feat(C-API): C API now can use multi-zone solver

C api has been brought back up to support and can use paraellization along with multi zone solver
This commit is contained in:
2025-12-18 15:14:47 -05:00
parent cd5e42b69a
commit 2a9649a72e
7 changed files with 598 additions and 199 deletions

View File

@@ -7,19 +7,32 @@
#include <memory>
#include <vector>
struct GridFireContext {
enum class GFContextType {
POINT,
GRID
};
struct GFContext {
virtual ~GFContext() = default;
std::unique_ptr<gridfire::policy::NetworkPolicy> policy;
gridfire::engine::DynamicEngine* engine;
std::unique_ptr<gridfire::solver::DynamicNetworkSolverStrategy> solver;
const gridfire::engine::DynamicEngine* engine;
std::unique_ptr<gridfire::engine::scratch::StateBlob> engine_ctx;
std::vector<fourdst::atomic::Species> speciesList;
fourdst::composition::Composition working_comp;
void init_species_map(const std::vector<std::string>& species_names);
void init_engine_from_policy(const std::string& policy_name, const double *abundances, size_t num_species);
void init_solver_from_engine(const std::string& solver_name);
virtual void init_species_map(const std::vector<std::string>& species_names);
virtual void init_engine_from_policy(const std::string& policy_name, const double *abundances, size_t num_species);
virtual void init_solver_from_engine() = 0;
void init_composition_from_abundance_vector(const double* abundances, size_t num_species);
fourdst::composition::Composition init_composition_from_abundance_vector(const std::vector<double> &abundances, size_t num_species) const;
std::string last_error;
};
struct GFPointContext final: GFContext{
std::unique_ptr<gridfire::solver::SingleZoneDynamicNetworkSolver> solver;
std::unique_ptr<gridfire::solver::SolverContextBase> solver_ctx;
void init_solver_from_engine() override;
int evolve(
const double* Y_in,
@@ -35,9 +48,45 @@ struct GridFireContext {
double& specific_neutrino_energy_loss,
double& specific_neutrino_flux,
double& mass_lost
);
) const;
std::string last_error;
};
struct GFGridContext final : GFContext {
std::unique_ptr<gridfire::solver::SingleZoneDynamicNetworkSolver> local_solver;
std::unique_ptr<gridfire::solver::MultiZoneDynamicNetworkSolver> solver;
std::unique_ptr<gridfire::solver::SolverContextBase> solver_ctx;
void init_solver_from_engine() override;
size_t zones;
void set_zones(const size_t num_zones) {
zones = num_zones;
}
[[nodiscard]] size_t get_zones() const {
return zones;
}
int evolve(
const double* Y_in,
size_t num_species,
const double* T,
const double* rho,
double tMax,
double dt0,
double* Y_out,
double* energy_out,
double* dEps_dT,
double* dEps_dRho,
double* specific_neutrino_energy_loss,
double* specific_neutrino_flux,
double* mass_lost
) const;
};
std::unique_ptr<GFContext> make_gf_context(const GFContextType& type);
#endif

View File

@@ -6,6 +6,12 @@
#ifdef __cplusplus
extern "C" {
#endif
enum GF_TYPE {
SINGLE_ZONE = 0,
MULTI_ZONE = 1
};
enum FDSSE_ERROR_CODES {
FDSSE_NON_4DSTAR_ERROR = -102,
FDSSE_UNKNOWN_ERROR = -101,
@@ -54,37 +60,49 @@ extern "C" {
GF_DEBUG_ERROR = 30,
GF_GRIDFIRE_ERROR = 31,
GF_UNINITIALIZED_INPUT_MEMORY_ERROR = 32,
GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR = 33,
GF_INVALID_NUM_SPECIES = 34,
GF_INVALID_TIMESTEPS = 35,
GF_UNKNOWN_FREE_TYPE = 36,
GF_INVALID_TYPE = 37,
};
char* gf_get_last_error_message(void* ptr);
char* gf_error_code_to_string(int error_code);
void* gf_init();
void* gf_init(const enum GF_TYPE type);
void gf_free(void* ctx);
int gf_free(const enum GF_TYPE type, void *ctx);
int gf_set_num_zones(const enum GF_TYPE type, void* ptr, const size_t num_zones);
