diff --git a/src/network/meson.build b/src/network/meson.build index 72f5bd1e..2add6361 100644 --- a/src/network/meson.build +++ b/src/network/meson.build @@ -1,15 +1,21 @@ # Define the library network_sources = files( 'private/network.cpp', + 'private/approx8.cpp' ) network_headers = files( - 'public/network.h' + 'public/network.h', + 'public/approx8.h' ) dependencies = [ boost_dep, - const_dep + const_dep, + quill_dep, + mfem_dep, + config_dep, + probe_dep ] # Define the libnetwork library so it can be linked against by other parts of the build system diff --git a/src/network/private/approx8.cpp b/src/network/private/approx8.cpp new file mode 100644 index 00000000..ec0abc80 --- /dev/null +++ b/src/network/private/approx8.cpp @@ -0,0 +1,525 @@ +#include +#include +#include + +#include +#include +#include + +#include "const.h" +#include "config.h" +#include "quill/LogMacros.h" + +#include "approx8.h" +#include "network.h" + +/* Nuclear reaction network in cgs units based on Frank Timmes' "aprox8". + At this time it does neither screening nor neutrino losses. It includes + the following 8 isotopes: + + h1 + he3 + he4 + c12 + n14 + o16 + ne20 + mg24 + + and the following nuclear reactions: + + ---pp chain--- + p(p,e+)d + d(p,g)he3 + he3(he3,2p)he4 + + ---CNO cycle--- + c12(p,g)n13 - n13 -> c13 + p -> n14 + n14(p,g)o15 - o15 + p -> c12 + he4 + n14(a,g)f18 - proceeds to ne20 + n15(p,a)c12 - / these two n15 reactions are \ CNO I + n15(p,g)o16 - \ used to calculate a fraction / CNO II + o16(p,g)f17 - f17 + e -> o17 and then o17 + p -> n14 + he4 + + ---alpha captures--- + c12(a,g)o16 + triple alpha + o16(a,g)ne20 + ne20(a,g)mg24 + c12(c12,a)ne20 + c12(o16,a)mg24 + +At present the rates are all evaluated using a fitting function. +The coefficients to the fit are from reaclib.jinaweb.org . + +*/ + +namespace nnApprox8{ + + // using namespace std; + using namespace boost::numeric::odeint; + + //helper functions + // a function to multilpy two arrays and then sum the resulting elements: sum(a*b) + double sum_product( const vec7 &a, const vec7 &b){ + if (a.size() != b.size()) { + throw std::runtime_error("Error: array size mismatch in sum_product"); + } + + double sum=0; + for (size_t i=0; i < a.size(); i++) { + sum += a[i] * b[i]; + } + return sum; + } + + // the fit to the nuclear reaction rates is of the form: + // exp( a0 + a1/T9 + a2/T9^(1/3) + a3*T9^(1/3) + a4*T9 + a5*T9^(5/3) + log(T9) ) + // this function returns an array of the T9 terms in that order, where T9 is the temperatures in GigaKelvin + vec7 get_T9_array(const double &T) { + vec7 arr; + double T9=1e-9*T; + double T913=pow(T9,1./3.); + + arr[0]=1; + arr[1]=1/T9; + arr[2]=1/T913; + arr[3]=T913; + arr[4]=T9; + arr[5]=pow(T9,5./3.); + arr[6]=log(T9); + + return arr; + } + + // this function uses the two preceding functions to evaluate the rate given the T9 array and the coefficients + double rate_fit(const vec7 &T9, const vec7 &coef){ + return exp(sum_product(T9,coef)); + } + + // p + p -> d; this, like some of the other rates, this is a composite of multiple fits + double pp_rate(const vec7 &T9) { + vec7 a1 = {-34.78630, 0,-3.511930, 3.100860, -0.1983140, 1.262510e-2, -1.025170}; + vec7 a2 = { -4.364990e+1,-2.460640e-3,-2.750700,-4.248770e-1,1.598700e-2,-6.908750e-4,-2.076250e-1}; + return rate_fit(T9,a1) + rate_fit(T9,a2); + } + + // p + d -> he3 + double dp_rate(const vec7 &T9) { + vec7 a1 = {7.528980, 0, -3.720800, 0.8717820, 0, 0,-0.6666670}; + vec7 a2 = {8.935250, 0, -3.720800, 0.1986540, 0, 0, 0.3333330}; + return rate_fit(T9,a1) + rate_fit(T9,a2); + } + + // he3 + he3 -> he4 + 2p + double he3he3_rate(const vec7 &T9){ + vec7 a = {2.477880e+01,0,-12.27700,-0.1036990,-6.499670e-02,1.681910e-02,-6.666670e-01}; + return rate_fit(T9,a); + } + + // he3(he3,2p)he4 + double he3he4_rate(const vec7 &T9){ + vec7 a1 = {1.560990e+01,0.000000e+00,-1.282710e+01,-3.082250e-02,-6.546850e-01,8.963310e-02,-6.666670e-01}; + vec7 a2 = {1.770750e+01,0.000000e+00,-1.282710e+01,-3.812600e+00,9.422850e-02,-3.010180e-03,1.333330e+00}; + return rate_fit(T9,a1) + rate_fit(T9,a2); + } + + // he4 + he4 + he4 -> c12 + double triple_alpha_rate(const vec7 &T9){ + vec7 a1 = {-9.710520e-01,0.000000e+00,-3.706000e+01,2.934930e+01,-1.155070e+02,-1.000000e+01,-1.333330e+00}; + vec7 a2 = {-1.178840e+01,-1.024460e+00,-2.357000e+01,2.048860e+01,-1.298820e+01,-2.000000e+01,-2.166670e+00}; + vec7 a3 = {-2.435050e+01,-4.126560e+00,-1.349000e+01,2.142590e+01,-1.347690e+00,8.798160e-02,-1.316530e+01}; + return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); + } + + // c12 + p -> n13 + double c12p_rate(const vec7 &T9){ + vec7 a1={1.714820e+01,0.000000e+00,-1.369200e+01,-2.308810e-01,4.443620e+00,-3.158980e+00,-6.666670e-01}; + vec7 a2={1.754280e+01,-3.778490e+00,-5.107350e+00,-2.241110e+00,1.488830e-01,0.000000e+00,-1.500000e+00}; + return rate_fit(T9,a1) + rate_fit(T9,a2); + } + + // c12 + he4 -> o16 + double c12a_rate(const vec7 &T9){ + vec7 a1={6.965260e+01,-1.392540e+00,5.891280e+01,-1.482730e+02,9.083240e+00,-5.410410e-01,7.035540e+01}; + vec7 a2={2.546340e+02,-1.840970e+00,1.034110e+02,-4.205670e+02,6.408740e+01,-1.246240e+01,1.373030e+02}; + return rate_fit(T9,a1) + rate_fit(T9,a2); + } + + // n14(p,g)o15 - o15 + p -> c12 + he4 + double n14p_rate(const vec7 &T9){ + vec7 a1={1.701000e+01,0.000000e+00,-1.519300e+01,-1.619540e-01,-7.521230e+00,-9.875650e-01,-6.666670e-01}; + vec7 a2={2.011690e+01,0.000000e+00,-1.519300e+01,-4.639750e+00,9.734580e+00,-9.550510e+00,3.333330e-01}; + vec7 a3={7.654440e+00,-2.998000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + vec7 a4={6.735780e+00,-4.891000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,6.820000e-02}; + return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); + } + + // n14(a,g)f18 assumed to go on to ne20 + double n14a_rate(const vec7 &T9){ + vec7 a1={2.153390e+01,0.000000e+00,-3.625040e+01,0.000000e+00,0.000000e+00,-5.000000e+00,-6.666670e-01}; + vec7 a2={1.968380e-01,-5.160340e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + vec7 a3={1.389950e+01,-1.096560e+01,-5.622700e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); + } + + // n15(p,a)c12 (CNO I) + double n15pa_rate(const vec7 &T9){ + vec7 a1 = {2.747640e+01,0.000000e+00,-1.525300e+01,1.593180e+00,2.447900e+00,-2.197080e+00,-6.666670e-01}; + vec7 a2 = {-4.873470e+00,-2.021170e+00,0.000000e+00,3.084970e+01,-8.504330e+00,-1.544260e+00,-1.500000e+00}; + vec7 