feat(priming): Priming now uses solver to initialize species abundances
Instead of a complex system of identifying dominate channels and approximating abundances based on that, priming now simply ignites a basic network at 1e7K for 1e-15s. This is an effective approach to prime relevant species while being short enough to not change the abundance of any fuel species.
This commit is contained in:
@@ -3,317 +3,79 @@
|
||||
#include "fourdst/atomic/species.h"
|
||||
#include "fourdst/composition/utils.h"
|
||||
#include "gridfire/engine/views/engine_priming.h"
|
||||
#include "gridfire/engine/procedures/construction.h"
|
||||
#include "gridfire/solver/solver.h"
|
||||
|
||||
#include "gridfire/engine/engine_abstract.h"
|
||||
#include "gridfire/network.h"
|
||||
#include "gridfire/exceptions/error_solver.h"
|
||||
|
||||
#include "fourdst/logging/logging.h"
|
||||
#include "gridfire/solver/strategies/CVODE_solver_strategy.h"
|
||||
#include "quill/Logger.h"
|
||||
#include "quill/LogMacros.h"
|
||||
|
||||
namespace {
|
||||
bool isReactionIgnorable(
|
||||
const gridfire::reaction::Reaction& reaction,
|
||||
const std::optional<std::vector<gridfire::reaction::ReactionType>>& reactionsTypesToIgnore
|
||||
) {
|
||||
if (reactionsTypesToIgnore.has_value()) {
|
||||
for (const auto& type : reactionsTypesToIgnore.value()) {
|
||||
if (reaction.type() == type) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
namespace gridfire {
|
||||
using fourdst::composition::Composition;
|
||||
using fourdst::atomic::Species;
|
||||
|
||||
const reaction::Reaction* findDominantCreationChannel (
|
||||
const DynamicEngine& engine,
|
||||
const Species& species,
|
||||
const Composition &comp,
|
||||
const double T9,
|
||||
const double rho,
|
||||
const std::optional<std::vector<reaction::ReactionType>> &reactionsTypesToIgnore
|
||||
) {
|
||||
const reaction::Reaction* dominateReaction = nullptr;
|
||||
double maxFlow = -1.0;
|
||||
for (const auto& reaction : engine.getNetworkReactions()) {
|
||||
if (isReactionIgnorable(*reaction, reactionsTypesToIgnore)) continue;
|
||||
|
||||
if (reaction->contains(species) && reaction->stoichiometry(species) > 0) {
|
||||
const double flow = engine.calculateMolarReactionFlow(*reaction, comp, T9, rho);
|
||||
if (flow > maxFlow) {
|
||||
maxFlow = flow;
|
||||
dominateReaction = reaction.get();
|
||||
}
|
||||
}
|
||||
}
|
||||
return dominateReaction;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Primes absent species in the network to their equilibrium abundances using a robust, two-stage approach.
|
||||
*
|
||||
* @details This function implements a robust network priming algorithm that avoids the pitfalls of
|
||||
* sequential, one-by-one priming. The previous, brittle method could allow an early priming
|
||||
* reaction to consume all of a shared reactant, starving later reactions. This new, two-stage
|
||||
* method ensures that all priming reactions are considered collectively, competing for the
|
||||
* same limited pool of initial reactants in a physically consistent manner.
|
||||
*
|
||||
* The algorithm proceeds in three main stages:
|
||||
* 1. **Calculation Stage:** It first loops through all species that need priming. For each one,
|
||||
* it calculates its theoretical equilibrium mass fraction and identifies the dominant
|
||||
* creation channel. Crucially, it *does not* modify any abundances at this stage. Instead,
|
||||
* it stores these calculations as a list of "mass transfer requests".
|
||||
*
|
||||
* 2. **Collective Scaling Stage:** It then processes the full list of requests to determine the
|
||||
* total "debit" required from each reactant. By comparing these total debits to the
|
||||
* initially available mass of each reactant, it calculates a single, global `scalingFactor`.
|
||||
* If any reactant is overdrawn, this factor will be less than 1.0, ensuring that no
|
||||
* reactant's abundance can go negative.
|
||||
*
|
||||
* 3. **Application Stage:** Finally, it loops through the requests again, applying the mass
|
||||
* transfers. Each calculated equilibrium mass fraction and corresponding reactant debit is
|
||||
* multiplied by the global `scalingFactor` before being applied to the final composition.
|
||||
* This ensures that if resources are limited, all primed species are scaled down proportionally.
|
||||
*
|
||||
* @param netIn Input network data containing initial composition, temperature, and density.
|
||||
* @param engine DynamicEngine used to build and evaluate the reaction network.