int gf_register_species(void* ptr, const int num_species, const char** species_names);
int gf_construct_engine_from_policy(void* ptr, const char* policy_name, const double *abundances, size_t num_species);
int gf_construct_solver_from_engine(void* ptr, const char* solver_name);
int gf_construct_solver_from_engine(void* ptr);
int gf_evolve(
enum GF_TYPE type,
void* ptr,
const double* Y_in,
const void* Y_in,
size_t num_species,
double T,
double rho,
const void* T,
const void* rho,
double tMax,
double dt0,
double* Y_out,
double* energy_out,
double* dEps_dT,
double* dEps_dRho,
double* specific_neutrino_energy_loss,
double* specific_neutrino_flux,
double* mass_lost
void* Y_out,
void* energy_out,
void* dEps_dT,
void* dEps_dRho,
void* specific_neutrino_energy_loss,
void* specific_neutrino_flux,
void* mass_lost
);
#ifdef __cplusplus

View File

@@ -3,11 +3,10 @@
#include "fourdst/atomic/species.h"
#include "fourdst/composition/exceptions/exceptions_composition.h"
#include "gridfire/exceptions/error_policy.h"
#include "gridfire/utils/logging.h"
void GridFireContext::init_species_map(const std::vector<std::string> &species_names) {
for (const auto& name: species_names) {
working_comp.registerSymbol(name);
}
void GFContext::init_species_map(const std::vector<std::string> &species_names) {
this->speciesList.clear();
this->speciesList.reserve(species_names.size());
@@ -24,8 +23,9 @@ void GridFireContext::init_species_map(const std::vector<std::string> &species_n
}
void GridFireContext::init_engine_from_policy(const std::string &policy_name, const double *abundances, const size_t num_species) {
init_composition_from_abundance_vector(abundances, num_species);
void GFContext::init_engine_from_policy(const std::string &policy_name, const double *abundances, const size_t num_species) {
const std::vector<double> Y_scratch(abundances, abundances + num_species);
fourdst::composition::Composition comp = init_composition_from_abundance_vector(Y_scratch, num_species);
enum class EnginePolicy {
MAIN_SEQUENCE_POLICY
@@ -47,71 +47,53 @@ void GridFireContext::init_engine_from_policy(const std::string &policy_name, co
switch (engine_map.at(policy_name)) {
case EnginePolicy::MAIN_SEQUENCE_POLICY: {
this->policy = std::make_unique<gridfire::policy::MainSequencePolicy>(this->working_comp);
this->engine = &policy->construct();
this->policy = std::make_unique<gridfire::policy::MainSequencePolicy>(comp);
const auto& [e, ctx] = policy->construct();
this->engine = &e;
this->engine_ctx = ctx->clone_structure();
break;
}
default:
throw gridfire::exceptions::PolicyError(
"Unhandled engine policy in GridFireContext::init_engine_from_policy"
"Unhandled engine policy in GFPointContext::init_engine_from_policy"
);
}
}
void GridFireContext::init_solver_from_engine(const std::string &solver_name) {
enum class SolverType {
CVODE
};
static const std::unordered_map<std::string, SolverType> solver_map = {
{"CVODE", SolverType::CVODE}
};
if (!solver_map.contains(solver_name)) {
throw gridfire::exceptions::SolverError(
std::format(
"Solver {} is not recognized. Valid solvers are: {}",
solver_name,
gridfire::utils::iterable_to_delimited_string(solver_map, ", ", [](const auto& pair){ return pair.first; })
)
);
}
switch (solver_map.at(solver_name)) {
case SolverType::CVODE: {
this->solver = std::make_unique<gridfire::solver::CVODESolverStrategy>(*this->engine);
break;
}
default:
throw gridfire::exceptions::SolverError(
"Unhandled solver type in GridFireContext::init_solver_from_engine"
);
}
}