a3 = {2.089720e+01,-7.406000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + vec7 a4 = {-6.575220e+00,-1.163800e+00,0.000000e+00,2.271050e+01,-2.907070e+00,2.057540e-01,-1.500000e+00}; + return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); + } + + // n15(p,g)o16 (CNO II) + double n15pg_rate(const vec7 &T9){ + vec7 a1 = {2.001760e+01,0.000000e+00,-1.524000e+01,3.349260e-01,4.590880e+00,-4.784680e+00,-6.666670e-01}; + vec7 a2 = {6.590560e+00,-2.923150e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + vec7 a3 = {1.454440e+01,-1.022950e+01,0.000000e+00,0.000000e+00,4.590370e-02,0.000000e+00,-1.500000e+00}; + return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); + } + + double n15pg_frac(const vec7 &T9){ + double f1=n15pg_rate(T9); + double f2=n15pa_rate(T9); + return f1/(f1+f2); + } + + // o16(p,g)f17 then f17 -> o17(p,a)n14 + double o16p_rate(const vec7 &T9){ + vec7 a={1.909040e+01,0.000000e+00,-1.669600e+01,-1.162520e+00,2.677030e-01,-3.384110e-02,-6.666670e-01}; + return rate_fit(T9,a); + } + + // o16(a,g)ne20 + double o16a_rate(const vec7 &T9){ + vec7 a1={2.390300e+01,0.000000e+00,-3.972620e+01,-2.107990e-01,4.428790e-01,-7.977530e-02,-6.666670e-01}; + vec7 a2={3.885710e+00,-1.035850e+01,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + vec7 a3={9.508480e+00,-1.276430e+01,0.000000e+00,-3.659250e+00,7.142240e-01,-1.075080e-03,-1.500000e+00}; + return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); + } + + // ne20(a,g)mg24 + double ne20a_rate(const vec7 &T9){ + vec7 a1={2.450580e+01,0.000000e+00,-4.625250e+01,5.589010e+00,7.618430e+00,-3.683000e+00,-6.666670e-01}; + vec7 a2={-3.870550e+01,-2.506050e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + vec7 a3={1.983070e+00,-9.220260e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; + vec7 a4={-8.798270e+00,-1.278090e+01,0.000000e+00,1.692290e+01,-2.573250e+00,2.089970e-01,-1.500000e+00}; + return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); + } + + // c12(c12,a)ne20 + double c12c12_rate(const vec7 &T9){ + vec7 a={6.128630e+01,0.000000e+00,-8.416500e+01,-1.566270e+00,-7.360840e-02,-7.279700e-02,-6.666670e-01}; + return rate_fit(T9,a); + } + + // c12(o16,a)mg24 + double c12o16_rate(const vec7 &T9){ + vec7 a={4.853410e+01,3.720400e-01,-1.334130e+02,5.015720e+01,-3.159870e+00,1.782510e-02,-2.370270e+01}; + return rate_fit(T9,a); + } + + + // for Boost ODE solvers either a struct or a class is required + + // a Jacobian matrix for implicit solvers + + void Jacobian::operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt ) { + Constants& constants = Constants::getInstance(); + const double avo = constants.get("N_a").value; + const double clight = constants.get("c").value; + // EOS + vec7 T9=get_T9_array(y[Net::itemp]); + + // evaluate rates once per call + double rpp=pp_rate(T9); + double r33=he3he3_rate(T9); + double r34=he3he4_rate(T9); + double r3a=triple_alpha_rate(T9); + double rc12p=c12p_rate(T9); + double rc12a=c12a_rate(T9); + double rn14p=n14p_rate(T9); + double rn14a=n14a_rate(T9); + double ro16p=o16p_rate(T9); + double ro16a=o16a_rate(T9); + double rne20a=ne20a_rate(T9); + double r1212=c12c12_rate(T9); + double r1216=c12o16_rate(T9); + + double pfrac=n15pg_frac(T9); + double afrac=1-pfrac; + + double yh1 = y[Net::ih1]; + double yhe3 = y[Net::ihe3]; + double yhe4 = y[Net::ihe4]; + double yc12 = y[Net::ic12]; + double yn14 = y[Net::in14]; + double yo16 = y[Net::io16]; + double yne20 = y[Net::ine20]; + + // zero all elements to begin + for (int i=0; i < Net::nvar; i++) { + for (int j=0; j < Net::nvar; j++) { + J(i,j)=0.0; + } + } + + // h1 jacobian elements + J(Net::ih1,Net::ih1) = -3*yh1*rpp - 2*yc12*rc12p -2*yn14*rn14p -2*yo16*ro16p; + J(Net::ih1,Net::ihe3) = 2*yhe3*r33 - yhe4*r34; + J(Net::ih1,Net::ihe4) = -yhe3*r34; + J(Net::ih1,Net::ic12) = -2*yh1*rc12p; + J(Net::ih1,Net::in14) = -2*yh1*rn14p; + J(Net::ih1,Net::io16) = -2*yh1*ro16p; + + // he3 jacobian elements + J(Net::ihe3,Net::ih1) = yh1*rpp; + J(Net::ihe3,Net::ihe3) = -2*yhe3*r33 - yhe4*r34; + J(Net::ihe3,Net::ihe4) = -yhe3*r34; + + // he4 jacobian elements + J(Net::ihe4,Net::ih1) = yn14*afrac*rn14p + yo16*ro16p; + J(Net::ihe4,Net::ihe3) = yhe3*r33 - yhe4*r34; + J(Net::ihe4,Net::ihe4) = yhe3*r34 - 1.5*yhe4*yhe4*r3a - yc12*rc12a - 1.5*yn14*rn14a - yo16*ro16a - yne20*rne20a; + J(Net::ihe4,Net::ic12) = -yhe4*rc12a + yc12*r1212 + yo16*r1216; + J(Net::ihe4,Net::in14) = yh1*afrac*rn14p - 1.5*yhe4*rn14a; + J(Net::ihe4,Net::io16) = yh1*ro16p - yhe4*ro16a + yc12*r1216; + J(Net::ihe4,Net::ine20) = -yhe4*rne20a; + + // c12 jacobian elements + J(Net::ic12,Net::ih1) = -yc12*rc12p + yn14*afrac*rn14p; + J(Net::ic12,Net::ihe4) = 0.5*yhe4*yhe4*r3a - yhe4*rc12a; + J(Net::ic12,Net::ic12) = -yh1*rc12p - yhe4*rc12a - yo16*r1216 - 2*yc12*r1212; + J(Net::ic12,Net::in14) = yh1*yn14*afrac*rn14p; + J(Net::ic12,Net::io16) = -yc12*r1216; + + // n14 jacobian elements + J(Net::in14,Net::ih1) = yc12*rc12p - yn14*rn14p + yo16*ro16p; + J(Net::in14,Net::ihe4) = -yn14*rn14a; + J(Net::in14,Net::ic12) = yh1*rc12p; + J(Net::in14,Net::in14) = -yh1*rn14p - yhe4*rn14a; + J(Net::in14,Net::io16) = yo16*ro16p; + + // o16 jacobian elements + J(Net::io16,Net::ih1) = yn14*pfrac*rn14p - yo16*ro16p; + J(Net::io16,Net::ihe4) = yc12*rc12a - yo16*ro16a; + J(Net::io16,Net::ic12) = yhe4*rc12a - yo16*r1216; + J(Net::io16,Net::in14) = yh1*pfrac*rn14p; + J(Net::io16,Net::io16) = yh1*ro16p - yc12*r1216 -yhe4*ro16a; + + // ne20 jacobian elements + J(Net::ine20,Net::ihe4) = yn14*rn14a + yo16*ro16a - yne20*rne20a; + J(Net::ine20,Net::ic12) = yc12*r1212; + J(Net::ine20,Net::in14) = yhe4*rn14a; + J(Net::ine20,Net::io16) = yo16*ro16a; + J(Net::ine20,Net::ine20) = -yhe4*rne20a; + + // mg24 jacobian elements + J(Net::img24,Net::ihe4) = yne20*rne20a; + J(Net::img24,Net::ic12) = yo16*r1216; + J(Net::img24,Net::io16) = yc12*r1216; + J(Net::img24,Net::ine20) = yhe4*rne20a; + + // energy accountings + for (int j=0; j("Network:Approx8:Stiff:AbsTol", 1.0e-6); + const double stiff_rel_tol = m_config.get("Network:Approx8:Stiff:RelTol", 1.0e-6); + const double nonstiff_abs_tol = m_config.get("Network:Approx8:NonStiff:AbsTol", 1.0e-6); + const double nonstiff_rel_tol = m_config.get("Network:Approx8:NonStiff:RelTol", 1.0e-6); + + int num_steps = -1; + + if (m_stiff) { + LOG_DEBUG(m_logger, "Using stiff solver for Approx8Network"); + num_steps = integrate_const( + make_dense_output>(stiff_abs_tol, stiff_rel_tol), + std::make_pair(ODE(), Jacobian()), + m_y, + 0.0, + m_tmax, + m_dt0 + ); + + } else { + LOG_DEBUG(m_logger, "Using non stiff solver for Approx8Network"); + num_steps = integrate_const ( + make_dense_output>(nonstiff_abs_tol, nonstiff_rel_tol), + ODE(), + m_y, + 0.0, + m_tmax, + m_dt0 + ); + } + + double ysum = 0.0; + for (int i = 0; i < Net::niso; i++) { + m_y[i] *= Net::aion[i]; + ysum += m_y[i]; + } + for (int i = 0; i < Net::niso; i++) { + m_y[i] /= ysum; + } + + nuclearNetwork::NetOut netOut; + std::vector outComposition; + outComposition.reserve(Net::nvar); + + for (int i = 0; i < Net::niso; i++) { + outComposition.push_back(m_y[i]); + } + netOut.energy = m_y[Net::iener]; + netOut.composition = outComposition; + netOut.num_steps = num_steps; + + return netOut; + } + + void Approx8Network::setStiff(bool stiff) { + m_stiff = stiff; + } + + vector_type Approx8Network::convert_netIn(const nuclearNetwork::NetIn &netIn) { + if (netIn.composition.size() != Net::niso) { + LOG_ERROR(m_logger, "Error: composition size mismatch in convert_netIn"); + throw std::runtime_error("Error: composition size mismatch in convert_netIn"); + } + + vector_type y(Net::nvar, 0.0); + y[Net::ih1] = netIn.composition[0]; + y[Net::ihe3] = netIn.composition[1]; + y[Net::ihe4] = netIn.composition[2]; + y[Net::ic12] = netIn.composition[3]; + y[Net::in14] = netIn.composition[4]; + y[Net::io16] = netIn.composition[5]; + y[Net::ine20] = netIn.composition[6]; + y[Net::img24] = netIn.composition[7]; + y[Net::itemp] = netIn.temperature; + y[Net::iden] = netIn.density; + y[Net::iener] = netIn.energy; + + double ysum = 0.0; + for (int i = 0; i < Net::niso; i++) { + y[i] /= Net::aion[i]; + ysum += y[i]; + } + for (int i = 0; i < Net::niso; i++) { + y[i] /= ysum; + } + + return y; + } +}; + + +// main program + diff --git a/src/network/private/network.cpp b/src/network/private/network.cpp index 5a9ff2bc..5ffaac70 100644 --- a/src/network/private/network.cpp +++ b/src/network/private/network.cpp @@ -1,528 +1,16 @@ -#include -#include -#include -#include +#include "network.h" +#include "probe.h" +#include "quill/LogMacros.h" -#include -#include -#include - -#include "const.h" -//#include "probe.h" -//#include "config.h" -//#include "quill/LogMacros.h" - -/* Nuclear reaction network in cgs units based on Frank Timmes' "aprox8". - At this time it does neither screening nor neutrino losses. It includes - the following 8 isotopes: - - h1 - he3 - he4 - c12 - n14 - o16 - ne20 - mg24 - - and the following nuclear reactions: - - ---pp chain--- - p(p,e+)d - d(p,g)he3 - he3(he3,2p)he4 - - ---CNO cycle--- - c12(p,g)n13 - n13 -> c13 + p -> n14 - n14(p,g)o15 - o15 + p -> c12 + he4 - n14(a,g)f18 - proceeds to ne20 - n15(p,a)c12 - / these two n15 reactions are \ CNO I - n15(p,g)o16 - \ used to calculate a fraction / CNO II - o16(p,g)f17 - f17 + e -> o17 and then o17 + p -> n14 + he4 - - ---alpha captures--- - c12(a,g)o16 - triple alpha - o16(a,g)ne20 - ne20(a,g)mg24 - c12(c12,a)ne20 - c12(o16,a)mg24 - -At present the rates are all evaluated using a fitting function. -The coefficients to the fit are from reaclib.jinaweb.org . - -*/ - - -// using namespace std; -using namespace boost::numeric::odeint; -namespace phoenix = boost::phoenix; - -// these types are required by the Rosenbrock implicit solver -typedef boost::numeric::ublas::vector< double > vector_type; -typedef boost::numeric::ublas::matrix< double > matrix_type; - -// this array is used only in the nuclear reaction rate evaluations -typedef std::array vec; - -// only need a couple of constants -Constants& constants = Constants::getInstance(); -const double avo = constants.get("N_a").value; -const double clight = constants.get("c").value; - -// identify the isotopes used in the network. -const int ih1=0; -const int ihe3=1; -const int ihe4=2; -const int ic12=3; -const int in14=4; -const int io16=5; -const int ine20=6; -const int img24=7; - -// physical variables; this routine currently does not need to call EOS -// since the temperature and density are assumed constant during the burn -const int itemp=img24+1; -const int iden =itemp+1; -const int iener=iden+1; - -// number of isotopes and number of variables -const int niso=img24+1; // number of isotopes -const int nvar=iener+1; // number of variables - -// atomic stuff -std::array aion = {1,3,4,12,14,16,20,24}; -//std::array zion = {1,2,2, 6, 7, 8,10,12}; -//std::array bion = {0,7.71819,28.29603,92.16294,104.65998,127.62093,160.64788,198.25790}; -//nion = aion - zion #neutrons -//mion = nion*mn + zion*mp - bion*mev2gr #mass -std::array mion = {1.67262164e-24, 5.00641157e-24, 6.64465545e-24, 1.99209977e-23, - 2.32462686e-23, 2.65528858e-23, 3.31891077e-23, 3.98171594e-23}; - -//helper functions -// a function to multilpy two arrays and then sum the resulting elements: sum(a*b) -double sum_product( const vec &a, const vec &b){ - if (a.size() != b.size()){ - throw std::runtime_error("Error: array size mismatch in sum_product"); +namespace nuclearNetwork { + Network::Network() : + m_config(Config::getInstance()), + m_logManager(Probe::LogManager::getInstance()), + m_logger(m_logManager.getLogger("log")) { } - - double sum=0; - for (size_t i=0; i < a.size(); i++) { - sum += a[i] * b[i]; + nuclearNetwork::NetOut nuclearNetwork::Network::evaluate(const NetIn &netIn) { + // You can throw an exception here or log a warning if it should never be used. + LOG_ERROR(m_logger, "nuclearNetwork::Network::evaluate() is not implemented"); + throw std::runtime_error("nuclearNetwork::Network::evaluate() is not implemented"); } - return sum; -} - -// the fit to the nuclear reaction rates is of the form: -// exp( a0 + a1/T9 + a2/T9^(1/3) + a3*T9^(1/3) + a4*T9 + a5*T9^(5/3) + log(T9) ) -// this function returns an array of the T9 terms in that order, where T9 is the temperatures in GigaKelvin -vec get_T9_array(const double &T) { - vec arr; - double T9=1e-9*T; - double T913=pow(T9,1./3.); - arr[0]=1; - arr[1]=1/T9; - arr[2]=1/T913; - arr[3]=T913; - arr[4]=T9; - arr[5]=pow(T9,5./3.); - arr[6]=log(T9); - return arr; -} - -// this function uses the two preceding functions to evaluate the rate given the T9 array and the coefficients -double rate_fit(const vec &T9, const vec &coef){return exp(sum_product(T9,coef));} - -// p + p -> d; this, like some of the other rates, this is a composite of multiple fits -double pp_rate(const vec &T9) { - vec a1 = {-34.78630, 0,-3.511930, 3.100860, -0.1983140, 1.262510e-2, -1.025170}; - vec a2 = { -4.364990e+1,-2.460640e-3,-2.750700,-4.248770e-1,1.598700e-2,-6.908750e-4,-2.076250e-1}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// p + d -> he3 -double dp_rate(const vec &T9) { - vec a1 = {7.528980, 0, -3.720800, 0.8717820, 0, 0,-0.6666670}; - vec a2 = {8.935250, 0, -3.720800, 0.1986540, 0, 0, 0.3333330}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// he3 + he3 -> he4 + 2p -double he3he3_rate(const vec &T9){ - vec a = {2.477880e+01,0,-12.27700,-0.1036990,-6.499670e-02,1.681910e-02,-6.666670e-01}; - return rate_fit(T9,a); -} - -// he3(he3,2p)he4 -double he3he4_rate(const vec &T9){ - vec a1 = {1.560990e+01,0.000000e+00,-1.282710e+01,-3.082250e-02,-6.546850e-01,8.963310e-02,-6.666670e-01}; - vec a2 = {1.770750e+01,0.000000e+00,-1.282710e+01,-3.812600e+00,9.422850e-02,-3.010180e-03,1.333330e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// he4 + he4 + he4 -> c12 -double triple_alpha_rate(const vec &T9){ - vec a1 = {-9.710520e-01,0.000000e+00,-3.706000e+01,2.934930e+01,-1.155070e+02,-1.000000e+01,-1.333330e+00}; - vec a2 = {-1.178840e+01,-1.024460e+00,-2.357000e+01,2.048860e+01,-1.298820e+01,-2.000000e+01,-2.166670e+00}; - vec a3 = {-2.435050e+01,-4.126560e+00,-1.349000e+01,2.142590e+01,-1.347690e+00,8.798160e-02,-1.316530e+01}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - -// c12 + p -> n13 -double c12p_rate(const vec &T9){ - vec a1={1.714820e+01,0.000000e+00,-1.369200e+01,-2.308810e-01,4.443620e+00,-3.158980e+00,-6.666670e-01}; - vec a2={1.754280e+01,-3.778490e+00,-5.107350e+00,-2.241110e+00,1.488830e-01,0.000000e+00,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// c12 + he4 -> o16 -double c12a_rate(const vec &T9){ - vec a1={6.965260e+01,-1.392540e+00,5.891280e+01,-1.482730e+02,9.083240e+00,-5.410410e-01,7.035540e+01}; - vec a2={2.546340e+02,-1.840970e+00,1.034110e+02,-4.205670e+02,6.408740e+01,-1.246240e+01,1.373030e+02}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// n14(p,g)o15 - o15 + p -> c12 + he4 -double n14p_rate(const vec &T9){ - vec a1={1.701000e+01,0.000000e+00,-1.519300e+01,-1.619540e-01,-7.521230e+00,-9.875650e-01,-6.666670e-01}; - vec a2={2.011690e+01,0.000000e+00,-1.519300e+01,-4.639750e+00,9.734580e+00,-9.550510e+00,3.333330e-01}; - vec a3={7.654440e+00,-2.998000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a4={6.735780e+00,-4.891000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,6.820000e-02}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); -} - -// n14(a,g)f18 assumed to go on to ne20 -double n14a_rate(const vec &T9){ - vec a1={2.153390e+01,0.000000e+00,-3.625040e+01,0.000000e+00,0.000000e+00,-5.000000e+00,-6.666670e-01}; - vec a2={1.968380e-01,-5.160340e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3={1.389950e+01,-1.096560e+01,-5.622700e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - -// n15(p,a)c12 (CNO I) -double n15pa_rate(const vec &T9){ - vec a1 = {2.747640e+01,0.000000e+00,-1.525300e+01,1.593180e+00,2.447900e+00,-2.197080e+00,-6.666670e-01}; - vec a2 = {-4.873470e+00,-2.021170e+00,0.000000e+00,3.084970e+01,-8.504330e+00,-1.544260e+00,-1.500000e+00}; - vec a3 = {2.089720e+01,-7.406000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a4 = {-6.575220e+00,-1.163800e+00,0.000000e+00,2.271050e+01,-2.907070e+00,2.057540e-01,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); -} - -// n15(p,g)o16 (CNO II) -double n15pg_rate(const vec &T9){ - vec a1 = {2.001760e+01,0.000000e+00,-1.524000e+01,3.349260e-01,4.590880e+00,-4.784680e+00,-6.666670e-01}; - vec a2 = {6.590560e+00,-2.923150e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3 = {1.454440e+01,-1.022950e+01,0.000000e+00,0.000000e+00,4.590370e-02,0.000000e+00,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - -double n15pg_frac(const vec &T9){ - double f1=n15pg_rate(T9); - double f2=n15pa_rate(T9); - return f1/(f1+f2); -} - -// o16(p,g)f17 then f17 -> o17(p,a)n14 -double o16p_rate(const vec &T9){ - vec a={1.909040e+01,0.000000e+00,-1.669600e+01,-1.162520e+00,2.677030e-01,-3.384110e-02,-6.666670e-01}; - return rate_fit(T9,a); -} - - // o16(a,g)ne20 -double o16a_rate(const vec &T9){ - vec a1={2.390300e+01,0.000000e+00,-3.972620e+01,-2.107990e-01,4.428790e-01,-7.977530e-02,-6.666670e-01}; - vec a2={3.885710e+00,-1.035850e+01,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3={9.508480e+00,-1.276430e+01,0.000000e+00,-3.659250e+00,7.142240e-01,-1.075080e-03,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - - // ne20(a,g)mg24 -double ne20a_rate(const vec &T9){ - vec a1={2.450580e+01,0.000000e+00,-4.625250e+01,5.589010e+00,7.618430e+00,-3.683000e+00,-6.666670e-01}; - vec a2={-3.870550e+01,-2.506050e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3={1.983070e+00,-9.220260e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a4={-8.798270e+00,-1.278090e+01,0.000000e+00,1.692290e+01,-2.573250e+00,2.089970e-01,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); -} - - // c12(c12,a)ne20 -double c12c12_rate(const vec &T9){ - vec a={6.128630e+01,0.000000e+00,-8.416500e+01,-1.566270e+00,-7.360840e-02,-7.279700e-02,-6.666670e-01}; - return rate_fit(T9,a); -} - - // c12(o16,a)mg24 -double c12o16_rate(const vec &T9){ - vec a={4.853410e+01,3.720400e-01,-1.334130e+02,5.015720e+01,-3.159870e+00,1.782510e-02,-2.370270e+01}; - return rate_fit(T9,a); -} - - -// for Boost ODE solvers either a struct or a class is required - -// a Jacobian matrix for implicit solvers -struct Jacobian { - - void operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt ) - { - // EOS - vec T9=get_T9_array(y[itemp]); - - // evaluate rates once per call - double rpp=pp_rate(T9); - double r33=he3he3_rate(T9); - double r34=he3he4_rate(T9); - double r3a=triple_alpha_rate(T9); - double rc12p=c12p_rate(T9); - double rc12a=c12a_rate(T9); - double rn14p=n14p_rate(T9); - double rn14a=n14a_rate(T9); - double ro16p=o16p_rate(T9); - double ro16a=o16a_rate(T9); - double rne20a=ne20a_rate(T9); - double r1212=c12c12_rate(T9); - double r1216=c12o16_rate(T9); - - double pfrac=n15pg_frac(T9); - double afrac=1-pfrac; - - double yh1 = y[ ih1]; - double yhe3 = y[ ihe3]; - double yhe4 = y[ ihe4]; - double yc12 = y[ ic12]; - double yn14 = y[ in14]; - double yo16 = y[ io16]; - double yne20 = y[ine20]; - - // zero all elements to begin - for (int i=0; i < nvar; i++) { - for (int j=0; j < nvar; j++) { J(i,j)=0.0; }} - - // h1 jacobian elements - J(ih1,ih1) = -3*yh1*rpp - 2*yc12*rc12p -2*yn14*rn14p -2*yo16*ro16p; - J(ih1,ihe3) = 2*yhe3*r33 - yhe4*r34; - J(ih1,ihe4) = -yhe3*r34; - J(ih1,ic12) = -2*yh1*rc12p; - J(ih1,in14) = -2*yh1*rn14p; - J(ih1,io16) = -2*yh1*ro16p; - - // he3 jacobian elements - J(ihe3,ih1) = yh1*rpp; - J(ihe3,ihe3) = -2*yhe3*r33 - yhe4*r34; - J(ihe3,ihe4) = -yhe3*r34; - - // he4 jacobian elements - J(ihe4,ih1) = yn14*afrac*rn14p + yo16*ro16p; - J(ihe4,ihe3) = yhe3*r33 - yhe4*r34; - J(ihe4,ihe4) = yhe3*r34 - 1.5*yhe4*yhe4*r3a - yc12*rc12a - 1.5*yn14*rn14a - yo16*ro16a - yne20*rne20a; - J(ihe4,ic12) = -yhe4*rc12a + yc12*r1212 + yo16*r1216; - J(ihe4,in14) = yh1*afrac*rn14p - 1.5*yhe4*rn14a; - J(ihe4,io16) = yh1*ro16p - yhe4*ro16a + yc12*r1216; - J(ihe4,ine20) = -yhe4*rne20a; - - // c12 jacobian elements - J(ic12,ih1) = -yc12*rc12p + yn14*afrac*rn14p; - J(ic12,ihe4) = 0.5*yhe4*yhe4*r3a - yhe4*rc12a; - J(ic12,ic12) = -yh1*rc12p - yhe4*rc12a - yo16*r1216 - 2*yc12*r1212; - J(ic12,in14) = yh1*yn14*afrac*rn14p; - J(ic12,io16) = -yc12*r1216; - - // n14 jacobian elements - J(in14,ih1) = yc12*rc12p - yn14*rn14p + yo16*ro16p; - J(in14,ihe4) = -yn14*rn14a; - J(in14,ic12) = yh1*rc12p; - J(in14,in14) = -yh1*rn14p - yhe4*rn14a; - J(in14,io16) = yo16*ro16p; - - // o16 jacobian elements - J(io16,ih1) = yn14*pfrac*rn14p - yo16*ro16p; - J(io16,ihe4) = yc12*rc12a - yo16*ro16a; - J(io16,ic12) = yhe4*rc12a - yo16*r1216; - J(io16,in14) = yh1*pfrac*rn14p; - J(io16,io16) = yh1*ro16p - yc12*r1216 -yhe4*ro16a; - - // ne20 jacobian elements - J(ine20,ihe4) = yn14*rn14a + yo16*ro16a - yne20*rne20a; - J(ine20,ic12) = yc12*r1212; - J(ine20,in14) = yhe4*rn14a; - J(ine20,io16) = yo16*ro16a; - J(ine20,ine20) = -yhe4*rne20a; - - // mg24 jacobian elements - J(img24,ihe4) = yne20*rne20a; - J(img24,ic12) = yo16*r1216; - J(img24,io16) = yc12*r1216; - J(img24,ine20) = yhe4*rne20a; - - // energy accounting - for (int j=0; j>(1.0e-6,1.0e-6) , - std::make_pair( ODE(), Jacobian() ), y, 0.0, tmax, dt0); - - } else { - std::cout << " *** Explicit RK Dormand-Prince *** " << std::endl; - - num_of_steps = integrate_const( make_dense_output>(1.0e-6, 1.0e-6), - ODE(), y, 0.0, tmax, dt0); - - } - - //convert number fraction to mass fraction - ysum=0; - for (int i=0; i < niso; i++) { - y[i] *= aion[i]; - ysum+= y[i]; - } - for (int i=0; i < niso; i++) {y[i] /= ysum;} - - std::cout << " H1: " << y[ih1] << std::endl; - std::cout << " He4: " << y[ihe4] << std::endl; - std::cout << "energy: " << y[iener] << std::endl; - std::cout << " steps: " << num_of_steps << std::endl; - return 0; - } diff --git a/src/network/public/approx8.h b/src/network/public/approx8.h new file mode 100644 index 00000000..22ff778a --- /dev/null +++ b/src/network/public/approx8.h @@ -0,0 +1,316 @@ +#ifndef APPROX8_H +#define APPROX8_H + +#include + +#include +#include +#include + +#include "network.h" + +/** + * @file approx8.h + * @brief Header file for the Approx8 nuclear reaction network. + * + * This file contains the definitions and declarations for the Approx8 nuclear reaction network. + * The network is based on Frank Timmes' "aprox8" and includes 8 isotopes and various nuclear reactions. + * The rates are evaluated using a fitting function with coefficients from reaclib.jinaweb.org. + */ + +/** + * @typedef vector_type + * @brief Alias for a vector of doubles using Boost uBLAS. + */ +typedef boost::numeric::ublas::vector< double > vector_type; + +/** + * @typedef matrix_type + * @brief Alias for a matrix of doubles using Boost uBLAS. + */ +typedef boost::numeric::ublas::matrix< double > matrix_type; + +/** + * @typedef vec7 + * @brief Alias for a std::array of 7 doubles. + */ +typedef std::array vec7; + +namespace nnApprox8{ + + using namespace boost::numeric::odeint; + + /** + * @struct Net + * @brief Contains constants and arrays related to the nuclear network. + */ + struct Net{ + const static int ih1=0; + const static int ihe3=1; + const static int ihe4=2; + const static int ic12=3; + const static int in14=4; + const static int io16=5; + const static int ine20=6; + const static int img24=7; + + const static int itemp=img24+1; + const static int iden =itemp+1; + const static int iener=iden+1; + + const static int niso=img24+1; // number of isotopes + const static int nvar=iener+1; // number of variables + + static constexpr std::array aion = { + 1, + 3, + 4, + 12, + 14, + 16, + 20, + 24 + }; + + static constexpr std::array mion = { + 1.67262164e-24, + 5.00641157e-24, + 6.64465545e-24, + 1.99209977e-23, + 2.32462686e-23, + 2.65528858e-23, + 3.31891077e-23, + 3.98171594e-23 + }; + + }; + + /** + * @brief Multiplies two arrays and sums the resulting elements. + * @param a First array. + * @param b Second array. + * @return Sum of the product of the arrays. + * @example + * @code + * vec7 a = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; + * vec7 b = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}; + * double result = sum_product(a, b); + * @endcode + */ + double sum_product( const vec7 &a, const vec7 &b); + + /** + * @brief Returns an array of T9 terms for the nuclear reaction rate fit. + * @param T Temperature in GigaKelvin. + * @return Array of T9 terms. + * @example + * @code + * double T = 1.5; + * vec7 T9_array = get_T9_array(T); + * @endcode + */ + vec7 get_T9_array(const double &T); + + /** + * @brief Evaluates the nuclear reaction rate given the T9 array and coefficients. + * @param T9 Array of T9 terms. + * @param coef Array of coefficients. + * @return Evaluated rate. + * @example + * @code + * vec7 T9 = get_T9_array(1.5); + * vec7 coef = {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001}; + * double rate = rate_fit(T9, coef); + * @endcode + */ + double rate_fit(const vec7 &T9, const vec7 &coef); + + /** + * @brief Calculates the rate for the reaction p + p -> d. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double pp_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction p + d -> he3. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double dp_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction he3 + he3 -> he4 + 2p. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double he3he3_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction he3(he3,2p)he4. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double he3he4_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction he4 + he4 + he4 -> c12. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double triple_alpha_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction c12 + p -> n13. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double c12p_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction c12 + he4 -> o16. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double c12a_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction n14(p,g)o15 - o15 + p -> c12 + he4. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double n14p_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction n14(a,g)f18 assumed to go on to ne20. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double n14a_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction n15(p,a)c12 (CNO I). + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double n15pa_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction n15(p,g)o16 (CNO II). + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double n15pg_rate(const vec7 &T9); + + /** + * @brief Calculates the fraction for the reaction n15(p,g)o16. + * @param T9 Array of T9 terms. + * @return Fraction of the reaction. + */ + double n15pg_frac(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction o16(p,g)f17 then f17 -> o17(p,a)n14. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double o16p_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction o16(a,g)ne20. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double o16a_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction ne20(a,g)mg24. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double ne20a_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction c12(c12,a)ne20. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double c12c12_rate(const vec7 &T9); + + /** + * @brief Calculates the rate for the reaction c12(o16,a)mg24. + * @param T9 Array of T9 terms. + * @return Rate of the reaction. + */ + double c12o16_rate(const vec7 &T9); + + /** + * @struct Jacobian + * @brief Functor to calculate the Jacobian matrix for implicit solvers. + */ + struct Jacobian { + /** + * @brief Calculates the Jacobian matrix. + * @param y State vector. + * @param J Jacobian matrix. + * @param t Time. + * @param dfdt Derivative of the state vector. + */ + void operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt ); + }; + + /** + * @struct ODE + * @brief Functor to calculate the derivatives for the ODE solver. + */ + struct ODE { + /** + * @brief Calculates the derivatives of the state vector. + * @param y State vector. + * @param dydt Derivative of the state vector. + * @param t Time. + */ + void operator() ( const vector_type &y, vector_type &dydt, double /* t */); + }; + + /** + * @class Approx8Network + * @brief Class for the Approx8 nuclear reaction network. + */ + class Approx8Network : public nuclearNetwork::Network { + public: + /** + * @brief Evaluates the nuclear network. + * @param netIn Input parameters for the network. + * @return Output results from the network. + */ + virtual nuclearNetwork::NetOut evaluate(const nuclearNetwork::NetIn &netIn); + + /** + * @brief Sets whether the solver should use a stiff method. + * @param stiff Boolean indicating if a stiff method should be used. + */ + void setStiff(bool stiff); + + /** + * @brief Checks if the solver is using a stiff method. + * @return Boolean indicating if a stiff method is being used. + */ + bool isStiff() { return m_stiff; } + private: + vector_type m_y; + double m_tmax; + double m_dt0; + bool m_stiff; + + /** + * @brief Converts the input parameters to the internal state vector. + * @param netIn Input parameters for the network. + * @return Internal state vector. + */ + vector_type convert_netIn(const nuclearNetwork::NetIn &netIn); + }; + +} // namespace nnApprox8 + +#endif \ No newline at end of file diff --git a/src/network/public/network.h b/src/network/public/network.h index 3466aa0f..9cb6a3c8 100644 --- a/src/network/public/network.h +++ b/src/network/public/network.h @@ -1,526 +1,93 @@ - -#include -#include -#include -#include - -#include -#include -#include - -#include "const.h" - -/* Nuclear reaction network in cgs units based on Frank Timmes' "aprox8". - At this time it does neither screening nor neutrino losses. It includes - the following 8 isotopes: - - h1 - he3 - he4 - c12 - n14 - o16 - ne20 - mg24 - - and the following nuclear reactions: - - ---pp chain--- - p(p,e+)d - d(p,g)he3 - he3(he3,2p)he4 - - ---CNO cycle--- - c12(p,g)n13 - n13 -> c13 + p -> n14 - n14(p,g)o15 - o15 + p -> c12 + he4 - n14(a,g)f18 - proceeds to ne20 - n15(p,a)c12 - / these two n15 reactions are \ CNO I - n15(p,g)o16 - \ used to calculate a fraction / CNO II - o16(p,g)f17 - f17 + e -> o17 and then o17 + p -> n14 + he4 - - ---alpha captures--- - c12(a,g)o16 - triple alpha - o16(a,g)ne20 - ne20(a,g)mg24 - c12(c12,a)ne20 - c12(o16,a)mg24 - -At present the rates are all evaluated using a fitting function. -The coefficients to the fit are from reaclib.jinaweb.org . - -*/ - - -// using namespace std; -using namespace boost::numeric::odeint; -namespace phoenix = boost::phoenix; - -// these types are required by the Rosenbrock implicit solver -typedef boost::numeric::ublas::vector< double > vector_type; -typedef boost::numeric::ublas::matrix< double > matrix_type; - -// this array is used only in the nuclear reaction rate evaluations -typedef std::array vec; - -// only need a couple of constants -Constants& constants = Constants::getInstance(); -const double avo = constants.get("N_a").value; -const double clight = constants.get("c").value; - -// identify the isotopes used in the network. -const int ih1=0; -const int ihe3=1; -const int ihe4=2; -const int ic12=3; -const int in14=4; -const int io16=5; -const int ine20=6; -const int img24=7; - -// physical variables; this routine currently does not need to call EOS -// since the temperature and density are assumed constant during the burn -const int itemp=img24+1; -const int iden =itemp+1; -const int iener=iden+1; - -// number of isotopes and number of variables -const int niso=img24+1; // number of isotopes -const int nvar=iener+1; // number of variables - -// atomic stuff -std::array aion = {1,3,4,12,14,16,20,24}; -//std::array zion = {1,2,2, 6, 7, 8,10,12}; -//std::array bion = {0,7.71819,28.29603,92.16294,104.65998,127.62093,160.64788,198.25790}; -//nion = aion - zion #neutrons -//mion = nion*mn + zion*mp - bion*mev2gr #mass -std::array mion = {1.67262164e-24, 5.00641157e-24, 6.64465545e-24, 1.99209977e-23, - 2.32462686e-23, 2.65528858e-23, 3.31891077e-23, 3.98171594e-23}; - -//helper functions -// a function to multilpy two arrays and then sum the resulting elements: sum(a*b) -double sum_product( const vec &a, const vec &b){ - if (a.size() != b.size()){ - throw std::runtime_error("Error: array size mismatch in sum_product"); - } - - double sum=0; - for (size_t i=0; i < a.size(); i++) { - sum += a[i] * b[i]; - } - return sum; -} - -// the fit to the nuclear reaction rates is of the form: -// exp( a0 + a1/T9 + a2/T9^(1/3) + a3*T9^(1/3) + a4*T9 + a5*T9^(5/3) + log(T9) ) -// this function returns an array of the T9 terms in that order, where T9 is the temperatures in GigaKelvin -vec get_T9_array(const double &T) { - vec arr; - double T9=1e-9*T; - double T913=pow(T9,1./3.); - arr[0]=1; - arr[1]=1/T9; - arr[2]=1/T913; - arr[3]=T913; - arr[4]=T9; - arr[5]=pow(T9,5./3.); - arr[6]=log(T9); - return arr; -} - -// this function uses the two preceding functions to evaluate the rate given the T9 array and the coefficients -double rate_fit(const vec &T9, const vec &coef){return exp(sum_product(T9,coef));} - -// p + p -> d; this, like some of the other rates, this is a composite of multiple fits -double pp_rate(const vec &T9) { - vec a1 = {-34.78630, 0,-3.511930, 3.100860, -0.1983140, 1.262510e-2, -1.025170}; - vec a2 = { -4.364990e+1,-2.460640e-3,-2.750700,-4.248770e-1,1.598700e-2,-6.908750e-4,-2.076250e-1}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// p + d -> he3 -double dp_rate(const vec &T9) { - vec a1 = {7.528980, 0, -3.720800, 0.8717820, 0, 0,-0.6666670}; - vec a2 = {8.935250, 0, -3.720800, 0.1986540, 0, 0, 0.3333330}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// he3 + he3 -> he4 + 2p -double he3he3_rate(const vec &T9){ - vec a = {2.477880e+01,0,-12.27700,-0.1036990,-6.499670e-02,1.681910e-02,-6.666670e-01}; - return rate_fit(T9,a); -} - -// he3(he3,2p)he4 -double he3he4_rate(const vec &T9){ - vec a1 = {1.560990e+01,0.000000e+00,-1.282710e+01,-3.082250e-02,-6.546850e-01,8.963310e-02,-6.666670e-01}; - vec a2 = {1.770750e+01,0.000000e+00,-1.282710e+01,-3.812600e+00,9.422850e-02,-3.010180e-03,1.333330e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// he4 + he4 + he4 -> c12 -double triple_alpha_rate(const vec &T9){ - vec a1 = {-9.710520e-01,0.000000e+00,-3.706000e+01,2.934930e+01,-1.155070e+02,-1.000000e+01,-1.333330e+00}; - vec a2 = {-1.178840e+01,-1.024460e+00,-2.357000e+01,2.048860e+01,-1.298820e+01,-2.000000e+01,-2.166670e+00}; - vec a3 = {-2.435050e+01,-4.126560e+00,-1.349000e+01,2.142590e+01,-1.347690e+00,8.798160e-02,-1.316530e+01}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - -// c12 + p -> n13 -double c12p_rate(const vec &T9){ - vec a1={1.714820e+01,0.000000e+00,-1.369200e+01,-2.308810e-01,4.443620e+00,-3.158980e+00,-6.666670e-01}; - vec a2={1.754280e+01,-3.778490e+00,-5.107350e+00,-2.241110e+00,1.488830e-01,0.000000e+00,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// c12 + he4 -> o16 -double c12a_rate(const vec &T9){ - vec a1={6.965260e+01,-1.392540e+00,5.891280e+01,-1.482730e+02,9.083240e+00,-5.410410e-01,7.035540e+01}; - vec a2={2.546340e+02,-1.840970e+00,1.034110e+02,-4.205670e+02,6.408740e+01,-1.246240e+01,1.373030e+02}; - return rate_fit(T9,a1) + rate_fit(T9,a2); -} - -// n14(p,g)o15 - o15 + p -> c12 + he4 -double n14p_rate(const vec &T9){ - vec a1={1.701000e+01,0.000000e+00,-1.519300e+01,-1.619540e-01,-7.521230e+00,-9.875650e-01,-6.666670e-01}; - vec a2={2.011690e+01,0.000000e+00,-1.519300e+01,-4.639750e+00,9.734580e+00,-9.550510e+00,3.333330e-01}; - vec a3={7.654440e+00,-2.998000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a4={6.735780e+00,-4.891000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,6.820000e-02}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); -} - -// n14(a,g)f18 assumed to go on to ne20 -double n14a_rate(const vec &T9){ - vec a1={2.153390e+01,0.000000e+00,-3.625040e+01,0.000000e+00,0.000000e+00,-5.000000e+00,-6.666670e-01}; - vec a2={1.968380e-01,-5.160340e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3={1.389950e+01,-1.096560e+01,-5.622700e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - -// n15(p,a)c12 (CNO I) -double n15pa_rate(const vec &T9){ - vec a1 = {2.747640e+01,0.000000e+00,-1.525300e+01,1.593180e+00,2.447900e+00,-2.197080e+00,-6.666670e-01}; - vec a2 = {-4.873470e+00,-2.021170e+00,0.000000e+00,3.084970e+01,-8.504330e+00,-1.544260e+00,-1.500000e+00}; - vec a3 = {2.089720e+01,-7.406000e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a4 = {-6.575220e+00,-1.163800e+00,0.000000e+00,2.271050e+01,-2.907070e+00,2.057540e-01,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); -} - -// n15(p,g)o16 (CNO II) -double n15pg_rate(const vec &T9){ - vec a1 = {2.001760e+01,0.000000e+00,-1.524000e+01,3.349260e-01,4.590880e+00,-4.784680e+00,-6.666670e-01}; - vec a2 = {6.590560e+00,-2.923150e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3 = {1.454440e+01,-1.022950e+01,0.000000e+00,0.000000e+00,4.590370e-02,0.000000e+00,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - -double n15pg_frac(const vec &T9){ - double f1=n15pg_rate(T9); - double f2=n15pa_rate(T9); - return f1/(f1+f2); -} - -// o16(p,g)f17 then f17 -> o17(p,a)n14 -double o16p_rate(const vec &T9){ - vec a={1.909040e+01,0.000000e+00,-1.669600e+01,-1.162520e+00,2.677030e-01,-3.384110e-02,-6.666670e-01}; - return rate_fit(T9,a); -} - - // o16(a,g)ne20 -double o16a_rate(const vec &T9){ - vec a1={2.390300e+01,0.000000e+00,-3.972620e+01,-2.107990e-01,4.428790e-01,-7.977530e-02,-6.666670e-01}; - vec a2={3.885710e+00,-1.035850e+01,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3={9.508480e+00,-1.276430e+01,0.000000e+00,-3.659250e+00,7.142240e-01,-1.075080e-03,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3); -} - - // ne20(a,g)mg24 -double ne20a_rate(const vec &T9){ - vec a1={2.450580e+01,0.000000e+00,-4.625250e+01,5.589010e+00,7.618430e+00,-3.683000e+00,-6.666670e-01}; - vec a2={-3.870550e+01,-2.506050e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a3={1.983070e+00,-9.220260e+00,0.000000e+00,0.000000e+00,0.000000e+00,0.000000e+00,-1.500000e+00}; - vec a4={-8.798270e+00,-1.278090e+01,0.000000e+00,1.692290e+01,-2.573250e+00,2.089970e-01,-1.500000e+00}; - return rate_fit(T9,a1) + rate_fit(T9,a2) + rate_fit(T9,a3) + rate_fit(T9,a4); -} - - // c12(c12,a)ne20 -double