|
||||
* @param ignoredReactionTypes Types of reactions to ignore during priming (e.g., weak reactions).
|
||||
* @return PrimingReport encapsulating the results of the priming operation, including the new
|
||||
* robustly primed composition.
|
||||
*/
|
||||
PrimingReport primeNetwork(
|
||||
const NetIn& netIn,
|
||||
GraphEngine& engine,
|
||||
const std::optional<std::vector<reaction::ReactionType>>& ignoredReactionTypes
|
||||
const NetIn& netIn,
|
||||
GraphEngine& engine,
|
||||
const std::optional<std::vector<reaction::ReactionType>>& ignoredReactionTypes
|
||||
) {
|
||||
auto logger = LogManager::getInstance().getLogger("log");
|
||||
const auto logger = LogManager::getInstance().getLogger("log");
|
||||
solver::CVODESolverStrategy integrator(engine);
|
||||
integrator.set_stdout_logging_enabled(false);
|
||||
NetIn solverInput(netIn);
|
||||
|
||||
// --- Initial Setup ---
|
||||
// Identify all species with zero initial abundance that need to be primed.
|
||||
std::vector<Species> speciesToPrime;
|
||||
for (const auto &[sp, y]: netIn.composition) {
|
||||
if (y == 0.0) {
|
||||
speciesToPrime.push_back(sp);
|
||||
}
|
||||
}
|
||||
solverInput.tMax = 1e-15;
|
||||
solverInput.temperature = 1e7;
|
||||
|
||||
// Sort priming species by mass number, lightest to heaviest.
|
||||
std::ranges::sort(speciesToPrime, [](const Species& a, const Species& b) {
|
||||
return a.mass() < b.mass();
|
||||
});
|
||||
|
||||
LOG_DEBUG(logger, "Priming {} species in the network.", speciesToPrime.size());
|
||||
|
||||
// If no species need priming, return immediately.
|
||||
LOG_INFO(logger, "Short timescale ({}) network ignition started.", solverInput.tMax);
|
||||
PrimingReport report;
|
||||
if (speciesToPrime.empty()) {
|
||||
report.primedComposition = netIn.composition;
|
||||
report.success = true;
|
||||
report.status = PrimingReportStatus::NO_SPECIES_TO_PRIME;
|
||||
return report;
|
||||
}
|
||||
|
||||
const double T9 = netIn.temperature / 1e9;
|
||||
const double rho = netIn.density;
|
||||
const auto initialReactionSet = engine.getNetworkReactions();
|
||||
|
||||
report.status = PrimingReportStatus::FULL_SUCCESS;
|
||||
report.success = true;
|
||||
|
||||
// Build full set of species
|
||||
std::set<Species> allSpecies;
|
||||
for (const auto &sp: netIn.composition | std::views::keys) {
|
||||
allSpecies.insert(sp);
|
||||
}
|
||||
for (const auto& sp : speciesToPrime) {
|
||||
allSpecies.insert(sp);
|
||||
}
|
||||
|
||||
// Rebuild the engine with the full network to ensure all possible creation channels are available.
|
||||
engine.rebuild(netIn.composition, NetworkBuildDepth::Full);
|
||||
|
||||
// Initialize mutable molar abundances for all species
|
||||
std::map<Species, double> molarAbundances;
|
||||
for (const auto& sp : allSpecies) {
|
||||
molarAbundances[sp] = netIn.composition.contains(sp) ? netIn.composition.getMolarAbundance(sp) : 0.0;
|
||||
}
|
||||
|
||||
// --- Prime Each Species ---
|
||||
// Since molar abundances are independent, we can directly calculate and apply changes
|
||||
std::unordered_map<Species, double> totalMolarAbundanceChanges;
|
||||
|
||||
for (const auto& primingSpecies : speciesToPrime) {
|
||||
// Create a temporary composition reflecting the current state for rate calculations.