void GridFireContext::init_composition_from_abundance_vector(const double *abundances, size_t num_species) {
fourdst::composition::Composition GFContext::init_composition_from_abundance_vector(const std::vector<double> &abundances, size_t num_species) const {
if (num_species == 0) {
throw fourdst::composition::exceptions::InvalidCompositionError("Cannot initialize composition with zero species.");
}
if (num_species != working_comp.size()) {
if (num_species != speciesList.size()) {
throw fourdst::composition::exceptions::InvalidCompositionError(
std::format(
"Number of species provided ({}) does not match the registered species count ({}).",
num_species,
working_comp.size()
speciesList.size()
)
);
}
fourdst::composition::Composition comp;
for (size_t i = 0; i < num_species; i++) {
this->working_comp.setMolarAbundance(this->speciesList[i], abundances[i]);
comp.registerSpecies(this->speciesList[i]);
comp.setMolarAbundance(this->speciesList[i], abundances[i]);
}
return comp;
}
int GridFireContext::evolve(
void GFPointContext::init_solver_from_engine() {
this->solver = std::make_unique<gridfire::solver::PointSolver>(*this->engine);
this->solver_ctx = std::make_unique<gridfire::solver::PointSolverContext>(*engine_ctx);
}
int GFPointContext::evolve(
const double* Y_in,
const size_t num_species,
const double T,
@@ -125,17 +107,19 @@ int GridFireContext::evolve(
double& specific_neutrino_energy_loss,
double& specific_neutrino_flux,
double& mass_lost
) {
init_composition_from_abundance_vector(Y_in, num_species);
) const {
const std::vector<double> Y_scratch(Y_in, Y_in + num_species);
const fourdst::composition::Composition comp = init_composition_from_abundance_vector(Y_scratch, num_species);
gridfire::NetIn netIn;
netIn.temperature = T;
netIn.density = rho;
netIn.dt0 = dt0;
netIn.tMax = tMax;
netIn.composition = this->working_comp;
netIn.composition = comp;
const gridfire::NetOut result = this->solver->evaluate(netIn);
const gridfire::NetOut result = this->solver->evaluate(*solver_ctx, netIn);
energy_out = result.energy;
dEps_dT = result.dEps_dT;
@@ -158,4 +142,100 @@ int GridFireContext::evolve(
}
return 0;
}
}
void GFGridContext::init_solver_from_engine() {
this->local_solver = std::make_unique<gridfire::solver::PointSolver>(*this->engine);
this->solver = std::make_unique<gridfire::solver::GridSolver>(*this->engine, *this->local_solver);
this->solver_ctx = std::make_unique<gridfire::solver::GridSolverContext>(*engine_ctx);
}
int GFGridContext::evolve(
const double* Y_in,
size_t num_species,
const double *T,
const double *rho,
double tMax,
double dt0,
double *Y_out,
double *energy_out,
double *dEps_dT,
double *dEps_dRho,
double *specific_neutrino_energy_loss,
double *specific_neutrino_flux,
double *mass_lost
) const {
if (this->get_zones() == 0) {
throw gridfire::exceptions::GridFireError("GFGridContext has zero zones configured for evolution.");
}
if (Y_in == nullptr || T == nullptr || rho == nullptr) {
throw gridfire::exceptions::GridFireError("Input abundance, temperature, or density pointers are null.");
}
if (Y_out == nullptr) {
throw gridfire::exceptions::GridFireError("Output abundance pointer is null.");
}
std::vector<fourdst::composition::Composition> zone_compositions;
zone_compositions.reserve(this->get_zones());
std::vector<double> Y_scratch;
Y_scratch.resize(num_species);
for (size_t i = 0; i < this->get_zones(); ++i) {
for (size_t j = 0; j < num_species; ++j) {
Y_scratch[j] = Y_in[i * num_species + j];
}
zone_compositions.push_back(init_composition_from_abundance_vector(Y_scratch, num_species));
}
std::vector<gridfire::NetIn> netIns;
netIns.reserve(this->get_zones());
