species that need priming. For each one,
* it calculates its theoretical equilibrium mass fraction and identifies the dominant
* creation channel. Crucially, it *does not* modify any abundances at this stage. Instead,
* it stores these calculations as a list of "mass transfer requests".
*
* 2. **Collective Scaling Stage:** It then processes the full list of requests to determine the
* total "debit" required from each reactant. By comparing these total debits to the
* initially available mass of each reactant, it calculates a single, global `scalingFactor`.
* If any reactant is overdrawn, this factor will be less than 1.0, ensuring that no
* reactant's abundance can go negative.
*
* 3. **Application Stage:** Finally, it loops through the requests again, applying the mass
* transfers. Each calculated equilibrium mass fraction and corresponding reactant debit is
* multiplied by the global `scalingFactor` before being applied to the final composition.
* This ensures that if resources are limited, all primed species are scaled down proportionally.
*
* @param netIn Input network data containing initial composition, temperature, and density.
* @param engine DynamicEngine used to build and evaluate the reaction network.
* @param ignoredReactionTypes Types of reactions to ignore during priming (e.g., weak reactions).
* @return PrimingReport encapsulating the results of the priming operation, including the new
* robustly primed composition.
*/
PrimingReport primeNetwork(
const NetIn& netIn,
GraphEngine& engine,
const std::optional<std::vector<reaction::ReactionType>>& ignoredReactionTypes
const NetIn& netIn,
GraphEngine& engine,
const std::optional<std::vector<reaction::ReactionType>>& ignoredReactionTypes
) {
auto logger = LogManager::getInstance().getLogger("log");
const auto logger = LogManager::getInstance().getLogger("log");
solver::CVODESolverStrategy integrator(engine);
integrator.set_stdout_logging_enabled(false);
NetIn solverInput(netIn);
// --- Initial Setup ---
// Identify all species with zero initial abundance that need to be primed.
std::vector<Species> speciesToPrime;
for (const auto &[sp, y]: netIn.composition) {
if (y == 0.0) {
speciesToPrime.push_back(sp);
}
}
solverInput.tMax = 1e-15;
solverInput.temperature = 1e7;
// Sort priming species by mass number, lightest to heaviest.
std::ranges::sort(speciesToPrime, [](const Species& a, const Species& b) {
return a.mass() < b.mass();
});
LOG_DEBUG(logger, "Priming {} species in the network.", speciesToPrime.size());
// If no species need priming, return immediately.
LOG_INFO(logger, "Short timescale ({}) network ignition started.", solverInput.tMax);
PrimingReport report;
if (speciesToPrime.empty()) {
report.primedComposition = netIn.composition;
report.success = true;
report.status = PrimingReportStatus::NO_SPECIES_TO_PRIME;
return report;
}
const double T9 = netIn.temperature / 1e9;
const double rho = netIn.density;
const auto initialReactionSet = engine.getNetworkReactions();
report.status = PrimingReportStatus::FULL_SUCCESS;
report.success = true;
// Build full set of species
std::set<Species> allSpecies;
for (const auto &sp: netIn.composition | std::views::keys) {
allSpecies.insert(sp);
}
for (const auto& sp : speciesToPrime) {
allSpecies.insert(sp);
}
// Rebuild the engine with the full network to ensure all possible creation channels are available.
engine.rebuild(netIn.composition, NetworkBuildDepth::Full);
// Initialize mutable molar abundances for all species
std::map<Species, double> molarAbundances;
for (const auto& sp : allSpecies) {
molarAbundances[sp] = netIn.composition.contains(sp) ? netIn.composition.getMolarAbundance(sp) : 0.0;
}
// --- Prime Each Species ---
// Since molar abundances are independent, we can directly calculate and apply changes
std::unordered_map<Species, double> totalMolarAbundanceChanges;
for (const auto& primingSpecies : speciesToPrime) {
// Create a temporary composition reflecting the current state for rate calculations.
Composition tempComp(allSpecies);
for (const auto& [sp, abundance] : molarAbundances) {
tempComp.setMolarAbundance(sp, abundance);
}
NetworkPrimingEngineView primer(primingSpecies, engine);
if (primer.getNetworkReactions().size() == 0) {
LOG_ERROR(logger, "No priming reactions found for species {}.", primingSpecies.name());
report.success = false;
report.status = PrimingReportStatus::FAILED_TO_FIND_PRIMING_REACTIONS;
continue;
}
const double destructionRateConstant = calculateDestructionRateConstant(
primer,
primingSpecies,
tempComp,
T9,
rho,
ignoredReactionTypes
try {
const NetOut netOut = integrator.evaluate(solverInput, false);
LOG_INFO(logger, "Network ignition completed.");
LOG_TRACE_L2(
logger,
"After ignition composition is {}",
[netOut, netIn]() -> std::string {
std::stringstream ss;
size_t i = 0;
for (const auto& [species, abundance] : netOut.composition) {
ss << species.name() << ": " << abundance << " (prior: " << netIn.composition.getMolarAbundance(species);
ss << ", fractional change: " << (abundance - netIn.composition.getMolarAbundance(species)) / netIn.composition.getMolarAbundance(species) * 100.0 << "%)";
if (i < netOut.composition.size() - 1) {
ss << ", ";
}
++i;
}
return ss.str();
}()
);
double equilibriumMolarAbundance = 0.0;
std::vector<Species> reactants;
if (destructionRateConstant > 1e-99) {
const double creationRate = calculateCreationRate(