|
||||
Composition tempComp(allSpecies);
|
||||
for (const auto& [sp, abundance] : molarAbundances) {
|
||||
tempComp.setMolarAbundance(sp, abundance);
|
||||
}
|
||||
|
||||
NetworkPrimingEngineView primer(primingSpecies, engine);
|
||||
if (primer.getNetworkReactions().size() == 0) {
|
||||
LOG_ERROR(logger, "No priming reactions found for species {}.", primingSpecies.name());
|
||||
report.success = false;
|
||||
report.status = PrimingReportStatus::FAILED_TO_FIND_PRIMING_REACTIONS;
|
||||
continue;
|
||||
}
|
||||
|
||||
const double destructionRateConstant = calculateDestructionRateConstant(
|
||||
primer,
|
||||
primingSpecies,
|
||||
tempComp,
|
||||
T9,
|
||||
rho,
|
||||
ignoredReactionTypes
|
||||
try {
|
||||
const NetOut netOut = integrator.evaluate(solverInput, false);
|
||||
LOG_INFO(logger, "Network ignition completed.");
|
||||
LOG_TRACE_L2(
|
||||
logger,
|
||||
"After ignition composition is {}",
|
||||
[netOut, netIn]() -> std::string {
|
||||
std::stringstream ss;
|
||||
size_t i = 0;
|
||||
for (const auto& [species, abundance] : netOut.composition) {
|
||||
ss << species.name() << ": " << abundance << " (prior: " << netIn.composition.getMolarAbundance(species);
|
||||
ss << ", fractional change: " << (abundance - netIn.composition.getMolarAbundance(species)) / netIn.composition.getMolarAbundance(species) * 100.0 << "%)";
|
||||
if (i < netOut.composition.size() - 1) {
|
||||
ss << ", ";
|
||||
}
|
||||
++i;
|
||||
}
|
||||
return ss.str();
|
||||
}()
|
||||
);
|
||||
|
||||
double equilibriumMolarAbundance = 0.0;
|
||||
std::vector<Species> reactants;
|
||||
|
||||
if (destructionRateConstant > 1e-99) {
|
||||
const double creationRate = calculateCreationRate(
|
||||
primer,
|
||||
primingSpecies,
|
||||
tempComp,
|
||||
T9,
|
||||
rho,
|
||||
ignoredReactionTypes
|
||||
);
|
||||
|
||||
// Equilibrium: creation rate = destruction rate constant * molar abundance
|
||||
equilibriumMolarAbundance = creationRate / destructionRateConstant;
|
||||
|
||||
if (std::isnan(equilibriumMolarAbundance)) {
|
||||
equilibriumMolarAbundance = 0.0;
|
||||
report.primedComposition = netOut.composition;
|
||||
std::unordered_set<Species> unprimedSpecies;
|
||||
double minAbundance = std::numeric_limits<double>::max();
|
||||
for (const auto& [sp, y] : report.primedComposition) {
|
||||
if (y == 0) {
|
||||
unprimedSpecies.insert(sp);
|
||||
}
|
||||
|
||||
if (const reaction::Reaction* dominantChannel = findDominantCreationChannel(
|
||||
primer,
|
||||
primingSpecies,
|
||||
tempComp,
|
||||
T9,
|
||||
rho,
|
||||
ignoredReactionTypes)
|
||||
) {
|
||||
reactants = dominantChannel->reactants();
|
||||
} else {
|
||||
LOG_TRACE_L1(logger, "Failed to find dominant creation channel for {}.", primingSpecies.name());
|
||||
report.status = PrimingReportStatus::FAILED_TO_FIND_CREATION_CHANNEL;
|
||||
reactants.clear(); // Use fallback
|
||||
}
|
||||
} else {
|
||||
LOG_TRACE_L2(logger, "No destruction channel found for {}. Using fallback abundance.", primingSpecies.name());
|
||||
// For species with no destruction, use a tiny fallback abundance
|
||||
equilibriumMolarAbundance = 1e-40;
|
||||
}
|
||||
|
||||
// Add the equilibrium molar abundance to the primed species
|
||||
molarAbundances.at(primingSpecies) += equilibriumMolarAbundance;
|
||||
totalMolarAbundanceChanges[primingSpecies] += equilibriumMolarAbundance;
|
||||
|
||||
// Subtract from reactants proportionally to their stoichiometry
|
||||
if (!reactants.empty()) {
|
||||
const double totalStoichiometry = static_cast<double>(reactants.size());
|
||||
const double abundancePerReactant = equilibriumMolarAbundance / totalStoichiometry;
|
||||
|
||||
for (const auto& reactant : reactants) {
|
||||
LOG_TRACE_L1(logger, "Transferring {:.4e} molar abundance from {} to {} during priming.",
|
||||
abundancePerReactant, reactant.name(), primingSpecies.name());
|
||||
|
||||
if (!molarAbundances.contains(reactant)) {
|
||||
continue;
|
||||
}
|
||||
molarAbundances.at(reactant) -= abundancePerReactant;
|
||||
totalMolarAbundanceChanges[reactant] -= abundancePerReactant;