for (size_t i = 0; i < this->get_zones(); ++i) {
gridfire::NetIn netIn;
netIn.temperature = T[i];
netIn.density = rho[i];
netIn.dt0 = dt0;
netIn.tMax = tMax;
netIn.composition = zone_compositions[i];
netIns.push_back(netIn);
}
std::vector<gridfire::NetOut> results = this->solver->evaluate(*this->solver_ctx, netIns);
for (size_t zone_idx = 0; zone_idx < this->get_zones(); ++zone_idx) {
const gridfire::NetOut& netOut = results[zone_idx];
energy_out[zone_idx] = netOut.energy;
dEps_dT[zone_idx] = netOut.dEps_dT;;
dEps_dRho[zone_idx] = netOut.dEps_dRho;
specific_neutrino_energy_loss[zone_idx] = netOut.specific_neutrino_energy_loss;
specific_neutrino_flux[zone_idx] = netOut.specific_neutrino_flux;
std::set<fourdst::atomic::Species> seen_species;
for (size_t i = 0; i < num_species; ++i) {
fourdst::atomic::Species species = this->speciesList[i];
Y_out[zone_idx * num_species + i] = netOut.composition.getMolarAbundance(species);
seen_species.insert(species);
}
mass_lost[zone_idx] = 0.0;
for (const auto& species : netOut.composition.getRegisteredSpecies()) {
if (!seen_species.contains(species)) {
mass_lost[zone_idx] += species.mass() * netOut.composition.getMolarAbundance(species);
}
}
}
return 0;
}
std::unique_ptr<GFContext> make_gf_context(const GFContextType &type) {
switch (type) {
case GFContextType::POINT:
return std::make_unique<GFPointContext>();
case GFContextType::GRID:
return std::make_unique<GFGridContext>();
default:
throw gridfire::exceptions::GridFireError("Unhandled GFContextType in make_gf_context");
}
}

View File

@@ -3,120 +3,18 @@
#include "gridfire/extern/gridfire_context.h"
#include "gridfire/extern/gridfire_extern.h"
extern "C" {
void* gf_init() {
return new GridFireContext();
}
namespace {
void gf_free(void* ctx) {
delete static_cast<GridFireContext*>(ctx);
}
template<typename T>
concept ErrorTrackable = requires(T a) {
{ a.last_error } -> std::convertible_to<std::string>;
};
int gf_register_species(void* ptr, const int num_species, const char** species_names) {
auto* ctx = static_cast<GridFireContext*>(ptr);
template <ErrorTrackable Context, typename Func>
int execute_guarded(Context* ctx, Func&& action) {
try {
std::vector<std::string> names;
for(int i=0; i<num_species; ++i) {
names.emplace_back(species_names[i]);
}
ctx->init_species_map(names);
return FDSSE_SUCCESS;
} catch (const fourdst::composition::exceptions::UnknownSymbolError& e) {
ctx->last_error = e.what();
return FDSSE_UNKNOWN_SYMBOL_ERROR;
} catch (const fourdst::composition::exceptions::SpeciesError& e) {
ctx->last_error = e.what();
return FDSSE_SPECIES_ERROR;
} catch (const std::exception& e) {
ctx->last_error = e.what();
return FDSSE_NON_4DSTAR_ERROR;
} catch (...) {
ctx->last_error = "Unknown error occurred during species registration.";
return FDSSE_UNKNOWN_ERROR;
}
}
const int result = action();
int gf_construct_engine_from_policy(
void* ptr,
const char* policy_name,
const double *abundances,
const size_t num_species
) {
auto* ctx = static_cast<GridFireContext*>(ptr);
try {
ctx->init_engine_from_policy(std::string(policy_name), abundances, num_species);
return GF_SUCCESS;
} catch (const gridfire::exceptions::MissingBaseReactionError& e) {
ctx->last_error = e.what();
return GF_MISSING_BASE_REACTION_ERROR;
} catch (const gridfire::exceptions::MissingSeedSpeciesError& e) {
ctx->last_error = e.what();
return GF_MISSING_SEED_SPECIES_ERROR;
} catch (const gridfire::exceptions::MissingKeyReactionError& e) {
ctx->last_error = e.what();
return GF_MISSING_KEY_REACTION_ERROR;
} catch (const gridfire::exceptions::PolicyError& e) {