primer,
primingSpecies,
tempComp,
T9,
rho,
ignoredReactionTypes
);
// Equilibrium: creation rate = destruction rate constant * molar abundance
equilibriumMolarAbundance = creationRate / destructionRateConstant;
if (std::isnan(equilibriumMolarAbundance)) {
equilibriumMolarAbundance = 0.0;
report.primedComposition = netOut.composition;
std::unordered_set<Species> unprimedSpecies;
double minAbundance = std::numeric_limits<double>::max();
for (const auto& [sp, y] : report.primedComposition) {
if (y == 0) {
unprimedSpecies.insert(sp);
}
if (const reaction::Reaction* dominantChannel = findDominantCreationChannel(
primer,
primingSpecies,
tempComp,
T9,
rho,
ignoredReactionTypes)
) {
reactants = dominantChannel->reactants();
} else {
LOG_TRACE_L1(logger, "Failed to find dominant creation channel for {}.", primingSpecies.name());
report.status = PrimingReportStatus::FAILED_TO_FIND_CREATION_CHANNEL;
reactants.clear(); // Use fallback
}
} else {
LOG_TRACE_L2(logger, "No destruction channel found for {}. Using fallback abundance.", primingSpecies.name());
// For species with no destruction, use a tiny fallback abundance
equilibriumMolarAbundance = 1e-40;
}
// Add the equilibrium molar abundance to the primed species
molarAbundances.at(primingSpecies) += equilibriumMolarAbundance;
totalMolarAbundanceChanges[primingSpecies] += equilibriumMolarAbundance;
// Subtract from reactants proportionally to their stoichiometry
if (!reactants.empty()) {
const double totalStoichiometry = static_cast<double>(reactants.size());
const double abundancePerReactant = equilibriumMolarAbundance / totalStoichiometry;
for (const auto& reactant : reactants) {
LOG_TRACE_L1(logger, "Transferring {:.4e} molar abundance from {} to {} during priming.",
abundancePerReactant, reactant.name(), primingSpecies.name());
if (!molarAbundances.contains(reactant)) {
continue;
}
molarAbundances.at(reactant) -= abundancePerReactant;
totalMolarAbundanceChanges[reactant] -= abundancePerReactant;
// Ensure non-negative abundances
if (molarAbundances.at(reactant) < 0.0) {
LOG_WARNING(logger, "Species {} went negative during priming. Clamping to zero.", reactant.name());
totalMolarAbundanceChanges[reactant] += molarAbundances.at(reactant); // Adjust change to reflect clamp
molarAbundances.at(reactant) = 0.0;
}
if (y != 0 && y < minAbundance) {
minAbundance = y;
}
}
double abundanceForUnprimedSpecies = minAbundance / 1e10;
for (const auto& sp : unprimedSpecies) {
LOG_TRACE_L1(logger, "Clamping Species {}: initial abundance {}, primed abundance {} to {}", sp.name(), netIn.composition.getMolarAbundance(sp), report.primedComposition.getMolarAbundance(sp), abundanceForUnprimedSpecies);
report.primedComposition.setMolarAbundance(sp, abundanceForUnprimedSpecies);
}
report.success = true;
report.status = PrimingReportStatus::SUCCESS;
} catch (const exceptions::SolverError& e) {
LOG_ERROR(logger, "Failed to prime network: solver failure encountered: {}", e.what());
std::rethrow_exception(std::current_exception());
}
// --- Final Composition Construction ---
std::vector<Species> final_species;
std::vector<double> final_molar_abundances;
for (const auto& [species, abundance] : molarAbundances) {
final_species.emplace_back(species);
final_molar_abundances.push_back(std::max(0.0, abundance));
LOG_TRACE_L1(logger, "After priming, species {} has molar abundance {:.4e} (had {:0.4e} prior to priming).",
species.name(),
std::max(0.0, abundance),
netIn.composition.getMolarAbundance(species));
}
Composition primedComposition(final_species, final_molar_abundances);
report.primedComposition = primedComposition;
// Convert molar abundance changes to mass fraction changes for reporting
for (const auto& [species, molarChange] : totalMolarAbundanceChanges) {
double massFractionChange = molarChange * species.mass();
report.massFractionChanges.emplace_back(species, massFractionChange);
}
// Restore the engine to its original, smaller network state.
engine.setNetworkReactions(initialReactionSet);
return report;
}
double calculateDestructionRateConstant(
const DynamicEngine& engine,
const Species& species,
const Composition& composition,
const double T9,
const double rho,
const std::optional<std::vector<reaction::ReactionType>> &reactionTypesToIgnore
) {
Composition unrestrictedComp(composition);
unrestrictedComp.setMolarAbundance(species, 1.0);
double destructionRateConstant = 0.0;
for (const auto& reaction: engine.getNetworkReactions()) {
if (isReactionIgnorable(*reaction, reactionTypesToIgnore)) continue;
const int stoichiometry = reaction->stoichiometry(species);
if (stoichiometry < 0) {
destructionRateConstant += std::abs(stoichiometry) * engine.calculateMolarReactionFlow(*reaction, unrestrictedComp, T9, rho);
}
}
return destructionRateConstant;
}
double calculateCreationRate(
const DynamicEngine& engine,
const Species& species,
const Composition& composition,
const double T9,
const double rho,
const std::optional<std::vector<reaction::ReactionType>> &reactionTypesToIgnore
) {
double creationRate = 0.0;
for (const auto& reaction: engine.getNetworkReactions()) {
if (isReactionIgnorable(*reaction, reactionTypesToIgnore)) continue;
const int stoichiometry = reaction->stoichiometry(species);
if (stoichiometry > 0) {
creationRate += stoichiometry * engine.calculateMolarReactionFlow(*reaction, composition, T9, rho);
}
}
return creationRate;
}
}