c12c12_rate(const vec &T9){ - vec a={6.128630e+01,0.000000e+00,-8.416500e+01,-1.566270e+00,-7.360840e-02,-7.279700e-02,-6.666670e-01}; - return rate_fit(T9,a); -} - - // c12(o16,a)mg24 -double c12o16_rate(const vec &T9){ - vec a={4.853410e+01,3.720400e-01,-1.334130e+02,5.015720e+01,-3.159870e+00,1.782510e-02,-2.370270e+01}; - return rate_fit(T9,a); -} - - -// for Boost ODE solvers either a struct or a class is required - -// a Jacobian matrix for implicit solvers -struct Jacobian { - - void operator() ( const vector_type &y, matrix_type &J, double /* t */, vector_type &dfdt ) - { - // EOS - vec T9=get_T9_array(y[itemp]); - - // evaluate rates once per call - double rpp=pp_rate(T9); - double r33=he3he3_rate(T9); - double r34=he3he4_rate(T9); - double r3a=triple_alpha_rate(T9); - double rc12p=c12p_rate(T9); - double rc12a=c12a_rate(T9); - double rn14p=n14p_rate(T9); - double rn14a=n14a_rate(T9); - double ro16p=o16p_rate(T9); - double ro16a=o16a_rate(T9); - double rne20a=ne20a_rate(T9); - double r1212=c12c12_rate(T9); - double r1216=c12o16_rate(T9); - - double pfrac=n15pg_frac(T9); - double afrac=1-pfrac; - - double yh1 = y[ ih1]; - double yhe3 = y[ ihe3]; - double yhe4 = y[ ihe4]; - double yc12 = y[ ic12]; - double yn14 = y[ in14]; - double yo16 = y[ io16]; - double yne20 = y[ine20]; - - // zero all elements to begin - for (int i=0; i < nvar; i++) { - for (int j=0; j < nvar; j++) { J(i,j)=0.0; }} - - // h1 jacobian elements - J(ih1,ih1) = -3*yh1*rpp - 2*yc12*rc12p -2*yn14*rn14p -2*yo16*ro16p; - J(ih1,ihe3) = 2*yhe3*r33 - yhe4*r34; - J(ih1,ihe4) = -yhe3*r34; - J(ih1,ic12) = -2*yh1*rc12p; - J(ih1,in14) = -2*yh1*rn14p; - J(ih1,io16) = -2*yh1*ro16p; - - // he3 jacobian elements - J(ihe3,ih1) = yh1*rpp; - J(ihe3,ihe3) = -2*yhe3*r33 - yhe4*r34; - J(ihe3,ihe4) = -yhe3*r34; - - // he4 jacobian elements - J(ihe4,ih1) = yn14*afrac*rn14p + yo16*ro16p; - J(ihe4,ihe3) = yhe3*r33 - yhe4*r34; - J(ihe4,ihe4) = yhe3*r34 - 1.5*yhe4*yhe4*r3a - yc12*rc12a - 1.5*yn14*rn14a - yo16*ro16a - yne20*rne20a; - J(ihe4,ic12) = -yhe4*rc12a + yc12*r1212 + yo16*r1216; - J(ihe4,in14) = yh1*afrac*rn14p - 1.5*yhe4*rn14a; - J(ihe4,io16) = yh1*ro16p - yhe4*ro16a + yc12*r1216; - J(ihe4,ine20) = -yhe4*rne20a; - - // c12 jacobian elements - J(ic12,ih1) = -yc12*rc12p + yn14*afrac*rn14p; - J(ic12,ihe4) = 0.5*yhe4*yhe4*r3a - yhe4*rc12a; - J(ic12,ic12) = -yh1*rc12p - yhe4*rc12a - yo16*r1216 - 2*yc12*r1212; - J(ic12,in14) = yh1*yn14*afrac*rn14p; - J(ic12,io16) = -yc12*r1216; - - // n14 jacobian elements - J(in14,ih1) = yc12*rc12p - yn14*rn14p + yo16*ro16p; - J(in14,ihe4) = -yn14*rn14a; - J(in14,ic12) = yh1*rc12p; - J(in14,in14) = -yh1*rn14p - yhe4*rn14a; - J(in14,io16) = yo16*ro16p; - - // o16 jacobian elements - J(io16,ih1) = yn14*pfrac*rn14p - yo16*ro16p; - J(io16,ihe4) = yc12*rc12a - yo16*ro16a; - J(io16,ic12) = yhe4*rc12a - yo16*r1216; - J(io16,in14) = yh1*pfrac*rn14p; - J(io16,io16) = yh1*ro16p - yc12*r1216 -yhe4*ro16a; - - // ne20 jacobian elements - J(ine20,ihe4) = yn14*rn14a + yo16*ro16a - yne20*rne20a; - J(ine20,ic12) = yc12*r1212; - J(ine20,in14) = yhe4*rn14a; - J(ine20,io16) = yo16*ro16a; - J(ine20,ine20) = -yhe4*rne20a; - - // mg24 jacobian elements - J(img24,ihe4) = yne20*rne20a; - J(img24,ic12) = yo16*r1216; - J(img24,io16) = yc12*r1216; - J(img24,ine20) = yhe4*rne20a; - - // energy accounting - for (int j=0; j>(1.0e-6,1.0e-6) , - std::make_pair( ODE(), Jacobian() ), y, 0.0, tmax, dt0); - - } else { - std::cout << " *** Explicit RK Dormand-Prince *** " << std::endl; - - num_of_steps = integrate_const( make_dense_output>(1.0e-6, 1.0e-6), - ODE(), y, 0.0, tmax, dt0); - - } - - //convert number fraction to mass fraction - ysum=0; - for (int i=0; i < niso; i++) { - y[i] *= aion[i]; - ysum+= y[i]; - } - for (int i=0; i < niso; i++) {y[i] /= ysum;} - - std::cout << " H1: " << y[ih1] << std::endl; - std::cout << " He4: " << y[ihe4] << std::endl; - std::cout << "energy: " << y[iener] << std::endl; - std::cout << " steps: " << num_of_steps << std::endl; - return 0; - -} +#ifndef NETWORK_H +#define NETWORK_H + +#include + +#include "probe.h" +#include "config.h" +#include "quill/Logger.h" + +namespace nuclearNetwork { + + /** + * @struct NetIn + * @brief Input structure for the network evaluation. + * + * This structure holds the input parameters required for the network evaluation. + * + * Example usage: + * @code + * nuclearNetwork::NetIn netIn; + * netIn.composition = {1.0, 0.0, 0.0}; + * netIn.tmax = 1.0e6; + * netIn.dt0 = 1.0e-3; + * netIn.temperature = 1.0e8; + * netIn.density = 1.0e5; + * netIn.energy = 1.0e12; + * @endcode + */ + struct NetIn { + std::vector composition; ///< Composition of the network + double tmax; ///< Maximum time + double dt0; ///< Initial time step + double temperature; ///< Temperature in Kelvin + double density; ///< Density in g/cm^3 + double energy; ///< Energy in ergs + }; + + /** + * @struct NetOut + * @brief Output structure for the network evaluation. + * + * This structure holds the output results from the network evaluation. + * + * Example usage: + * @code + * nuclearNetwork::NetOut netOut = network.evaluate(netIn); + * std::vector composition = netOut.composition; + * int steps = netOut.num_steps; + * double energy = netOut.energy; + * @endcode + */ + struct NetOut { + std::vector composition; ///< Composition of the network after evaluation + int num_steps; ///< Number of steps taken in the evaluation + double energy; ///< Energy in ergs after evaluation + }; + + /** + * @class Network + * @brief Class for network evaluation. + * + * This class provides methods to evaluate the network based on the input parameters. + * + * Example usage: + * @code + * nuclearNetwork::Network network; + * nuclearNetwork::NetIn netIn; + * // Set netIn parameters... + * nuclearNetwork::NetOut netOut = network.evaluate(netIn); + * @endcode + */ + class Network { + public: + Network(); + virtual ~Network() = default; + + /** + * @brief Evaluate the network based on the input parameters. + * + * @param netIn Input parameters for the network evaluation. + * @return NetOut Output results from the network evaluation. + */ + virtual NetOut evaluate(const NetIn &netIn); + + protected: + Config& m_config; ///< Configuration instance + Probe::LogManager& m_logManager; ///< Log manager instance + quill::Logger* m_logger; ///< Logger instance + }; + +} // namespace nuclearNetwork + +#endif // NETWORK_H \ No newline at end of file