ctx->last_error = e.what();
return GF_POLICY_ERROR;
} catch (std::exception& e) {
ctx->last_error = e.what();
return GF_NON_GRIDFIRE_ERROR;
} catch (...) {
ctx->last_error = "Unknown error occurred during engine construction.";
return GF_UNKNOWN_ERROR;
}
}
int gf_construct_solver_from_engine(
void* ptr,
const char* solver_name
) {
auto* ctx = static_cast<GridFireContext*>(ptr);
try {
ctx->init_solver_from_engine(std::string(solver_name));
return GF_SUCCESS;
} catch (std::exception& e) {
ctx->last_error = e.what();
return GF_NON_GRIDFIRE_ERROR;
} catch (...) {
ctx->last_error = "Unknown error occurred during solver construction.";
return GF_UNKNOWN_ERROR;
}
}
int gf_evolve(
void* ptr,
const double* Y_in,
const size_t num_species,
const double T,
const double rho,
const double tMax,
const double dt0,
double* Y_out,
double* energy_out,
double* dEps_dT,
double* dEps_dRho,
double* specific_neutrino_energy_loss,
double* specific_neutrino_flux,
double* mass_lost
) {
auto* ctx = static_cast<GridFireContext*>(ptr);
try {
const int result = ctx->evolve(
Y_in,
num_species,
T,
rho,
tMax,
dt0,
Y_out,
*energy_out,
*dEps_dT,
*dEps_dRho,
*specific_neutrino_energy_loss,
*specific_neutrino_flux,
*mass_lost
);
if (result != 0) {
return result;
}
@@ -211,8 +109,218 @@ extern "C" {
}
}
}
extern "C" {
void* gf_init(const enum GF_TYPE type) {
if (type == MULTI_ZONE) {
return new GFGridContext();
}
if (type == SINGLE_ZONE) {
return new GFPointContext();
}
return nullptr;
}
int gf_free(const enum GF_TYPE type, void *ctx) {
if (!ctx) {
return GF_UNINITIALIZED_INPUT_MEMORY_ERROR;
}
if (type == MULTI_ZONE) {
delete static_cast<GFGridContext*>(ctx);
return GF_SUCCESS;
}
if (type == SINGLE_ZONE) {
delete static_cast<GFPointContext*>(ctx);
return GF_SUCCESS;
}
return GF_UNKNOWN_FREE_TYPE;
}
int gf_set_num_zones(const enum GF_TYPE type, void* ptr, const size_t num_zones) {
if (type != MULTI_ZONE) {
return GF_INVALID_TYPE;
}
if (!ptr) {
return GF_UNINITIALIZED_INPUT_MEMORY_ERROR;
}
auto* ctx = static_cast<GFGridContext*>(ptr);
return execute_guarded(ctx, [&]() {
ctx->set_zones(num_zones);
return GF_SUCCESS;
});
}
int gf_register_species(void* ptr, const int num_species, const char** species_names) {
if (num_species < 0) return GF_INVALID_NUM_SPECIES;
if (num_species == 0) return GF_SUCCESS;
if (!ptr || !species_names) {
return GF_UNINITIALIZED_INPUT_MEMORY_ERROR;
}
for (int i=0; i < num_species; ++i) {
if (!species_names[i]) {
return GF_UNINITIALIZED_INPUT_MEMORY_ERROR;
}
}
auto* ctx = static_cast<GFContext*>(ptr);
return execute_guarded(ctx, [&]() {
std::vector<std::string> names;
for (int i=0; i<num_species; ++i) {
names.emplace_back(species_names[i]);
}
ctx->init_species_map(names);
return FDSSE_SUCCESS;
});
}
int gf_construct_engine_from_policy(
void* ptr,
const char* policy_name,
const double *abundances,
const size_t num_species
) {
auto* ctx = static_cast<GFContext*>(ptr);
return execute_guarded(ctx, [&]() {
ctx->init_engine_from_policy(std::string(policy_name), abundances, num_species);
return GF_SUCCESS;
});
}
int gf_construct_solver_from_engine(
void* ptr
) {
auto* ctx = static_cast<GFContext*>(ptr);
return execute_guarded(ctx, [&]() {
ctx->init_solver_from_engine();
return GF_SUCCESS;
});
}
int gf_evolve(
const enum GF_TYPE type,
void* ptr,
const void* Y_in,
const size_t num_species,
const void* T,
const void* rho,
const double tMax,
const double dt0,
void* Y_out,
void* energy_out,
void* dEps_dT,
void* dEps_dRho,
void* specific_neutrino_energy_loss,
void* specific_neutrino_flux,
void* mass_lost
) {
if (!ptr || !Y_in || !T || !rho) {