|
||||
|
||||
// Ensure non-negative abundances
|
||||
if (molarAbundances.at(reactant) < 0.0) {
|
||||
LOG_WARNING(logger, "Species {} went negative during priming. Clamping to zero.", reactant.name());
|
||||
totalMolarAbundanceChanges[reactant] += molarAbundances.at(reactant); // Adjust change to reflect clamp
|
||||
molarAbundances.at(reactant) = 0.0;
|
||||
}
|
||||
if (y != 0 && y < minAbundance) {
|
||||
minAbundance = y;
|
||||
}
|
||||
}
|
||||
double abundanceForUnprimedSpecies = minAbundance / 1e10;
|
||||
for (const auto& sp : unprimedSpecies) {
|
||||
LOG_TRACE_L1(logger, "Clamping Species {}: initial abundance {}, primed abundance {} to {}", sp.name(), netIn.composition.getMolarAbundance(sp), report.primedComposition.getMolarAbundance(sp), abundanceForUnprimedSpecies);
|
||||
report.primedComposition.setMolarAbundance(sp, abundanceForUnprimedSpecies);
|
||||
}
|
||||
report.success = true;
|
||||
report.status = PrimingReportStatus::SUCCESS;
|
||||
} catch (const exceptions::SolverError& e) {
|
||||
LOG_ERROR(logger, "Failed to prime network: solver failure encountered: {}", e.what());
|
||||
std::rethrow_exception(std::current_exception());
|
||||
}
|
||||
|
||||
// --- Final Composition Construction ---
|
||||
std::vector<Species> final_species;
|
||||
std::vector<double> final_molar_abundances;
|
||||
|
||||
for (const auto& [species, abundance] : molarAbundances) {
|
||||
final_species.emplace_back(species);
|
||||
final_molar_abundances.push_back(std::max(0.0, abundance));
|
||||
|
||||
LOG_TRACE_L1(logger, "After priming, species {} has molar abundance {:.4e} (had {:0.4e} prior to priming).",
|
||||
species.name(),
|
||||
std::max(0.0, abundance),
|
||||
netIn.composition.getMolarAbundance(species));
|
||||
}
|
||||
|
||||
Composition primedComposition(final_species, final_molar_abundances);
|
||||
|
||||
report.primedComposition = primedComposition;
|
||||
|
||||
// Convert molar abundance changes to mass fraction changes for reporting
|
||||
for (const auto& [species, molarChange] : totalMolarAbundanceChanges) {
|
||||
double massFractionChange = molarChange * species.mass();
|
||||
report.massFractionChanges.emplace_back(species, massFractionChange);
|
||||
}
|
||||
|
||||
// Restore the engine to its original, smaller network state.
|
||||
engine.setNetworkReactions(initialReactionSet);
|
||||
|
||||
return report;
|
||||
}
|
||||
|
||||
double calculateDestructionRateConstant(
|
||||
const DynamicEngine& engine,
|
||||
const Species& species,
|
||||
const Composition& composition,
|
||||
const double T9,
|
||||
const double rho,
|
||||
const std::optional<std::vector<reaction::ReactionType>> &reactionTypesToIgnore
|
||||
) {
|
||||
Composition unrestrictedComp(composition);
|
||||
unrestrictedComp.setMolarAbundance(species, 1.0);
|
||||
double destructionRateConstant = 0.0;
|
||||
for (const auto& reaction: engine.getNetworkReactions()) {
|
||||
if (isReactionIgnorable(*reaction, reactionTypesToIgnore)) continue;
|
||||
|
||||
const int stoichiometry = reaction->stoichiometry(species);
|
||||
if (stoichiometry < 0) {
|
||||
destructionRateConstant += std::abs(stoichiometry) * engine.calculateMolarReactionFlow(*reaction, unrestrictedComp, T9, rho);
|
||||
}
|
||||
}
|
||||
return destructionRateConstant;
|
||||
}
|
||||
|
||||
double calculateCreationRate(
|
||||
const DynamicEngine& engine,
|
||||
const Species& species,
|
||||
const Composition& composition,
|
||||
const double T9,
|
||||
const double rho,
|
||||
const std::optional<std::vector<reaction::ReactionType>> &reactionTypesToIgnore
|
||||
) {
|
||||
double creationRate = 0.0;
|
||||
for (const auto& reaction: engine.getNetworkReactions()) {
|
||||
if (isReactionIgnorable(*reaction, reactionTypesToIgnore)) continue;
|
||||
|
||||
const int stoichiometry = reaction->stoichiometry(species);
|
||||
if (stoichiometry > 0) {
|
||||
creationRate += stoichiometry * engine.calculateMolarReactionFlow(*reaction, composition, T9, rho);
|
||||
}
|
||||
}
|
||||
return creationRate;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user