return GF_UNINITIALIZED_INPUT_MEMORY_ERROR;
}
if (!Y_out || !energy_out || !dEps_dT || !dEps_dRho || !specific_neutrino_energy_loss || !specific_neutrino_flux || !mass_lost) {
return GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR;
}
if (tMax <= 0 || dt0 <= 0) {
return GF_INVALID_TIMESTEPS;
}
if (num_species <= 0) {
return GF_INVALID_NUM_SPECIES;
}
switch (type) {
case SINGLE_ZONE : {
auto* ctx = static_cast<GFPointContext*>(ptr);
const auto T_ptr = static_cast<const double*>(T);
const auto *rho_ptr = static_cast<const double*>(rho);
auto* Y_out_local = static_cast<double*>(Y_out);
auto* energy_out_local = static_cast<double*>(energy_out);
auto* dEps_dT_local = static_cast<double*>(dEps_dT);
auto* dEps_dRho_local = static_cast<double*>(dEps_dRho);
auto* specific_neutrino_energy_loss_local = static_cast<double*>(specific_neutrino_energy_loss);
auto* specific_neutrino_flux_local = static_cast<double*>(specific_neutrino_flux);
auto* mass_lost_local = static_cast<double*>(mass_lost);
return execute_guarded(ctx, [&]() {
return ctx->evolve(
static_cast<const double*>(Y_in),
num_species,
*T_ptr,
*rho_ptr,
tMax,
dt0,
Y_out_local,
*energy_out_local,
*dEps_dT_local,
*dEps_dRho_local,
*specific_neutrino_energy_loss_local,
*specific_neutrino_flux_local,
*mass_lost_local
);
});
}
case MULTI_ZONE : {
auto* ctx = static_cast<GFGridContext*>(ptr);
const auto *T_ptr = static_cast<const double*>(T);
const auto *rho_ptr = static_cast<const double*>(rho);
auto* Y_out_local = static_cast<double*>(Y_out);
auto* energy_out_local = static_cast<double*>(energy_out);
auto* dEps_dT_local = static_cast<double*>(dEps_dT);
auto* dEps_dRho_local = static_cast<double*>(dEps_dRho);
auto* specific_neutrino_energy_loss_local = static_cast<double*>(specific_neutrino_energy_loss);
auto* specific_neutrino_flux_local = static_cast<double*>(specific_neutrino_flux);
auto* mass_lost_local = static_cast<double*>(mass_lost);
// for (size_t i = 0; i < ctx->get_zones(); ++i) {
// if (!Y_out_local[i]) {
// std::cerr << "Uninitialized memory for Y_out at zone " << i << std::endl;
// return GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR;
// }
// }
return execute_guarded(ctx, [&]() {
return ctx->evolve(
static_cast<const double*>(Y_in),
num_species,
T_ptr, // T pointer
rho_ptr, // rho pointer
tMax,
dt0,
Y_out_local,
energy_out_local,
dEps_dT_local,
dEps_dRho_local,
specific_neutrino_energy_loss_local,
specific_neutrino_flux_local,
mass_lost_local
);
});
}
default :
return GF_UNKNOWN_ERROR;
}
}
char* gf_get_last_error_message(void* ptr) {
const auto* ctx = static_cast<GridFireContext*>(ptr);
if (!ptr) {
return const_cast<char*>("GF_UNINITIALIZED_INPUT_MEMORY_ERROR");
}
const auto* ctx = static_cast<GFContext*>(ptr);
return const_cast<char*>(ctx->last_error.c_str());
}
@@ -278,6 +386,18 @@ extern "C" {
return const_cast<char*>("GF_DEBUG_ERROR");
case GF_GRIDFIRE_ERROR:
return const_cast<char*>("GF_GRIDFIRE_ERROR");
case GF_UNINITIALIZED_INPUT_MEMORY_ERROR:
return const_cast<char*>("GF_UNINITIALIZED_INPUT_MEMORY_ERROR");
case GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR:
return const_cast<char*>("GF_UNINITIALIZED_OUTPUT_MEMORY_ERROR");
case GF_INVALID_NUM_SPECIES:
return const_cast<char*>("GF_INVALID_NUM_SPECIES");
case GF_INVALID_TIMESTEPS:
return const_cast<char*>("GF_INVALID_TIMESTEPS");
case GF_UNKNOWN_FREE_TYPE:
return const_cast<char*>("GF_UNKNOWN_FREE_TYPE");
case GF_INVALID_TYPE:
return const_cast<char*>("GF_INVALID_TYPE");
case FDSSE_NON_4DSTAR_ERROR:
return const_cast<char*>("FDSSE_NON_4DSTAR_ERROR");
case FDSSE_UNKNOWN_ERROR: